+ All Categories
Home > Documents > High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Date post: 15-Dec-2015
Category:
Upload: alana-huddy
View: 217 times
Download: 0 times
Share this document with a friend
Popular Tags:
26
High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013
Transcript
Page 1: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

High-Level BioDesign Automation

Jacob Beal

SemiSynBioFebruary, 2013

Page 2: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Overview

Is biology too hard for abstraction?

High-Level BDA is possible now!

• Tool-chains for BDA• Compiling from HLL to biological circuits• Building computational device libraries

Page 3: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Vision: WYSIWYG Synthetic Biology

Bioengineering should be like document preparation:

3

Page 4: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Why is this important?

• Breaking the complexity barrier:

• Multiplication of research impact• Reduction of barriers to entry

*Sampling of systems in publications with experimental circuits

1975 1980 1985 1990 1995 2000 2005 2010100

1,000

10,000

100,000

1,000,000

207

2,100 2,700

7,500 14,600

32,000

583,0001,080,000

Year

Leng

th in

bas

e pa

irs

DNA synthesis Circuit size ?

4

[Purnick & Weiss, ‘09]

Page 5: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Why a tool-chain?

Organism Level Description

Cells

This gap is too big to cross with a single method!

5

Page 6: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

The TASBE tool-chain architecture:

Organism Level Description

Abstract Genetic Regulatory Network

DNA Parts Sequence

Assembly Instructions

Cells

High level simulator

Coarse chemical simulator

Testing

High Level DescriptionIf detect explosives: emit signalIf signal > threshold: glow red

Detailed chemical simulator

Modular architecture also open for flexible choice of organisms, protocols, methods, …

6

RonWeiss

Douglas Densmore

Collaborators:

Page 7: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

A Tool-Chain Example

(def simple-sensor-actuator () (let ((x (test-sensor))) (debug x) (debug-2 (not x))))

If detect explosives: emit signalIf signal > threshold: glow red

Mammalian Target E. coli Target

Page 8: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

A Tool-Chain Example

If detect explosives: emit signalIf signal > threshold: glow red

Mammalian Target E. coli Target

Page 9: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

A Tool-Chain Example

If detect explosives: emit signalIf signal > threshold: glow red

Mammalian Target E. coli Target

Page 10: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

A Tool-Chain Example

If detect explosives: emit signalIf signal > threshold: glow red

Mammalian Target E. coli Target

Page 11: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

A Tool-Chain Example

If detect explosives: emit signalIf signal > threshold: glow red

Mammalian Target E. coli Target

Page 12: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

A Tool-Chain Example

If detect explosives: emit signalIf signal > threshold: glow red

Mammalian Target E. coli Target

Uninduced Uninduced

Induced Induced

Page 13: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Focus: BioCompiler

Organism Level Description

Abstract Genetic Regulatory Network

DNA Parts Sequence

Assembly Instructions

Cells

High level simulator

Coarse chemical simulator

Testing

High Level DescriptionIf detect explosives: emit signalIf signal > threshold: glow red

Detailed chemical simulator

Compilation &Optimization

13

Other tools aiming athigh-level design:Cello, Eugene, GEC,GenoCAD, etc.

Page 14: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Transcriptional Logic Computations

14

Page 15: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Operators translated to motifs:

IPTG not green

LacI

AIPTG

B

GFPoutputs outputs outputsarg0arg0

LacI A

IPTG

B GFP

Motif-Based Compilation

15

Page 16: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

(def sr-latch (s r) (letfed+ ((o boolean (not (or r o-bar))) (o-bar boolean (not (or s o)))) o))

(green (sr-latch (aTc) (IPTG)))

Design Optimization

LacI B

IPTG

I

G

IF

GFP

DE1 E2

A

aTcJ

HC

JTetR

Unoptimized: 15 functional units, 13 transcription factors 16

Page 17: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

GFP

Design Optimization

LacIF

IPTG

TetR

H

aTc

F

Final Optimized:5 functional units4 transcription factors

(def sr-latch (s r) (letfed+ ((o boolean (not (or r o-bar))) (o-bar boolean (not (or s o)))) o))

(green (sr-latch (aTc) (IPTG)))

Unoptimized: 15 functional units, 13 transcription factors

H

17

Page 18: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Automated Synthesis of Complex Designs

Example: 4-bit adder Example: 4-bit counter

Optimized compiler already outperforms human designers

Page 19: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Barriers & Emerging Solutions:

• Barrier: Availability of High-Gain Devices– Emerging Solution: combinatorial device libraries

based on TALs, ZFs, miRNAs

• Barrier: Characterization of Devices– Emerging solution: TASBE characterization method

• Barrier: Predictability of Biological Circuits– Emerging solution: EQuIP prediction method

Page 20: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

TASBE Method:Calibrated, Precise Characterization

TAL14 TAL21

pCAG

Dox

T2ArtTA3 VP16Gal4 pTREEBFP2

pTRER1

pUAS-Rep1EYFPpCAGmkate

pCAG

Page 21: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Characterization High Quality Predictions

LmrA TAL14 TAL21 TAL14

pCAG

Dox

T2ArtTA3 VP16Gal4 pTREEBFP2

pTRER1

pUAS-Rep1 pUAS-Rep2EYFPR2pCAGmkate

pCAG

Page 22: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

High Quality Cascade Predictions

LmrA TAL14 TAL21 TAL14Distribution + dynamics models good predictions

pCAG

Dox

T2ArtTA3 VP16Gal4 pTREEBFP2

pTRER1

pUAS-Rep1 pUAS-Rep2EYFPR2pCAGmkate

pCAG

Page 23: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Summary

High-Level BDA is possible now!• EDA tool-chain approach works for BDA • Optimized biological circuits can be generated

automatically from high-level specifications • Emerging solutions for key barriers: device

libraries, characterization, prediction

• Many opportunities for EDA tool adaptation:– Combinatorial device design– Flexible protocol automation– Device characterization– Circuit optimization, verification, safety, debugging

Page 24: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

.. and going from cells to processors…

Inference resources focused proportionally on areas of interest

local heating

hardware failure

degradedspeed

ASH volumetric region management[Pruteanu, Dulman & Langendoen, ‘10]

Proto global-to-localcompilation & manifoldcomputation model

Distortion of computation around temporary and permanent faults

Spatial Computing Process Management

Page 25: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Characterization & Design Tools Online

https://synbiotools.bbn.com/

Page 26: High-Level BioDesign Automation Jacob Beal SemiSynBio February, 2013.

Acknowledgements:

Aaron Adler

Joseph Loyall

Rick Schantz

Fusun Yaman

Ron Weiss

Jonathan Babb

Noah Davidsohn

Ting Lu

Douglas Densmore

Evan Appleton

Swapnil Bhatia

Traci Haddock

Chenkai Liu

Viktor Vasilev

26


Recommended