+ All Categories
Home > Documents > High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal...

High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal...

Date post: 03-Jan-2016
Category:
Upload: georgina-mills
View: 215 times
Download: 0 times
Share this document with a friend
Popular Tags:
26
High-lights of High-lights of solid state physics at ISOLDE solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de and Centro de Física Nuclear da Universidade de Lisboa, Portugal Lisboa, Portugal Tracer diffusion: Ag in CdTe Tracer diffusion: Ag in CdTe Transition metal impurities in Si: Fe Transition metal impurities in Si: Fe Photoluminescence: nature of the “green band” in ZnO Photoluminescence: nature of the “green band” in ZnO Arsenic as an “anti-site” impurity in ZnO Arsenic as an “anti-site” impurity in ZnO O and F configurations in High- O and F configurations in High-T c Hg1201 Hg1201 Polaron dynamics in Colossal Magneto-Resistive Polaron dynamics in Colossal Magneto-Resistive manganites manganites Magnetic hyperfine fields of adatoms at surfaces: Cd on Magnetic hyperfine fields of adatoms at surfaces: Cd on Ni Ni Ulrich Wahl Ulrich Wahl
Transcript
Page 1: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

High-lights of High-lights of solid state physics at ISOLDEsolid state physics at ISOLDE

Instituto Tecnológico e Nuclear, Sacavém, PortugalInstituto Tecnológico e Nuclear, Sacavém, Portugal

and Centro de Física Nuclear da Universidade de Lisboa, Portugaland Centro de Física Nuclear da Universidade de Lisboa, Portugal

Tracer diffusion: Ag in CdTeTracer diffusion: Ag in CdTe

Transition metal impurities in Si: FeTransition metal impurities in Si: Fe

Photoluminescence: nature of the “green band” in ZnOPhotoluminescence: nature of the “green band” in ZnO

Arsenic as an “anti-site” impurity in ZnOArsenic as an “anti-site” impurity in ZnO

O and F configurations in High-O and F configurations in High-TTcc Hg1201 Hg1201

Polaron dynamics in Colossal Magneto-Resistive manganitesPolaron dynamics in Colossal Magneto-Resistive manganites

Magnetic hyperfine fields of adatoms at surfaces: Cd on NiMagnetic hyperfine fields of adatoms at surfaces: Cd on Ni

Ulrich Wahl Ulrich Wahl

Page 2: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

Use of radioactive isotopes in Solid State PhysicsUse of radioactive isotopes in Solid State Physics

- Detect nuclear radiation to quantify impurities:Detect nuclear radiation to quantify impurities: radiotracer diffusionradiotracer diffusion

- Decay particles transmit information with atomic resolution:Decay particles transmit information with atomic resolution: Emission Channeling (EC)Emission Channeling (EC) Perturbed Angular Correlation (PAC)Perturbed Angular Correlation (PAC) Mössbauer Spectroscopy (MS)Mössbauer Spectroscopy (MS) Beta Nuclear Magnetic Resonance (Beta Nuclear Magnetic Resonance (-NMR)-NMR)

- Identify spectroscopic signals via isotope half life:- Identify spectroscopic signals via isotope half life: Photoluminescence (PL)Photoluminescence (PL) Deep Level Transient Spectroscopy (DLTSDeep Level Transient Spectroscopy (DLTS Hall effectHall effect

At ISOLDE often several of these methods are used in At ISOLDE often several of these methods are used in combinationcombination

Page 3: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

The “unusual” diffusion of The “unusual” diffusion of 111111AgAg in CdTe in CdTe

0 200 400 600 8001011

1012

1013

1014

0 200 400

1011

1012

1013

1014

Tdiff

= 800 K

tdiff

= 60 min

Cd pressure

depth (µm)

depth (µm)

con

cent

ratio

n (c

m3 )

Tdiff

= 570 K

tdiff

= 30 min

vacuum

““Normal” Normal” Gaussian Gaussian diffusion profilediffusion profile

Very unusual symmetrical Very unusual symmetrical diffusion profilediffusion profile

Why?Why?

H. Wolf H. Wolf et alet al, Phys. Rev. Lett 94 (2005) , Phys. Rev. Lett 94 (2005) 125901125901

Page 4: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

Lattice location of Lattice location of 107107CdCd107m107mAg(40s)Ag(40s) and and 109109Cd Cd 109m109mAg(44s)Ag(44s) in CdTe in CdTe

Emission Channeling lattice Emission Channeling lattice location:location:

substitutional Agsubstitutional AgCdCd

low stability of Aglow stability of AgCdCd

EEaa = 0.92(4)eV = 0.92(4)eV

long-range diffusionlong-range diffusion

amount of Agamount of AgCdCd depends depends

on the Cd stoichiometryon the Cd stoichiometry

S.G. Jahn S.G. Jahn et alet al, J. Cryst. Growth 161 (1996) 172, J. Cryst. Growth 161 (1996) 172

CdTeAg

Agi + VCd AgCd Agi + CdS

AgCd + Cdi

Page 5: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

Diffusion of Diffusion of 111111AgAg in CdTe in CdTe

0 200 400 600 8001011

1012

1013

1014

0 200 400

1011

1012

1013

1014

Tdiff

= 800 K

tdiff

= 60 min

Cd pressure

depth (µm)

depth (µm)

con

cent

ratio

n (c

m3 )

Tdiff

= 570 K

tdiff

= 30 min

vacuum

Symmetrical diffusion profileSymmetrical diffusion profile

H. Wolf H. Wolf et alet al, Phys. Rev. Lett 94 (2005) , Phys. Rev. Lett 94 (2005) 125901125901

depletion of Ag in depletion of Ag in surface regions due surface regions due to slow indiffusion to slow indiffusion of Cd of Cd [Ag[AgSS] ~ [V] ~ [VCdCd]]

CdTeAg

Agi + VCd AgCd Agi + CdS

AgCd + Cdi

Cdi + VCd CdS

Cd Cd

Page 6: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

Identify + control Fe in Si below 1010 cm-3

International Technology Roadmap for SemiconductorsInternational Technology Roadmap for Semiconductors

Page 7: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

Transition metal impurities in SiTransition metal impurities in Si

Fe, Ni, Co, Cu… fast interstitial diffusers Fe, Ni, Co, Cu… fast interstitial diffusers

deep centersdeep centers

interact with dopants and change the electrical interact with dopants and change the electrical properties of dopantsproperties of dopants

must be gettered away from active region of devices, must be gettered away from active region of devices, e.g. by trapping at e.g. by trapping at radiation damageradiation damage

investigate properties of Fe in Si by Emission investigate properties of Fe in Si by Emission Channeling (EC) and Mössbauer spectroscopy (MS)Channeling (EC) and Mössbauer spectroscopy (MS)

Page 8: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

U. Wahl U. Wahl et alet al, Phys. Rev. B 72 (2005) , Phys. Rev. B 72 (2005) 014115014115

At least 3 different Fe lattice sitesAt least 3 different Fe lattice sites

Following release to interstitial state re-gettering occurs at a different Following release to interstitial state re-gettering occurs at a different gettering center on ideal substitutional sitesgettering center on ideal substitutional sites

Lattice site changes of implanted Lattice site changes of implanted 5959FeFe in Si in Si

RT as-implanted:RT as-implanted:

mainly displaced mainly displaced substitutional Fesubstitutional Fe

-2

-1

0

1

2-2 -1 0 1 2

experiment-2 -1 0 1 2

1.23 - 1.27 1.19 - 1.23 1.15 - 1.19 1.11 - 1.15 1.07 - 1.11 1.03 - 1.07 0.99 - 1.03 0.95 - 0.99

simulation best fit

<111>

-2

-1

0

1

2 1.18 - 1.21 1.15 - 1.18 1.12 - 1.15 1.09 - 1.12 1.05 - 1.09 1.02 - 1.05 0.99 - 1.02 0.96 - 0.99

<100>

-2

-1

0

1

2 1.10 - 1.12 1.08 - 1.10 1.06 - 1.08 1.05 - 1.06 1.03 - 1.05 1.01 - 1.03 0.99 - 1.01 0.97 - 0.99

<110>

[deg]-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

<211> 1.15 - 1.18 1.12 - 1.15 1.10 - 1.12 1.07 - 1.10 1.04 - 1.07 1.01 - 1.04 0.99 - 1.01 0.96 - 0.99

experiment experiment simulationssimulations

annealedannealed at at TT=300°C:=300°C:

mainly tetrahedral mainly tetrahedral interstitial Feinterstitial Fe

-2

-1

0

1

-2 -1 0 1 2experiment

-2 -1 0 1 2

1.56 - 1.66 1.46 - 1.56 1.37 - 1.46 1.27 - 1.37 1.17 - 1.27 1.08 - 1.17 0.98 - 1.08 0.88 - 0.98

simulation best fit

<111>

-2

-1

0

1

2 1.41 - 1.48 1.34 - 1.41 1.27 - 1.34 1.21 - 1.27 1.14 - 1.21 1.07 - 1.14 1.00 - 1.07 0.93 - 1.00

<100>

-2

-1

0

1

2 1.10 - 1.13 1.08 - 1.10 1.05 - 1.08 1.02 - 1.05 0.99 - 1.02 0.97 - 0.99 0.94 - 0.97 0.91 - 0.94

<110>

[deg]-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

<211> 1.14 - 1.18 1.11 - 1.14 1.07 - 1.11 1.04 - 1.07 1.00 - 1.04 0.97 - 1.00 0.94 - 0.97 0.90 - 0.94

experiment experiment simulationssimulations

-2

-1

0

1

2

-2 -1 0 1 2experiment

-2 -1 0 1 2

1.84 - 1.97 1.71 - 1.84 1.57 - 1.71 1.44 - 1.57 1.31 - 1.44 1.18 - 1.31 1.04 - 1.18 0.91 - 1.04

simulation best fit

<111>

-2

-1

0

1

2 1.53 - 1.62 1.45 - 1.53 1.36 - 1.45 1.27 - 1.36 1.18 - 1.27 1.10 - 1.18 1.01 - 1.10 0.92 - 1.01

<100>

-2

-1

0

1

2

1.47 - 1.55 1.40 - 1.47 1.32 - 1.40 1.25 - 1.32 1.17 - 1.25 1.10 - 1.17 1.02 - 1.10 0.95 - 1.02

<110>

[deg]-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

<211> 1.35 - 1.41 1.29 - 1.35 1.24 - 1.29 1.18 - 1.24 1.12 - 1.18 1.06 - 1.12 1.01 - 1.06 0.95 - 1.01

annealed at annealed at TT=800°C:=800°C:

mainly ideal mainly ideal substitutional Fesubstitutional Fe

experiment experiment simulationssimulations

angular angular emission emission channeling channeling patternspatterns

Page 9: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

Mössbauer effect from Mössbauer effect from 5757Mn Mn 5757FeFe in Si in Si

H.P. Gunnlaugsson et al, Appl. Phys. Lett. 80 (2002) 2657H.P. Gunnlaugsson et al, Appl. Phys. Lett. 80 (2002) 2657

4-5 different Fe centers identified4-5 different Fe centers identified

interstitial Fe seen by EC is probablyinterstitial Fe seen by EC is probably a (Fe a (Feii-V) complex-V) complex

MS line broadening reveals MS line broadening reveals difference in diffusion difference in diffusion coefficients of Fecoefficients of Feii

and Fe and Feii00

FeiV

FeiV

FeiV

Page 10: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

wurtzite semiconductor with band gap of 3.4 eVwurtzite semiconductor with band gap of 3.4 eV

very similar to GaN but with superior optical propertiesvery similar to GaN but with superior optical properties

large single crystals availablelarge single crystals available

Major problemMajor problem

all undoped crystals are all undoped crystals are nn-type -type (vacancies, interstitials, other defects, impurities?)(vacancies, interstitials, other defects, impurities?)

pp-doping extremely difficult-doping extremely difficult

Zinc OxideZinc Oxide

Nichia Co., Japan

GaN blue laser

Why not yet in ZnO?

Page 11: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

Puzzles of the “green band” in ZnOPuzzles of the “green band” in ZnO““Structured” green luminescence band in ZnOStructured” green luminescence band in ZnO

R. Dingle, Phys. Rev. Lett. 23 (1969) R. Dingle, Phys. Rev. Lett. 23 (1969) 579 579

Conflicting explanations for the “green band” in the literature:

• CuZn - impurities• Vacancies (e.g., VO, VZn)

diffusion diffusion

donor

acceptor

conduction band

valence band

exci

tatio

n

Photoluminescence

investigate properties of Cu in ZnO and nature of investigate properties of Cu in ZnO and nature of green band by emission channeling and PLgreen band by emission channeling and PL

Page 12: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

Lattice location of Lattice location of 6767CuCu6767Zn in ZnOZn in ZnO

67Cu

61.9 h

67Zn

-

Implanted Cu occupies substitutional Zn sites:

CuZn

U. Wahl et al, Phys. Rev. B 69 (2004) 012102U. Wahl et al, Phys. Rev. B 69 (2004) 012102

-2

-1

0

1

2

-2 -1 0 1 2

(0110)

-2 -1 0 1 2

1.26 - 1.33 1.19 - 1.26 1.12 - 1.19 1.06 - 1.12 0.99 - 1.06 0.92 - 0.99 0.85 - 0.92 0.78 - 0.85

[0001]

-2

-1

0

1

2

(1011)

(1120)

1.57 - 1.68 1.47 - 1.57 1.37 - 1.47 1.26 - 1.37 1.15 - 1.26 1.05 - 1.15 0.95 - 1.05 0.84 - 0.95

[1102]

-2

-1

0

1

2(2021)

(1120)

1.50 - 1.59 1.40 - 1.50 1.31 - 1.40 1.22 - 1.31 1.12 - 1.22 1.03 - 1.12 0.93 - 1.03 0.84 - 0.93

[1101]

[deg]-2 -1 0 1 2

-2

-1

0

1

2

(0110)

(1120)

-2 -1 0 1 2

[2113] 1.38 - 1.46 1.31 - 1.38 1.23 - 1.31 1.15 - 1.23 1.07 - 1.15 1.00 - 1.07 0.92 - 1.00 0.84 - 0.92

Experiment Simulation for CuZn

ISOLDE / CERN:• 21013 cm2 at 60 keV• 200°C, 10 min, vacuum

Page 13: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

PL-Signals of PL-Signals of 6464CuCu((6464Ni,Ni,6464Zn) in ZnOZn) in ZnO

ISOLDE / CERN:• 51012 cm2 at 60 keV• 800°C, 30 min, O2

0 20 40 60

2,2 2,4 2,6 2,8 3,0 3,2 3,4

3 h

12 h

72 h

Energy [eV]

t1/2 = 12.1(1) h

Inte

nsi

ty [a

.u.]

Inte

nsity

[a.

u.]

Time t [h]

64Cu

64Ni

12.7 h

64Zn

EC61%

-

39%

Green band

ZnO: Green band

Literature

- CuZn - impurities

- Vacancies

- Ni - impurities ?

T. Agne et al, submitted to Phys. Rev. T. Agne et al, submitted to Phys. Rev. Lett. Lett.

Page 14: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

ZnO: Green band

Literature

- Cu - impurities

- Vacancies

- Ni - impurities ?

t1/2 = 2.6(2) h

1,0 h

3,6 h

12 h

Inte

nsity

[a.

u.]

Time t [h]In

ten

sity

[a.u

.]

Energy [eV]Green band

0 4 8 12

2,2 2,4 2,6 2,8 3,0 3,2 3,4

PL-Signals of PL-Signals of 6565NiNi6565CuCuin ZnOin ZnO

65Ni

2.52 h

65Cu

-

ISOLDE / CERN:• 51012 cm2 at 60 keV• 800°C, 30 min, O2

T. Agne et al, submitted to Phys. Rev. T. Agne et al, submitted to Phys. Rev. Lett. Lett.

Page 15: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

Recoil energies of Recoil energies of 6464CuCu and and 6565NiNi

Recoil energy: EC - decay Erecoil = 23.5 eV

- decay Erecoil 37.7 - 55.7 eV

Displacement energy in ZnO *: Zn-atoms Edispl = 19 eVO-atoms Edispl = 41 - 57 eV

Both decays produce Zn vacancies:

Green band Zn vacancies in ZnO

* D. C. Look, J. W. Hemsky, Phys. Rev. Lett. 82, 2552 (1999)

64Cu

64Ni

12.7 h

64Zn

EC61%

-

39%65Ni

2.52 h

65Cu

-

T. Agne et al, submitted to Phys. Rev. T. Agne et al, submitted to Phys. Rev. Lett. Lett.

Page 16: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

The difficulties in The difficulties in pp-type doping of ZnO-type doping of ZnO

Candidates for acceptors:Candidates for acceptors:N, P, N, P, AsAs, , SbSb Group V on SGroup V on SOO

LiLi, , NaNa, , KK,, Rb Rb Group Ia on SGroup Ia on SZnZn

CuCu, , AgAg Group Ib on SGroup Ib on SZnZn

already studied at ISOLDEalready studied at ISOLDE

investigations foreseeninvestigations foreseen

Maybe, but it does not like to occupy O Maybe, but it does not like to occupy O sites but prefers Zn sites!sites but prefers Zn sites!

ExampleExample: :

Is As a suitable acceptor in ZnO?Is As a suitable acceptor in ZnO?

Page 17: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

7373AsAs as an “anti-site” impurity in ZnO as an “anti-site” impurity in ZnO

-2

-1

0

1

2

-2 -1 0 1 2

(0110)

experiment

-2 -1 0 1 2

1.10 - 1.14 1.05 - 1.10 1.01 - 1.05 0.97 - 1.01 0.92 - 0.97 0.88 - 0.92 0.83 - 0.88 0.79 - 0.83

simulation SZn sites

[0001]

-2

-1

0

1

2

(101

1)

(1120)

1.28 - 1.35 1.22 - 1.28 1.15 - 1.22 1.09 - 1.15 1.02 - 1.09 0.95 - 1.02 0.89 - 0.95 0.82 - 0.89

[1102]

-1

0

1

2

3

(2021)

(1120)

1.21 - 1.27 1.16 - 1.21 1.10 - 1.16 1.04 - 1.10 0.99 - 1.04 0.93 - 0.99 0.88 - 0.93 0.82 - 0.88

[1101]

[deg]-2 -1 0 1 2

-1

0

1

2

3

(0110)

(1120)

-2 -1 0 1 2

[2113] 1.27 - 1.34 1.21 - 1.27 1.14 - 1.21 1.08 - 1.14 1.01 - 1.08 0.94 - 1.01 0.88 - 0.94 0.81 - 0.88

-2 -1 0 1 2

simulations for SO sites

1.25 - 1.31 1.18 - 1.25 1.12 - 1.18 1.05 - 1.12 0.99 - 1.05 0.93 - 0.99 0.86 - 0.93 0.80 - 0.86

-2 -1 0 1 2

simulations for T sites

[1102]

1.15 - 1.21 1.10 - 1.15 1.05 - 1.10 0.99 - 1.05 0.94 - 0.99 0.88 - 0.94 0.83 - 0.88 0.77 - 0.83

1.23 - 1.29 1.17 - 1.23 1.12 - 1.17 1.06 - 1.12 1.00 - 1.06 0.95 - 1.00 0.89 - 0.95 0.83 - 0.89

1.15 - 1.20 1.10 - 1.15 1.05 - 1.10 1.00 - 1.05 0.96 - 1.00 0.91 - 0.96 0.86 - 0.91 0.81 - 0.86

[1101]

-2 -1 0 1 2

1.51 - 1.60 1.42 - 1.51 1.33 - 1.42 1.24 - 1.33 1.14 - 1.24 1.05 - 1.14 0.96 - 1.05 0.87 - 0.96

-2 -1 0 1 2

1.23 - 1.29 1.17 - 1.23 1.12 - 1.17 1.06 - 1.12 1.00 - 1.06 0.95 - 1.00 0.89 - 0.95 0.83 - 0.89

[2113]

[deg]

Only patterns for SOnly patterns for SZnZn fit the fit the

experimental results!experimental results!

U. Wahl U. Wahl et alet al, in print, Phys. Rev. Lett. (2005), in print, Phys. Rev. Lett. (2005)

Page 18: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

High-High-TTcc superconductors superconductors

Superconductivity and its Superconductivity and its TTcc

critically influenced by the critically influenced by the charge that Ocharge that O22 doping doping introduces in the introduces in the superconducting CuOsuperconducting CuO22 planes planes

Twice the number of FTwice the number of F introduce introduce the same charge dopingthe same charge doping

investigate atomistic investigate atomistic configurations of Oconfigurations of O22 and F and F dopants by means of electrical dopants by means of electrical field gradient (EFG) it causes on field gradient (EFG) it causes on PAC probe atom PAC probe atom 199m199mHgHg

frequency

start stop

I Q

I

Ii

Q

1

IfIf

Q.Vzz

clock

time

Radioactive

ions PAC

Electric Field Gradient

dopant configuration fingerprint

Page 19: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

HgBa2CuO4

+

Tc > 92K

O(2)

Cu O(1)

Ba

Hg

PAC

PAC

Experiment ~ 0.20

0 2500 5000 (Mrad/s)

0

50

100

~ 0.0

0

50

100

000 2500 5000

(Mrad/s)

0.34 (a)

EFG Simulations

J.G. Correia J.G. Correia et alet al, in press, Phys. Rev. B (2005), in press, Phys. Rev. B (2005)

Oxygen & Fluorine Configurations in Hg1201 (High-Oxygen & Fluorine Configurations in Hg1201 (High-TTcc))

In contrast to O, In contrast to O, F orders in small F orders in small atomistic stripesatomistic stripes

Local deformations Local deformations and atomistic stripes and atomistic stripes in the doping planes in the doping planes are are NOTNOT responsible responsible for for charge orderingcharge ordering at the CuOat the CuO22 planes planes

Page 20: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

Colossal Magnetoresistive ManganitesColossal Magnetoresistive Manganites

Complex multi-scale world with:Complex multi-scale world with:

Intrinsic inhomogeneitiesIntrinsic inhomogeneitiesClusters and stripes (charge, spin and structure) Clusters and stripes (charge, spin and structure) Unconventional phase transitionsUnconventional phase transitions Charge-coupled lattice deformations: PolaronsCharge-coupled lattice deformations: Polarons

Strong coupling of Strong coupling of spinspin, , chargecharge, , orbitalorbital and and lattice degrees of freedomlattice degrees of freedom

use use 111m111mCd impurities as local observers of the nature Cd impurities as local observers of the nature of structural phase transitions by means of PACof structural phase transitions by means of PAC

Page 21: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

200 400 600 8000

20

40

60

80

0,0

0,3

0,6

0,9

fd

fu

fC

Orth. phase(x-ray)

T (K)

%=0.12

u

=0.08

=0

d

Unconventional phase transitions as seen Unconventional phase transitions as seen by by 111m111mCdCd in LaMnO in LaMnO3.123.12

EFG dEFG d Strong Strong

Jahn-Teller Jahn-Teller DistortionDistortion

EFG uEFG u UndistortedUndistorted

Two main local Two main local 111m111mCdCdLaLa

environmentsenvironments

Free Free PercolationPercolation threshold: 31%threshold: 31%

A.M.L. Lopes et al, submitted to Phys. Rev. Lett. A.M.L. Lopes et al, submitted to Phys. Rev. Lett. Temperature [K]

111m

Cd

fra

ctio

n [

%]

EF

G a

sym

met

ry p

aram

eter

1,5 2,0 2,5

1,4

1,6

1,8

=0.42(2)

log(

f u-r u)

log(T-Ts)

critical critical exponent exponent =0.42(2) =0.42(2)

Page 22: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

111m111mCdCd in in LaMnOLaMnO3.123.12 : polaron dynamics: polaron dynamics

Ea~0.31 eV

• Thermally activated Thermally activated polaron dynamicspolaron dynamics

• Hopping energy Hopping energy EEaa~0.31 ~0.31 eVeV

Dynamic JDynamic Jahn-ahn-TTellereller distortions related to polaron diffusion distortions related to polaron diffusion give rise to EFG fluctuations/attenuationgive rise to EFG fluctuations/attenuation

Fast fluctuations regime(observable region)

A.M.L. Lopes et al, submitted to Phys. Rev. Lett. A.M.L. Lopes et al, submitted to Phys. Rev. Lett.

Page 23: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

4

111Cd Probe on Ni(001)

Subst. Terrace SiteNN = 8

Free Kink SiteNN = 6

Adatom siteNN = 4 Subst. Step Site

NN = 7

Free Step SiteNN = 5

Impurity Atoms at Various Siteson a Surface (001)

Magnetism on surfacesMagnetism on surfaces

Different adatom sites can be prepared via Different adatom sites can be prepared via deposition and anneal temperaturedeposition and anneal temperature

allows systematic studies of magnetic hyperfine fields allows systematic studies of magnetic hyperfine fields BBHFHF

at different sites by means of PACat different sites by means of PAC

Page 24: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

7

MagneticHyperfine Fieldsat 111Cd on Ni Surfaces

Coordination Number

1968

PRL 88, 247201 (2002)Theory: Mavropoulos et al. PRL 81, 1506 (1998)

13 12 11 10 9 8 7 6 5 4 3 2 1

-10

-5

0

5

10

15

20

25

-|Bhf

| [T]

Ni(001) Ni(111) Ni(111) vicinal

Bhf ~ [Coord. No.]2

|Bhf

| [T]

Adatom

Bulk

Konstanz group:Ni(001):6,4;

Ni(111)

Ni(001)

K. Potzger et al, Phys. Rev. Lett. 88 (2002) 247201K. Potzger et al, Phys. Rev. Lett. 88 (2002) 247201BBHFHF parabolic function parabolic function

of coordination numberof coordination number

Page 25: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

Semiconductors:Semiconductors:

Si, Ge, SiGe, diamond, Si, Ge, SiGe, diamond, III-V, nitrides, II-VI, ZnO…III-V, nitrides, II-VI, ZnO…

electrical doping, transition metals,electrical doping, transition metals,rare earths, H,rare earths, H,diluted magnetic semiconductorsdiluted magnetic semiconductors

High-High-TTcc superconductors and perovskites superconductors and perovskites

Magnetism (manganites, CMR)Magnetism (manganites, CMR)

Low dimensional systems: Low dimensional systems: surfaces, interfaces, multilayerssurfaces, interfaces, multilayers

Solid state physics at ISOLDE covers a wide range of Solid state physics at ISOLDE covers a wide range of materials:materials:

ISOLDE’s strength: ISOLDE’s strength: the variety of different experimental methods that can the variety of different experimental methods that can

be combined to study these materialsbe combined to study these materials

Page 26: High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

Thanks toThanks to

Thomas Agne, U LeipzigThomas Agne, U Leipzig

Vitor Amaral, U AveiroVitor Amaral, U Aveiro

João Pedro Araújo, U PortoJoão Pedro Araújo, U Porto

Joachim Bollmann, U DresdenJoachim Bollmann, U Dresden

João Guilherme Correia, ITN Lisbon + CERNJoão Guilherme Correia, ITN Lisbon + CERN

Manfred Deicher, U SaarbrückenManfred Deicher, U Saarbrücken

Haraldur Gunnlaugsson, U AarhusHaraldur Gunnlaugsson, U Aarhus

Karl Johnston, U Saarbrücken + CERNKarl Johnston, U Saarbrücken + CERN

Yuri Manzhur, HMI BerlinYuri Manzhur, HMI Berlin

Bart De Vries, IKS LeuvenBart De Vries, IKS Leuven

Gerd Weyer, U AarhusGerd Weyer, U Aarhus

Herbert Wolf, U SaarbrückenHerbert Wolf, U Saarbrücken

Wolf-Dietrich Zeitz, HMI BerlinWolf-Dietrich Zeitz, HMI Berlin

for providing slidesfor providing slides


Recommended