+ All Categories
Home > Documents > High Performance, ISM Band, FSK/ASK Transceiver IC Data ... · FSK/ASK Transceiver IC Data Sheet...

High Performance, ISM Band, FSK/ASK Transceiver IC Data ... · FSK/ASK Transceiver IC Data Sheet...

Date post: 23-Jun-2018
Category:
Upload: lamcong
View: 223 times
Download: 0 times
Share this document with a friend
47
High Performance, ISM Band, FSK/ASK Transceiver IC Data Sheet ADF7020 Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2005–2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Low power, low IF transceiver Frequency bands 431 MHz to 478 MHz 862 MHz to 956 MHz Data rates supported 0.15 kbps to 200 kbps, FSK 0.15 kbps to 64 kbps, ASK 2.3 V to 3.6 V power supply Programmable output power −16 dBm to +13 dBm in 0.3 dBm steps Receiver sensitivity −119 dBm at 1 kbps, FSK −112 dBm at 9.6 kbps, FSK −106.5 dBm at 9.6 kbps, ASK Low power consumption 19 mA in receive mode 26.8 mA in transmit mode (10 dBm output) −3 dBm IIP3 in high linearity mode On-chip VCO and fractional-N PLL On-chip 7-bit ADC and temperature sensor Fully automatic frequency control loop (AFC) compensates for ±25 ppm crystal at 862 MHz to 956 MHz or±50 ppm at 431 MHz to 478 MHz Digital RSSI Integrated Tx/Rx switch Leakage current of <1 μA in power-down mode APPLICATIONS Low cost wireless data transfer Remote control/security systems Wireless metering Keyless entry Home automation Process and building control Wireless voice FUNCTIONAL BLOCK DIAGRAM Tx/Rx CONTROL AGC CONTROL FSK/ASK DEMODULATOR DATA SYNCHRONIZER RSSI 7-BIT ADC GAIN DIV R SERIAL PORT RFOUT OFFSET CORRECTION OFFSET CORRECTION LNA VCO PFD CP AFC CONTROL OSC1 OSC2 DIVIDERS/ MUXING N/N + 1 DIV P MUX TEMP SENSOR OSC CLK DIV CLKOUT TEST MUX VCOIN CPOUT LDO(1:4) MUXOUT ADCIN RSET CREG[1:4] R LNA RFIN RFINB SLE SDATA CE DATA CLK SREAD SCLK INT/LOCK DATA I/O FSK MOD CONTROL GAUSSIAN FILTER Σ-MODULATOR 05351-001 IF FILTER ADF7020 Figure 1.
Transcript

High Performance, ISM Band,FSK/ASK Transceiver IC

Data Sheet ADF7020

Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 ©2005–2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

FEATURES Low power, low IF transceiver Frequency bands

431 MHz to 478 MHz 862 MHz to 956 MHz

Data rates supported 0.15 kbps to 200 kbps, FSK 0.15 kbps to 64 kbps, ASK

2.3 V to 3.6 V power supply Programmable output power

−16 dBm to +13 dBm in 0.3 dBm steps Receiver sensitivity

−119 dBm at 1 kbps, FSK −112 dBm at 9.6 kbps, FSK −106.5 dBm at 9.6 kbps, ASK

Low power consumption 19 mA in receive mode 26.8 mA in transmit mode (10 dBm output)

−3 dBm IIP3 in high linearity mode On-chip VCO and fractional-N PLL On-chip 7-bit ADC and temperature sensor Fully automatic frequency control loop (AFC) compensates

for ±25 ppm crystal at 862 MHz to 956 MHz or±50 ppm at 431 MHz to 478 MHz

Digital RSSI Integrated Tx/Rx switch Leakage current of <1 μA in power-down mode

APPLICATIONS Low cost wireless data transfer Remote control/security systems Wireless metering Keyless entry Home automation Process and building control Wireless voice

FUNCTIONAL BLOCK DIAGRAM

Tx/RxCONTROL

AGCCONTROL

FSK/ASKDEMODULATOR

DATASYNCHRONIZERRSSI 7-BIT ADC

GAIN

DIV R

SERIALPORT

RFOUT

OFFSETCORRECTION

OFFSETCORRECTION

LNA

VCO

PFDCP

AFCCONTROL

OSC1 OSC2

DIVIDERS/MUXING N/N + 1DIV P

MUX

TEMPSENSOR

OSC CLKDIV

CLKOUT

TEST MUX

VCOIN CPOUT

LDO(1:4)

MUXOUTADCINRSET CREG[1:4]

RLNA

RFIN

RFINB

SLE

SDATA

CE

DATA CLK

SREAD

SCLK

INT/LOCK

DATA I/O

FSK MODCONTROL

GAUSSIANFILTER

Σ-∆MODULATOR

0535

1-0

01

IF FILTER

ADF7020

Figure 1.

ADF7020 Data Sheet

Rev. E | Page 2 of 47

TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 3 General Description ......................................................................... 4 Specifications ..................................................................................... 5 Timing Characteristics ..................................................................... 8

Timing Diagrams .......................................................................... 8 Absolute Maximum Ratings .......................................................... 10

ESD Caution ................................................................................ 10 Pin Configuration and Function Descriptions ........................... 11 Typical Performance Characteristics ........................................... 13 Frequency Synthesizer ................................................................... 15

Reference Input ........................................................................... 15 Choosing Channels for Best System Performance ................. 17

Transmitter ...................................................................................... 18 RF Output Stage .......................................................................... 18 Modulation Schemes .................................................................. 18

Receiver ............................................................................................ 20 RF Front End ............................................................................... 20 RSSI/AGC .................................................................................... 21 FSK Demodulators on the ADF7020 ....................................... 21 FSK Correlator/Demodulator ................................................... 21 Linear FSK Demodulator .......................................................... 23 AFC .............................................................................................. 23 Automatic Sync Word Recognition ......................................... 24

Applications Information .............................................................. 25 LNA/PA Matching ...................................................................... 25 Image Rejection Calibration ..................................................... 26

Transmit Protocol and Coding Considerations ..................... 27 Device Programming after Initial Power-Up ............................. 27 Interfacing to Microcontroller/DSP ........................................ 27 Power Consumption and battery lifetime calculations ......... 28

Serial Interface ................................................................................ 31 Readback Format ........................................................................ 31

Registers ........................................................................................... 32 Register 0—N Register ............................................................... 32 Register 1—Oscillator/Filter Register ...................................... 33 Register 2—Transmit Modulation Register (ASK/OOK Mode) ........................................................................................... 34 Register 2—Transmit Modulation Register (FSK Mode) ..... 35 Register 2—Transmit Modulation Register (GFSK/GOOK Mode) ........................................................................................... 36 Register 3—Receiver Clock Register ....................................... 37 Register 4—Demodulator Setup Register ............................... 38 Register 5—Sync Byte Register ................................................. 39 Register 6—Correlator/Demodulator Register ...................... 40 Register 7—Readback Setup Register ...................................... 41 Register 8—Power-Down Test Register .................................. 42 Register 9—AGC Register ......................................................... 43 Register 10—AGC 2 Register .................................................... 44 Register 11—AFC Register ....................................................... 44 Register 12—Test Register ......................................................... 45 Register 13—Offset Removal and Signal Gain Register ....... 46

Outline Dimensions ....................................................................... 47 Ordering Guide .......................................................................... 47

Data Sheet ADF7020

Rev. E | Page 3 of 47

REVISION HISTORY 9/2016—Rev. D to Rev. E Changes to General Description Section ....................................... 4 Changes to Interfacing to Microcontroller/DSP Section and Figure 37 ........................................................................................... 27 8/2012—Rev. C to Rev. D Added EPAD Notation ................................................................... 11 Changed CP-48-3 Package to CP-48-5 Package .......................... 47 Updated Outline Dimensions ........................................................ 47 Changes to Ordering Guide ........................................................... 47 5/2011—Rev. B to Rev. C Added Exposed Pad Notation to Outline Dimensions .............. 47 Changes to Ordering Guide ........................................................... 47 8/2007—Rev. A to Rev. B Changes to Features .......................................................................... 1 Changes to General Description ..................................................... 4 Changes to Table 1 ............................................................................ 5 Changes to Table 2 ............................................................................ 8 Changes to Reference Input Section ............................................. 15 Changes to N Counter Section ...................................................... 16 Changes to Choosing Channels for Best Performance Section 17 Changes to Table 5 .......................................................................... 20 Changes to FSK Correlator Register Settings Section ................ 22 Added Image Rejection Calibration Section ............................... 26 Added Figure 41 .............................................................................. 30 Changes to Readback Format Section .......................................... 31 Changes to Register 9—AGC Register Comments Section ....... 43 Added Register 12—Test Register Comments Section .............. 45

4/2006—Rev. 0 to Rev. A Changes to Features .......................................................................... 1 Changes to Table 1 ............................................................................ 5 Changes to Figure 24 ...................................................................... 17 Changes to the Setting Up the ADF7020 for GFSK Section ..... 19 Changes to Table 6 .......................................................................... 21 Changes to Table 9 .......................................................................... 23 Changes to External AFC Section................................................. 23 Deleted Maximum AFC Range Section ....................................... 23 Added AFC Performance Section ................................................. 24 Changes to Internal Rx/Tx Switch Section .................................. 25 Changes to Figure 32 ...................................................................... 25 Changes to Transmit Protocol and Coding Considerations Section .............................................................................................. 26 Added Text Relating to Figure 37 ................................................. 27 Changes to Figure 41 ...................................................................... 31 Changes to Register 1—Oscillator/Filter Register Comments ........................................................................................ 31 Changes to Figure 42 ...................................................................... 32 Changes to Register 2—Transmit Modulation Register (FSK Mode) Comments ................................................................. 33 Changes to Figure 44 ...................................................................... 34 Changes to Register 2—Transmit Modulation Register (GFSK/GOOK Mode) Comments ................................................ 34 Changes to Register 4—Demodulator Setup Register Comments ........................................................................................ 36 Changes to Figure 51 ...................................................................... 41 Changes to Figure 53 ...................................................................... 42 Changes to Ordering Guide ........................................................... 45 6/2005—Revision 0: Initial Version

ADF7020 Data Sheet

Rev. E | Page 4 of 47

GENERAL DESCRIPTION The ADF7020 is a low power, highly integrated FSK/ASK/OOK transceiver designed for operation in the license-free ISM bands at 433 MHz, 868 MHz, and 915 MHz, as well as the proposed Japanese RFID band at 950 MHz. A Gaussian data filter option is available to allow either GFSK or G-ASK modulation, which provides a more spectrally efficient modulation. In addition to these modulation options, the ADF7020 can also be used to perform both MSK and GMSK modulation, where MSK is a special case of FSK with a modulation index of 0.5. The modula-tion index is calculated as twice the deviation divided by the data rate. MSK is spectrally equivalent to O-QPSK modulation with half-sinusoidal Tx baseband shaping, so the ADF7020 can also support this modulation option by setting up the device in MSK mode.

This device is suitable for circuit applications that meet the European ETSI-300-220, the North American FCC (Part 15), or the Chinese Short Range Device regulatory standards. A complete transceiver can be built using a small number of external discrete components, making the ADF7020 very suitable for price-sensitive and area-sensitive applications.

The transmitter block on the ADF7020 contains a VCO and low noise fractional-N PLL with an output resolution of <1 ppm. This frequency agile PLL allows the ADF7020 to be used in frequency-hopping spread spectrum (FHSS) systems. The VCO operates at twice the fundamental frequency to reduce spurious emissions and frequency-pulling problems.

The transmitter output power is programmable in 0.3 dB steps from −16 dBm to +13 dBm. The transceiver RF frequency and modulation are programmable using a simple 3-wire interface. The device operates with a power supply range of 2.3 V to 3.6 V and can be powered down when not in use.

A low IF architecture is used in the receiver (200 kHz), minimizing power consumption and the external component count and avoiding interference problems at low frequencies. The ADF7020 supports a wide variety of programmable features, including Rx linearity, sensitivity, and IF bandwidth, allowing the user to trade off receiver sensitivity and selectivity against current consumption, depending on the application. The receiver also features a patent-pending automatic frequency control (AFC) loop, allowing the PLL to track out the frequency error in the incoming signal.

An on-chip ADC provides readback of an integrated temperature sensor, an external analog input, the battery voltage, or the RSSI signal, which provides savings on an ADC in some applications. The temperature sensor is accurate to ±10°C over the full operating temperature range of −40°C to +85°C. This accuracy can be improved by doing a 1-point calibration at room temperature and storing the result in memory.

Data Sheet ADF7020

Rev. E | Page 5 of 47

SPECIFICATIONS VDD = 2.3 V to 3.6 V, GND = 0 V, TA = TMIN to TMAX, unless otherwise noted. Typical specifications are at VDD = 3 V, TA = 25°C. All measurements are performed using the EVAL-ADF7020DBZ1 through EVAL-ADF7020DBZ3 using the PN9 data sequence, unless otherwise noted.

Table 1. Parameter Min Typ Max Unit Test Conditions

RF CHARACTERISTICS Frequency Ranges (Direct Output) 862 870 MHz VCO adjust = 0, VCO bias = 10 902 928 MHz VCO adjust = 3, VCO bias = 10 928 956 MHz VCO adjust = 3, VCO bias = 12, VDD = 2.7 V to 3.6 V Frequency Ranges (Divide-by-2 Mode) 431 440 MHz VCO adjust = 0, VCO bias = 10 440 478 MHz VCO adjust = 3, VCO bias = 12 Phase Frequency Detector Frequency RF/256 24 MHz

TRANSMISSION PARAMETERS Data Rate

FSK/GFSK 0.15 200 kbps OOK/ASK 0.15 641 kbps OOK/ASK 0.3 100 kbaud Using Manchester encoding

Frequency Shift Keying GFSK/FSK Frequency Deviation2, 3 1 110 kHz PFD = 3.625 MHz 4.88 620 kHz PFD = 20 MHz Deviation Frequency Resolution 100 Hz PFD = 3.625 MHz Gaussian Filter BT 0.5

Amplitude Shift Keying ASK Modulation Depth 30 dB PA Off Feedthrough in OOK Mode −50 dBm

Transmit Power4 −20 +13 dBm VDD = 3.0 V, TA = 25°C Transmit Power Variation vs.

Temperature ±1 dB From −40°C to +85°C

Transmit Power Variation vs. VDD ±1 dB From 2.3 V to 3.6 V at 915 MHz, TA = 25°C Transmit Power Flatness ±1 dB From 902 MHz to 928 MHz, 3 V, TA = 25°C Programmable Step Size

−20 dBm to +13 dBm 0.3125 dB Integer Boundary −55 dBc 50 kHz loop BW Reference −65 dBc

Harmonics Second Harmonic −27 dBc Unfiltered conductive Third Harmonic −21 dBc All Other Harmonics −35 dBc

VCO Frequency Pulling, OOK Mode 30 kHz rms DR = 9.6 kbps Optimum PA Load Impedance5 39 + j61 Ω FRF = 915 MHz 48 + j54 Ω FRF = 868 MHz 54 + j94 Ω FRF = 433 MHz

RECEIVER PARAMETERS FSK/GFSK Input Sensitivity At BER = 1E − 3, FRF = 915 MHz,

LNA and PA matched separately6 Sensitivity at 1 kbps −119.2 dBm FDEV = 5 kHz, high sensitivity mode7 Sensitivity at 9.6 kbps −112.8 dBm FDEV = 10 kHz, high sensitivity mode Sensitivity at 200 kbps −100 dBm FDEV = 50 kHz, high sensitivity mode

OOK Input Sensitivity At BER = 1E − 3, FRF = 915 MHz Sensitivity at 1 kbps −116 dBm High sensitivity mode Sensitivity at 9.6 kbps −106.5 dBm High sensitivity mode

ADF7020 Data Sheet

Rev. E | Page 6 of 47

Parameter Min Typ Max Unit Test Conditions

LNA and Mixer, Input IP37

Enhanced Linearity Mode −3 dBm Pin = −20 dBm, 2 CW interferers Low Current Mode −5 dBm FRF = 915 MHz, F1 = FRF + 3 MHz High Sensitivity Mode −24 dBm F2 = FRF + 6 MHz, maximum gain

Rx Spurious Emissions8 −57 dBm <1 GHz at antenna input −47 dBm >1 GHz at antenna input

AFC Pull-In Range at 868 MHz/915 MHz ±50 kHz IF_BW = 200 kHz Pull-In Range at 433 MHz ±25 kHz IF_BW = 200 kHz Response Time 48 Bits Modulation index = 0.875 Accuracy 1 kHz

CHANNEL FILTERING Desired signal 3 dB above the input sensitivity level, CW interferer power level increased until BER = 10−3, image channel excluded

Adjacent Channel Rejection (Offset = ±1 × IF Filter BW Setting)

27 dB IF filter BW settings = 100 kHz, 150 kHz, 200 kHz

Second Adjacent Channel Rejection (Offset = ±2 × IF Filter BW Setting)

50 dB IF filter BW settings = 100 kHz, 150 kHz, 200 kHz

Third Adjacent Channel Rejection (Offset = ±3 × IF Filter BW Setting)

55 dB IF filter BW settings = 100 kHz, 150 kHz, 200 kHz

Image Channel Rejection (Uncalibrated)

30 dB Image at FRF = 400 kHz

Image Channel Rejection (Calibrated) 50 dB Image at FRF = 400 kHz

CO-CHANNEL REJECTION −2 dB Wideband Interference Rejection 70 dB Swept from 100 MHz to 2 GHz, measured as channel

rejection

BLOCKING Desired signal 3 dB above the input sensitivity level, CW interferer power level increased until BER = 10−2

±1 MHz 60 dB ±5 MHz 68 dB ±10 MHz 65 dB ±10 MHz (High Linearity Mode) 72 dB Saturation (Maximum Input Level) 12 dBm FSK mode, BER = 10−3 LNA Input Impedance 24 − j60 Ω FRF = 915 MHz, RFIN to GND 26 − j63 Ω FRF = 868 MHz 71 − j128 Ω FRF = 433 MHz RSSI

Range at Input −110 to −24

dBm

Linearity ±2 dB Absolute Accuracy ±3 dB Response Time 150 μs See the RSSI/AGC section

PHASE-LOCKED LOOP VCO Gain 65 MHz/V 902 MHz to 928 MHz band,

VCO adjust = 0, VCO_BIAS_SETTING = 10 130 MHz/V 860 MHz to 870 MHz band, VCO adjust = 0 65 MHz/V 433 MHz, VCO adjust = 0 Phase Noise (In-Band) −89 dBc/Hz PA = 0 dBm, VDD = 3.0 V, PFD = 10 MHz,

FRF = 915 MHz, VCO_BIAS_SETTING = 10 Phase Noise (Out-of-Band) −110 dBc/Hz 1 MHz offset Residual FM 128 Hz From 200 Hz to 20 kHz, FRF = 868 MHz PLL Settling 40 μs Measured for a 10 MHz frequency step to within

5 ppm accuracy, PFD = 20 MHz, LBW = 50 kHz

Data Sheet ADF7020

Rev. E | Page 7 of 47

Parameter Min Typ Max Unit Test Conditions REFERENCE INPUT

Crystal Reference 3.625 24 MHz External Oscillator 3.625 24 MHz Load Capacitance 33 pF See crystal manufacturer’s specification sheet Crystal Start-Up Time 2.1 ms 11.0592 MHz crystal, using 33 pF load capacitors 1.0 ms Using 16 pF load capacitors Input Level CMOS levels See the Reference Input section

ADC PARAMETERS INL ±1 LSB From 2.3 V to 3.6 V, TA = 25°C DNL ±1 LSB From 2.3 V to 3.6 V, TA = 25°C

TIMING INFORMATION Chip Enabled to Regulator Ready 10 µs CREG = 100 nF Chip Enabled to RSSI Ready 3.0 ms See Table 11 for more details Tx to Rx Turnaround Time 150 µs +

(5 × TBIT) Time to synchronized data out, includes AGC settling;

see the AGC Information and Timing section

LOGIC INPUTS Input High Voltage, VINH 0.7 ×

VDD V

Input Low Voltage, VINL 0.2 × VDD

V

Input Current, IINH/IINL ±1 µA Input Capacitance, CIN 10 pF Control Clock Input 50 MHz

LOGIC OUTPUTS Output High Voltage, VOH DVDD −

0.4 V IOH = 500 µA

Output Low Voltage, VOL 0.4 V IOL = 500 µA CLKOUT Rise/Fall 5 ns CLKOUT Load 10 pF

TEMPERATURE RANGE, TA −40 +85 °C

POWER SUPPLIES Voltage Supply

VDD 2.3 3.6 V All VDD pins must be tied together

Transmit Current Consumption FRF = 915 MHz, VDD = 3.0 V, PA is matched to 50 Ω

−20 dBm 14.8 mA Combined PA and LNA matching network as on EVAL-ADF7020DBZ1 through EVAL-ADF7020DBZ3 boards, VCO_BIAS_SETTING = 12

−10 dBm 15.9 mA

0 dBm 19.1 mA

10 dBm 28.5 mA 10 dBm 26.8 mA PA matched separately with external antenna

switch, VCO_BIAS_SETTING = 12 Receive Current Consumption

Low Current Mode 19 mA High Sensitivity Mode 21 mA

Power-Down Mode Low Power Sleep Mode 0.1 1 µA

1 Higher data rates are achievable, depending on local regulations. 2 For the definition of frequency deviation, see the Register 2—Transmit Modulation Register (FSK Mode) section. 3 For the definition of GFSK frequency deviation, see the Register 2—Transmit Modulation Register (GFSK/GOOK Mode) section. 4 Measured as maximum unmodulated power. Output power varies with both supply and temperature. 5 For matching details, see the LNA/PA Matching section and the AN-764 Application Note. 6 Sensitivity for combined matching network case is typically 2 dB less than separate matching networks. 7 See Table 5 for a description of different receiver modes. 8 Follow the matching and layout guidelines to achieve the relevant FCC/ETSI specifications.

ADF7020 Data Sheet

Rev. E | Page 8 of 47

TIMING CHARACTERISTICS VDD = 3 V ± 10%, VGND = 0 V, TA = 25°C, unless otherwise noted. Guaranteed by design, not production tested.

Table 2. Parameter Limit at TMIN to TMAX Unit Test Conditions/Comments t1 >10 ns SDATA to SCLK setup time t2 >10 ns SDATA to SCLK hold time t3 >25 ns SCLK high duration t4 >25 ns SCLK low duration t5 >10 ns SCLK to SLE setup time t6 >20 ns SLE pulse width t8 <25 ns SCLK to SREAD data valid, readback t9 <25 ns SREAD hold time after SCLK, readback t10 >10 ns SCLK to SLE disable time, readback

TIMING DIAGRAMS

SCLK

SLE

DB31 (MSB) DB30 DB2DB1

(CONTROL BIT C2)SDATADB0 (LSB)

(CONTROL BIT C1)

t6

t1 t2

t3 t4

t5

0535

1-0

02

Figure 2. Serial Interface Timing Diagram

t8

t3

t1 t2

t10

t9

X RV16 RV15 RV2 RV1

053

51-0

03

SCLK

SDATA

SLE

SREAD

(CONTROL BIT C1)

R7_DB0

Figure 3. Readback Timing Diagram

Data Sheet ADF7020

Rev. E | Page 9 of 47

RxCLK

DATARxDATA

±1 × DATA RATE/32 1/DATA RATE

053

51-0

04

Figure 4. RxData/RxCLK Timing Diagram

TxCLK

DATATxDATA

SAMPLEFETCH

1/DATA RATE

NOTES1. TxCLK ONLY AVAILABLE IN GFSK MODE.

0535

1-0

05

Figure 5. TxData/TxCLK Timing Diagram

ADF7020 Data Sheet

Rev. E | Page 10 of 47

ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted.

Table 3. Parameter Rating VDD to GND1 −0.3 V to +5 V Analog I/O Voltage to GND −0.3 V to AVDD + 0.3 V Digital I/O Voltage to GND −0.3 V to DVDD + 0.3 V Operating Temperature Range

Industrial (B Version) −40°C to +85°C Storage Temperature Range −65°C to +125°C Maximum Junction Temperature 150°C MLF θJA Thermal Impedance 26°C/W Reflow Soldering

Peak Temperature 260°C Time at Peak Temperature 40 sec

1 GND = GND1 = RFGND = GND4 = VCO GND = 0 V.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

This device is a high performance RF integrated circuit with an ESD rating of <2 kV, and is ESD sensitive. Proper precautions should be taken for handling and assembly.

ESD CAUTION

Data Sheet ADF7020

Rev. E | Page 11 of 47

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

05

351

-00

6

ADF7020TOP VIEW

(Not to Scale)

VCOINCREG1

VDD1RFOUTRFGND

RFINRFINB

RLNA

VDD4RSET

CREG4GND4

CLKOUTDATA CLKDATA I/OINT/LOCKVDD2CREG2ADCINGND2SCLKSREADSDATASLE

CV

CO

GN

D1

GN

DV

CO

GN

DG

ND

VD

DC

PO

UT

CR

EG

3V

DD

3O

SC

1O

SC

2M

UX

OU

T

MIX

_I

MIX

_Q

FIL

T_I

GN

D4

FIL

T_Q

GN

D4

TE

ST

_A CE

FIL

T_Q

FIL

T_I

MIX

_Q

MIX

_I

1234567

242322212019181716151413

4445464748 43 42 41 40 39 38 37

252627282930313233343536

89

101112

NOTES1. EXPOSED PAD MUST BE CONNECTED TO GROUND.

Figure 6. Pin Configuration

Table 4. Pin Function Descriptions Pin No. Mnemonic Description 1 VCOIN The tuning voltage on this pin determines the output frequency of the voltage-controlled oscillator (VCO).

The higher the tuning voltage, the higher the output frequency. 2 CREG1 Regulator Voltage for PA Block. A 100 nF in parallel with a 5.1 pF capacitor should be placed between this

pin and ground for regulator stability and noise rejection. 3 VDD1 Voltage Supply for PA Block. Decoupling capacitors of 0.1 μF and 10 pF should be placed as close as

possible to this pin. All VDD pins should be tied together. 4 RFOUT The modulated signal is available at this pin. Output power levels are from −20 dBm to +13 dBm. The

output should be impedance matched to the desired load using suitable components. See the Transmitter section.

5 RFGND Ground for Output Stage of Transmitter. All GND pins should be tied together. 6 RFIN LNA Input for Receiver Section. Input matching is required between the antenna and the differential LNA

input to ensure maximum power transfer. See the LNA/PA Matching section. 7 RFINB Complementary LNA Input. See the LNA/PA Matching section. 8 RLNA External bias resistor for LNA. Optimum resistor is 1.1 kΩ with 5% tolerance. 9 VDD4 Voltage Supply for LNA/MIXER Block. This pin should be decoupled to ground with a 10 nF capacitor. 10 RSET External Resistor to Set Charge Pump Current and Some Internal Bias Currents. Use 3.6 kΩ with 5%

tolerance. 11 CREG4 Regulator Voltage for LNA/MIXER Block. A 100 nF capacitor should be placed between this pin and GND

for regulator stability and noise rejection. 12 GND4 Ground for LNA/MIXER Block. 13 to 18 MIX_I, MIX_I,

MIX_Q, MIX_Q, FILT_I, FILT_I

Signal Chain Test Pins. These pins are high impedance under normal conditions and should be left unconnected.

19, 22 GND4 Ground for LNA/MIXER Block. 20, 21, 23 FILT_Q, FILT_Q,

TEST_A Signal Chain Test Pins. These pins are high impedance under normal conditions and should be left unconnected.

24 CE Chip Enable. Bringing CE low puts the ADF7020 into complete power-down. Register values are lost when CE is low, and the part must be reprogrammed once CE is brought high.

25 SLE Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of the fourteen latches. A latch is selected using the control bits.

26 SDATA Serial Data Input. The serial data is loaded MSB first with the two LSBs as the control bits. This pin is a high impedance CMOS input.

ADF7020 Data Sheet

Rev. E | Page 12 of 47

Pin No. Mnemonic Description 27 SREAD Serial Data Output. This pin is used to feed readback data from the ADF7020 to the microcontroller. The

SCLK input is used to clock each readback bit (AFC, ADC readback) from the SREAD pin. 28 SCLK Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched into

the 24-bit shift register on the CLK rising edge. This pin is a digital CMOS input. 29 GND2 Ground for Digital Section. 30 ADCIN Analog-to-Digital Converter Input. The internal 7-bit ADC can be accessed through this pin. Full scale is 0 V

to 1.9 V. Readback is made using the SREAD pin. 31 CREG2 Regulator Voltage for Digital Block. A 100 nF in parallel with a 5.1 pF capacitor should be placed between

this pin and ground for regulator stability and noise rejection. 32 VDD2 Voltage Supply for Digital Block. A decoupling capacitor of 10 nF should be placed as close as possible to

this pin. 33 INT/LOCK Bidirectional Pin. In output mode (interrupt mode), the ADF7020 asserts the INT/ LOCK pin when it has

found a match for the preamble sequence. In input mode (lock mode), the microcontroller can be used to lock the demodulator threshold when a valid preamble has been detected. Once the threshold is locked, NRZ data can be reliably received. In this mode, a demodulation lock can be asserted with minimum delay.

34 DATA I/O Transmit Data Input/Received Data Output. This is a digital pin, and normal CMOS levels apply. 35 DATA CLK In receive mode, the pin outputs the synchronized data clock. The positive clock edge is matched to the

center of the received data. In GFSK transmit mode, the pin outputs an accurate clock to latch the data from the microcontroller into the transmit section at the exact required data rate. See the Gaussian Frequency Shift Keying (GFSK) section.

36 CLKOUT A Divided-Down Version of the Crystal Reference with Output Driver. The digital clock output can be used to drive several other CMOS inputs, such as a microcontroller clock. The output has a 50:50 mark-space ratio.

37 MUXOUT This pin provides the LOCK_DETECT signal, which is used to determine if the PLL is locked to the correct frequency. Other signals include REGULATOR_READY, which is an indicator of the status of the serial interface regulator.

38 OSC2 The reference crystal should be connected between this pin and OSC1. A TCXO reference can be used by driving this pin with CMOS levels and disabling the crystal oscillator.

39 OSC1 The reference crystal should be connected between this pin and OSC2. 40 VDD3 Voltage Supply for the Charge Pump and PLL Dividers. This pin should be decoupled to ground with a

0.01 μF capacitor. 41 CREG3 Regulator Voltage for Charge Pump and PLL Dividers. A 100 nF in parallel with a 5.1 pF capacitor should be

placed between this pin and ground for regulator stability and noise rejection. 42 CPOUT Charge Pump Output. This output generates current pulses that are integrated in the loop filter. The

integrated current changes the control voltage on the input to the VCO. 43 VDD Voltage Supply for VCO Tank Circuit. This pin should be decoupled to ground with a 0.01 μF capacitor. 44 to 47 GND, GND1,

VCO GND Grounds for VCO Block.

48 CVCO A 22 nF capacitor should be placed between this pin and CREG1 to reduce VCO noise. EP Exposed Pad. The exposed pad must be connected to ground.

Data Sheet ADF7020

Rev. E | Page 13 of 47

TYPICAL PERFORMANCE CHARACTERISTICS

053

51-0

07

10MHz

10.0000kHz–87.80dBc/Hz

CARRIER POWER –0.28dBm ATTEN 0.00dB MKR1REF –70.00dBc/Hz10.00dB/DIV

1kHz FREQUENCY OFFSET

1

Figure 7. Phase Noise Response at 868.3 MHz, VDD = 3.0 V, ICP = 1.5 mA

0535

1-0

08

FREQUENCY (MHz)

913.38913.28 913.30 913.32 913.36

SIG

NA

L L

EV

EL

(d

Bm

)

10

20

30

40

50

60

70

PRBS PN9DR = 7.1kbpsFDEV = 4.88kHzRBW = 300kHz

FSK

GFSK

Figure 8. Output Spectrum in FSK and GFSK Modulation

0535

1-00

9

IF FREQ (kHz)

600–400 –300 –200 –100 0 100 200 300 400 500550–350 –250 –150 –50 50 150 250 350 450

AT

TE

NU

AT

ION

LE

VE

L (

dB

)

0

–5

–10

–15

–20

–25

–30

–35

–40

–45

–50

–55

–60

–65

–70

200kHz FILTER BW

150kHz FILTER BW

100kHz FILTER BW

Figure 9. IF Filter Response

053

51-0

10

STOP 10.000GHzSWEEP 16.52ms (601pts)

MKR4 3.482GHzSWEEP 16.52ms (601pts)

START 100MHzRES BW 3MHz

REF 10dBmPEAKlog10dB/DIV

VBW 3MHz

ATTEN 20dB

1

3

4

REF LEVEL10.00dBm

Figure 10. Harmonic Response, RFOUT Matched to 50 Ω, No Filter

0535

1-0

11

STOP 5.000GHzSWEEP 5.627s (601pts)

∆ Mkr1 1.834GHz–62.57dB

START 800MHz#RES BW 30kHz

REF 15dBm ATTEN 30dB

VBW 30kHz

NORMlog

10dB/DIV

LgAv

W1 S2S3 FC

AA£(f):FTunSwp

1R

1

MARKER ∆1.834000000GHz–62.57dB

Figure 11. Harmonic Response, Murata Dielectric Filter

0535

1-0

12

FREQUENCY (MHz)

900.80899.60 900.00899.80 900.20 900.40 900.60

SIG

NA

L L

EV

EL

(d

Bm

)

10

0

–10

–20

–30

–40

–50

OOK

GOOK

ASK

Figure 12. Output Spectrum in ASK, OOK, and GOOK Modes, DR = 10 kbps

ADF7020 Data Sheet

Rev. E | Page 14 of 47

053

51-0

13

PA SETTING

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

PA

OU

TP

UT

PO

WE

R

20

10

15

0

5

–10

–5

–20

–15

–25

11µA

9µA

5µA

7µA

Figure 13. PA Output Power vs. Setting

053

51-0

14

FREQUENCY OF INTERFERER (MHz)

110020

0

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

LE

VE

L O

F R

EJE

CT

ION

(d

B)

80

70

60

50

40

30

20

10

0

–10

Figure 14. Wideband Interference Rejection; Wanted Signal (880 MHz) at 3 dB above Sensitivity Point Interferer = FM Jammer (9.76 kbps, 10 kHz Deviation)

0535

1-0

15

20–120 –100 –80 –60 –40 –20 0

20

–20

–60

0

–40

–80

–100

–120

ACTUAL INPUT LEVEL

RSSI READBACK LEVEL

RF INPUT (dB)

RS

SI

LE

VE

L (

dB

)

Figure 15. Digital RSSI Readback Linearity

053

51-0

16

RF INPUT LEVEL (dBm)

–114

–113

–112

–111

–110

–109

–108

–107

–106

–124

–123

–122

–121

–120

–119

–118

–117

–116

–115

0

–1

–2

–3

–5

–4

–6

–7

–8

3.6V, –40°C

2.4V, +85°C

3.0V, +25°CDATA RATE = 1kbps FSKIF BW = 100kHzDEMOD BW = 0.77kHz

BE

R

Figure 16. BER vs. VDD and Temperature

0535

1-01

7

RF INPUT LEVEL (dBm)

–90

–122

–121

–120

–119

–118

–117

–116

–115

–114

–113

–112

–111

–110

–109

–108

–107

–106

–105

–104

–103

–102

–101

–100 –99

–98

–97

–96

–95

–94

–93

–92

–91

BE

R

0

–1

–2

–4

–5

–3

–6

–7

–8

9.760kDATA RATE

200.8kDATA RATE

1.002kDATA RATE

Figure 17. BER vs. Data Rate (Combined Matching Network) Separate LNA and PA Matching Paths Typically Improve Performance by 2 dB

0535

1-01

8

FREQUENCY ERROR (kHz)

110

–110 –9

0

–70

–50

–30

–10 10 30 50 70 90

100

–100 –8

0

–60

–40

–20 0 20 40 60 80

SE

NS

ITIV

ITY

(d

Bm

)

–60

–70

–75

–65

–80

–85

–90

–95

–100

–105

–110

LINEAR AFC OFF

LINEAR AFC ONCORRELATORAFC OFF

CORRELATORAFC ON

Figure 18. Sensitivity vs. Frequency Error with AFC On/Off

Data Sheet ADF7020

Rev. E | Page 15 of 47

FREQUENCY SYNTHESIZER REFERENCE INPUT The on-board crystal oscillator circuitry (see Figure 19) can use an inexpensive quartz crystal as the PLL reference. The oscillator circuit is enabled by setting R1_DB12 high. It is enabled by default on power-up and is disabled by bringing CE low. Errors in the crystal can be corrected using the automatic frequency control (see the AFC section) feature or by adjusting the fractional-N value (see the N Counter section). A single-ended reference (TCXO, CXO) can also be used. The CMOS levels should be applied to OSC2 with R1_DB12 set low.

OSC1

CP1CP2

OSC2

0535

1-0

19

Figure 19. Oscillator Circuit on the ADF7020

Two parallel resonant capacitors are required for oscillation at the correct frequency; their values are dependent on the crystal specification. They should be chosen so that the series value of capacitance added to the PCB track capacitance adds up to the load capacitance of the crystal, usually 20 pF. PCB track capacitance values might vary from 2 pF to 5 pF, depending on board layout. Thus, calculate CP1 and CP2 using:

PCBL C

CP2CP

C

11

11

Where possible, choose capacitors that have a low temperature coefficient to ensure stable frequency operation over all conditions.

CLKOUT Divider and Buffer

The CLKOUT circuit takes the reference clock signal from the oscillator section, shown in Figure 20, and supplies a divided down 50:50 mark-space signal to the CLKOUT pin. An even divide from 2 to 30 is available. This divide number is set in R1_DB[8:11]. On power-up, the CLKOUT defaults to divide-by-8.

DVDD

CLKOUTENABLE BIT

CLKOUTOSC1 DIVIDER1 TO 15

0535

1-0

20

÷2

Figure 20. CLKOUT Stage

To disable CLKOUT, set the divide number to 0. The output buffer can drive up to a 20 pF load with a 10% rise time at 4.8 MHz. Faster edges can result in some spurious feedthrough to the output. A small series resistor (50 Ω) can be used to slow the clock edges to reduce these spurs at fCLK.

R Counter

The 3-bit R counter divides the reference input frequency by an integer ranging from 1 to 7. The divided-down signal is presented as the reference clock to the phase frequency detector (PFD). The divide ratio is set in Register 1. Maximizing the PFD frequency reduces the N value. Every doubling of the PFD gives a 3 dB benefit in phase noise, as well as reducing occurrences of spurious components. The R register defaults to R = 1 on power-up.

PFD [Hz] = XTAL/R

MUXOUT and Lock Detect

The MUXOUT pin allows the user to access various digital points in the ADF7020. The state of MUXOUT is controlled by Bits R0_DB[29:31].

Regulator Ready

Regulator ready is the default setting on MUXOUT after the transceiver has been powered up. The power-up time of the regulator is typically 50 μs. Because the serial interface is powered from the regulator, the regulator must be at its nominal voltage before the ADF7020 can be programmed. The status of the regulator can be monitored at MUXOUT. When the regulator ready signal on MUXOUT is high, programming of the ADF7020 can begin.

REGULATOR READY

DIGITAL LOCK DETECT

ANALOG LOCK DETECT

R COUNTER OUTPUT

N COUNTER OUTPUT

PLL TEST MODES

Σ-∆ TEST MODES

MUX CONTROL

DGND

DVDD

MUXOUT

0535

1-02

1

Figure 21. MUXOUT Circuit

Digital Lock Detect

Digital lock detect is active high. The lock detect circuit is located at the PFD. When the phase error on five consecutive cycles is less than 15 ns, lock detect is set high. Lock detect remains high until 25 ns phase error is detected at the PFD. Because no external components are needed for digital lock detect, it is more widely used than analog lock detect.

Analog Lock Detect

This N-channel open-drain lock detect should be operated with an external pull-up resistor of 10 kΩ nominal. When a lock has been detected, this output is high with narrow low going pulses.

ADF7020 Data Sheet

Rev. E | Page 16 of 47

Voltage Regulators

The ADF7020 contains four regulators to supply stable voltages to the part. The nominal regulator voltage is 2.3 V. Each regulator should have a 100 nF capacitor connected between CREGx and GND. When CE is high, the regulators and other associated circuitry are powered on, drawing a total supply current of 2 mA. Bringing the chip-enable pin low disables the regulators, reduces the supply current to less than 1 μA, and erases all values held in the registers. The serial interface operates off a regulator supply; therefore, to write to the part, the user must have CE high and the regulator voltage must be stabilized. Regulator status (CREG4) can be monitored using the regulator ready signal from MUXOUT.

Loop Filter

The loop filter integrates the current pulses from the charge pump to form a voltage that tunes the output of the VCO to the desired frequency. It also attenuates spurious levels generated by the PLL. A typical loop filter design is shown in Figure 22.

053

51-0

22

CHARGEPUMP OUT

VCO

Figure 22. Typical Loop Filter Configuration

In FSK, the loop should be designed so that the loop bandwidth (LBW) is approximately one and a half times the data rate. Widening the LBW excessively reduces the time spent jumping between frequencies, but it can cause insufficient spurious attenuation.

For ASK systems, a wider LBW is recommended. The sudden large transition between two power levels can result in VCO pulling and can cause a wider output spectrum than is desired. By widening the LBW to more than 10 times the data rate, the amount of VCO pulling is reduced, because the loop settles quickly back to the correct frequency. The wider LBW can restrict the output power and data rate of ASK-based systems compared with FSK-based systems.

Narrow-loop bandwidths can result in the loop taking long periods of time to attain lock. Careful design of the loop filter is critical to obtaining accurate FSK/GFSK modulation.

For GFSK, it is recommended that an LBW of 1.0 to 1.5 times the data rate be used to ensure that sufficient samples are taken of the input data while filtering system noise. The free design tool ADIsimSRD Design Studio™ can be used to design loop filters for the ADF7020. It can also be used to view the effect of loop filter bandwidth on the spectrum of the transmitted signal for different combinations of modulation type, data rates, and modulation indices.

N Counter

The feedback divider in the ADF7020 PLL consists of an 8-bit integer counter and a 15-bit Σ-Δ fractional-N divider. The integer counter is the standard pulse-swallow type common in PLLs. This sets the minimum integer divide value to 31. The fractional divide value gives very fine resolution at the output, where the output frequency of the PLL is calculated as

152

__ NFRACTIONALNINTEGERPFDfOUT

053

51-0

23

VCO

4÷N

THIRD-ORDERΣ-∆ MODULATOR

PFD/CHARGE

PUMP

4÷R

INTEGER-NFRACTIONAL-N

REFERENCE IN

Figure 23. Fractional-N PLL

The maximum N divide value is the combination of the INTEGER_N (maximum = 255) and the FRACTIONAL_N (maximum = 32767/32768) and puts a lower limit on the minimum usable PFD.

PFDMIN [Hz] = Maximum Required Output Frequency/(255 + 1)

For example, when operating in the European 868 MHz to 870 MHz band, PFDMIN equals 3.4 MHz. In the majority of cases, it is advisable to use as high a value of PFD as possible to obtain best phase noise performance.

Voltage Controlled Oscillator (VCO)

To minimize spurious emissions, the on-chip VCO operates from 1724 MHz to 1912 MHz. The VCO signal is then divided by 2 to give the required frequency for the transmitter and the required LO frequency for the receiver.

The VCO should be recentered, depending on the required frequency of operation, by programming the VCO Adjust Bits R1_DB[20:21].

The VCO is enabled as part of the PLL by the PLL Enable bit, R0_DB28.

A further frequency divide-by-2 block is included to allow operation in the lower 433 MHz and 460 MHz bands. To enable operation in these bands, R1_DB13 should be set to 1. The VCO needs an external 22 nF between the VCO and the regulator to reduce internal noise.

Data Sheet ADF7020

Rev. E | Page 17 of 47

VCO Bias Current

VCO bias current can be adjusted using Bit R1_DB19 to Bit R1_DB16. To ensure VCO oscillation, the minimum bias current setting under all conditions is 0xA.

VCOLOOP FILTER MUX

VCO SELECT BIT

TO PA

VCO BIASR1_DB[16:19]

220µF

053

51-0

24

CVCO PIN

÷2÷2

TO NDIVIDER

Figure 24. Voltage-Controlled Oscillator (VCO)

CHOOSING CHANNELS FOR BEST SYSTEM PERFORMANCE The fractional-N PLL allows the selection of any channel within 868 MHz to 956 MHz (and 433 MHz using divide-by-2) to a resolution of <300 Hz. This also facilitates frequency-hopping systems.

Careful selection of the XTAL frequency is important to achieve best spurious and blocking performance. The architecture of fractional-N causes some level of the nearest integer channel to couple directly to the RF output. This phenomenon is often referred to as integer boundary spurious. If the desired RF channel and the nearest integer channel are separated by a frequency of less than the PLL loop bandwidth (LBW), the integer boundary spurs are not attenuated by the loop.

Integer boundary spurs can be significantly reduced in amplitude by choosing XTAL values that place the wanted RF channel away from integer multiples of the PFD.

ADF7020 Data Sheet

Rev. E | Page 18 of 47

TRANSMITTER RF OUTPUT STAGE The PA of the ADF7020 is based on a single-ended, controlled current, open-drain amplifier that has been designed to deliver up to 13 dBm into a 50 Ω load at a maximum frequency of 956 MHz.

The PA output current and, consequently, the output power are programmable over a wide range. The PA configurations in FSK/GFSK and ASK/OOK modulation modes are shown in Figure 25 and Figure 26, respectively. In FSK/GFSK modulation mode, the output power is independent of the state of the DATA I/O pin. In ASK/OOK modulation mode, it is dependent on the state of the DATA I/O pin and Bit R2_DB29, which selects the polarity of the TxData input. For each transmission mode, the output power can be adjusted as follows:

FSK/GFSK The output power is set using Bits R2_DB[9:14].

ASK The output power for the inactive state of the TxData input is set by Bits R2_DB[15:20]. The output power for the active state of the TxData input is set by Bits R2_DB[9:14].

OOK The output power for the active state of the TxData input is set by Bits R2_DB[9:14]. The PA is muted when the TxData input is inactive.

IDAC

2

6R2_DB[9:14]

R2_DB4

R2_DB5

DIGITALLOCK DETECT

R2_DB[30:31]

+

RFGND

RFOUT

FROM VCO 0535

1-02

5

Figure 25. PA Configuration in FSK/GFSK Mode

IDACR2_DB[9:14]

R2_DB[15:23]

R2_DB4

R2_DB5

DIGITALLOCK DETECT

R2_DB[30:31]

R2_DB29

+

RFGND

RFOUT

FROM VCO 0535

1-02

6

6

6

6

0

ASK/OOK MODEDATA I/O

Figure 26. PA Configuration in ASK/OOK Mode

The PA is equipped with overvoltage protection, which makes it robust in severe mismatch conditions. Depending on the applica-tion, one can design a matching network for the PA to exhibit optimum efficiency at the desired radiated output power level for a wide range of different antennas, such as loop or mono-pole antennas. See the LNA/PA Matching section for details.

PA Bias Currents

Control Bits R2_DB[30:31] facilitate an adjustment of the PA bias current to further extend the output power control range, if necessary. If this feature is not required, the default value of 7 μA is recommended. The output stage is powered down by resetting Bit R2_DB4. To reduce the level of undesired spurious emissions, the PA can be muted during the PLL lock phase by toggling this bit.

MODULATION SCHEMES Frequency Shift Keying (FSK)

Frequency shift keying is implemented by setting the N value for the center frequency and then toggling this with the TxData line. The deviation from the center frequency is set using Bits R2_DB[15:23]. The deviation from the center frequency in Hz is

142]Hz[

NumberModulationPFDFSKDEVIATION

where Modulation Number is a number from 1 to 511 (R2_DB[15:23]).

Select FSK using Bits R2_DB[6:8].

053

51-0

27

VCO

÷N

THIRD-ORDERΣ-∆ MODULATOR

PFD/CHARGE

PUMP

4R

INTEGER-NFRACTIONAL-N

PA STAGE

–fDEV

+fDEV

TxDATA

FSK DEVIATIONFREQUENCY

Figure 27. FSK Implementation

Data Sheet ADF7020

Rev. E | Page 19 of 47

Gaussian Frequency Shift Keying (GFSK)

Gaussian frequency shift keying reduces the bandwidth occupied by the transmitted spectrum by digitally prefiltering the TxData. A TxCLK output line is provided from the ADF7020 for synchronization of TxData from the microcontroller. The TxCLK line can be connected to the clock input of a shift register that clocks data to the transmitter at the exact data rate.

Setting Up the ADF7020 for GFSK

To set up the frequency deviation, set the PFD and the modulation control bits.

1222]Hz[

m

DEVIATIONPFDGFSK ×

=

where m is GFSK_MOD_CONTROL, set using R2_DB[24:26].

To set up the GFSK data rate,

COUNTERINDEXFACTORDIVIDERPFDDR

__]bps[

×=

The INDEX_COUNTER variable controls the number of intermediate frequency steps between the low and high frequency. It is usually possible to achieve a given data rate with various combinations of DIVIDER_FACTOR and INDEX_COUNTER. Choosing a higher INDEX_COUNTER can help in improving the spectral performance.

Amplitude Shift Keying (ASK)

Amplitude shift keying is implemented by switching the output stage between two discrete power levels. This is accomplished by toggling the DAC, which controls the output level between two 6-bit values set up in Register 2. A 0 TxData bit sends Bits R2_DB[15:20] to the DAC. A high TxData bit sends Bits R2_DB[9:14] to the DAC. A maximum modulation depth of 30 dB is possible.

On-Off Keying (OOK)

On-off keying is implemented by switching the output stage to a certain power level for a high TxData bit and switching the output stage off for a zero. For OOK, the transmitted power for a high input is programmed using Bits R2_DB[9:14].

Gaussian On-Off Keying (GOOK)

Gaussian on-off keying represents a prefiltered form of OOK modulation. The usually sharp symbol transitions are replaced with smooth Gaussian filtered transitions, the result being a reduction in frequency pulling of the VCO. Frequency pulling of the VCO in OOK mode can lead to a wider than desired BW, especially if it is not possible to increase the loop filter BW > 300 kHz. The GOOK sampling clock samples data at the data rate (see the Setting Up the ADF7020 for GFSK section).

ADF7020 Data Sheet

Rev. E | Page 20 of 47

RECEIVER RF FRONT END The ADF7020 is based on a fully integrated, low IF receiver architecture. The low IF architecture facilitates a very low external component count and does not suffer from power line-induced interference problems.

Figure 28 shows the structure of the receiver front end. The many programming options allow users to trade off sensitivity, linearity, and current consumption against each other in the way best suitable for their applications. To achieve a high level of resilience against spurious reception, the LNA features a differential input. Switch SW2 shorts the LNA input when transmit mode is selected (R0_DB27 = 0). This feature facilitates the design of a combined LNA/PA matching network, avoiding the need for an external Rx/Tx switch. See the LNA/PA Matching section for details on the design of the matching network.

053

51-0

28

SW2 LNA

RFIN

RFINB

Tx/Rx SELECT(R0_DB27)

LNA MODE(R6_DB15)

LNA CURRENT(R6_DB[16:17])

MIXER LINEARITY(R6_DB18)

LO

I (TO FILTER)

Q (TO FILTER)

LNA GAIN(R9_DB[20:21])

LNA/MIXER ENABLE(R8_DB6)

Figure 28. ADF7020 RF Front End

The LNA is followed by a quadrature down conversion mixer, that converts the RF signal to the IF frequency of 200 kHz. It is important to consider that the output frequency of the synthesizer must be programmed to a value 200 kHz below the center frequency of the received channel.

The LNA has two basic operating modes: high gain/low noise mode and low gain/low power mode. To switch between these two modes, use the LNA_MODE bit, R6_DB15. The mixer is also configurable between a low current and an enhanced linearity mode using the MIXER_LINEARITY bit, R6_DB18.

Based on the specific sensitivity and linearity requirements of the application, it is recommended to adjust control bits LNA_MODE (R6_DB15) and MIXER_LINEARITY (R6_DB18), as outlined in Table 5.

The gain of the LNA is configured by the LNA_GAIN field, R9_DB[20:21], and can be set by either the user or the automatic gain control (AGC) logic.

IF Filter Settings/Calibration

Out-of-band interference is rejected by means of a fourth-order Butterworth polyphase IF filter centered around a frequency of 200 kHz. The bandwidth of the IF filter can be programmed between 100 kHz and 200 kHz by using Control Bits R1_DB[22:23] and should be chosen as a compromise between interference rejec-tion, attenuation of the desired signal, and the AFC pull-in range.

To compensate for manufacturing tolerances, the IF filter should be calibrated once after power-up. The IF filter calibration logic requires that the IF filter divider in Bits R6_DB[20:28] be set as dependent on the crystal frequency. Once initiated by setting Bit R6_DB19, the calibration is performed automatically without any user intervention. The calibration time is 200 μs, during which the ADF7020 should not be accessed. It is important not to initiate the calibration cycle before the crystal oscillator has fully settled. If the AGC loop is disabled, the gain of IF filter can be set to three levels using the FILTER_GAIN field, R9_DB[20:21]. The filter gain is adjusted automatically, if the AGC loop is enabled.

Table 5. LNA/Mixer Modes

Receiver Mode LNA Mode (R6_DB15)

LNA Gain Value (R9_DB[20:21])

Mixer Linearity (R6_DB18)

Sensitivity (DR = 9.6 kbps, fDEV = 10 kHz)

Rx Current Consumption (mA)

Input IP3 (dBm)

High Sensitivity Mode (Default) 0 30 0 −110.5 21 −24 RxMode2 1 10 0 −104 20 −13.5 Low Current Mode 1 3 0 −94 19 −5 Enhanced Linearity Mode 1 3 1 −88 19 −3 RxMode5 1 10 1 −98 20 −10 RxMode6 0 30 1 −107 21 −20

Data Sheet ADF7020

Rev. E | Page 21 of 47

RSSI/AGC The RSSI is implemented as a successive compression log amp following the baseband channel filtering. The log amp achieves ±3 dB log linearity. It also doubles as a limiter to convert the signal-to-digital levels for the FSK demodulator. The RSSI itself is used for amplitude shift keying (ASK) demodulation. In ASK mode, extra digital filtering is performed on the RSSI value. Offset correction is achieved using a switched capacitor integrator in feedback around the log amp. This uses the baseband offset clock divide. The RSSI level is converted for user readback and digitally controlled AGC by an 80-level (7-bit) flash ADC. This level can be converted to input power in dBm.

1

FWR

NOTES1. FWR = FULL WAVE RECTIFIER

FWR FWR FWR

LATCHA A A

R

CLK

ADC

OFFSETCORRECTION

RSSIASKDEMOD

FSKDEMOD

0535

1-02

9

Figure 29. RSSI Block Diagram

RSSI Thresholds

When the RSSI is above AGC_HIGH_THRESHOLD, the gain is reduced. When the RSSI is below AGC_LOW_THRESHOLD, the gain is increased. A delay (AGC_DELAY) is programmed to allow for settling of the loop. The user programs the two threshold values (recommended defaults of 30 and 70) and the delay (default of 10). The default AGC setup values should be adequate for most applications. The threshold values must be chosen to be more than 30 apart for the AGC to operate correctly.

Offset Correction Clock

In Register 3, the user should set the BB offset clock divide bits R3_DB[4:5] to give an offset clock between 1 MHz and 2 MHz.

BBOS_CLK (Hz) = XTAL/(BBOS_CLK_DIVIDE)

where BBOS_CLK_DIVIDE can be set to 4, 8, or 16.

AGC Information and Timing

AGC is selected by default, and operates by selecting the appropriate LNA and filter gain settings for the measured RSSI level. It is possible to disable AGC by writing to Register 9 if entering one of the modes listed in Table 5 is desired, for example. The time for the AGC circuit to settle and, therefore, the time to take an accurate RSSI measurement is typically 150 μs, although this depends on how many gain settings the AGC circuit has to cycle through. After each gain change, the AGC loop waits for a programmed time to allow transients to settle.

This wait time can be adjusted to speed up this settling by adjusting the appropriate parameters.

XTALCLKSEQDELAYAGC

TIMEWAITAGC__

__

AGC Settling = AGC_WAIT_TIME × Number of Gain Changes

Thus, in the worst case, if the AGC loop has to go through all 5 gain changes, AGC_DELAY =10, SEQ_CLK = 200 kHz, AGC Settling = 10 × 5 μs × 5 = 250 μs. Minimum AGC_WAIT_TIME needs to be at least 25 μs.

RSSI Formula (Converting to dBm) INPUT_POWER [dBm] = −120 dBm + (READBACK_CODE + GAIN_MODE_CORRECTION) × 0.5

where: READBACK_CODE is given by Bit RV7 to Bit RV1 in the readback register (see the Readback Format section). GAIN_MODE_CORRECTION is given by the values in Table 6.

LNA gain and filter gain (LG2/LG1, FG2/FG1) are also obtained from the readback register.

Table 6. Gain Mode Correction

LNA Gain (LG2, LG1) Filter Gain (FG2, FG1) Gain Mode Correction

H (1,1) H (1,0) 0 M (1,0) H (1,0) 24 M (1,0) M (0,1) 45 M (1,0) L (0,0) 63 L (0,1) L (0,0) 90 EL (0,0) L (0,0) 105

An additional factor should be introduced to account for losses in the front-end matching network/antenna.

FSK DEMODULATORS ON THE ADF7020 The two FSK demodulators on the ADF7020 are

FSK correlator/demodulator

Linear demodulator

Select these using the demodulator select bits, R4_DB[4:5].

FSK CORRELATOR/DEMODULATOR The quadrature outputs of the IF filter are first limited and then fed to a pair of digital frequency correlators that perform band-pass filtering of the binary FSK frequencies at (IF + fDEV) and (IF − fDEV). Data is recovered by comparing the output levels from each of the two correlators. The performance of this frequency discriminator approximates that of a matched filter detector, which is known to provide optimum detection in the presence of additive white Gaussian noise (AWGN).

ADF7020 Data Sheet

Rev. E | Page 22 of 47

PO

ST

DE

MO

D F

ILT

ER

DA

TA

SY

NC

HR

ON

IZE

R

IF – fDEV IF + fDEV

I IF

Q

LIMITERS

0

R6_DB[4:13] R3_DB[8:15]R6_DB[14]

RxDATA

RxCLK

SLICERFREQUENCY CORRELATOR

053

51-0

30

Figure 30. FSK Correlator/Demodulator Block Diagram

Postdemodulator Filter

A second-order, digital low-pass filter removes excess noise from the demodulated bit stream at the output of the discriminator. The bandwidth of this postdemodulator filter is programmable and must be optimized for the user’s data rate. If the bandwidth is set too narrow, performance is degraded due to intersymbol interference (ISI). If the bandwidth is set too wide, excess noise degrades the receiver’s performance. Typically, the 3 dB bandwidth of this filter is set at approximately 0.75 times the user’s data rate, using Bits R4_DB[6:15].

Bit Slicer

The received data is recovered by the threshold detecting the output of the postdemodulator low-pass filter. In the correlator/ demodulator, the binary output signal levels of the frequency discriminator are always centered on 0. Therefore, the slicer threshold level can be fixed at 0, and the demodulator perform-ance is independent of the run-length constraints of the transmit data bit stream. This results in robust data recovery, which does not suffer from the classic baseline wander problems that exist in the more traditional FSK demodulators.

Frequency errors are removed by an internal AFC loop that measures the average IF frequency at the limiter output and applies a frequency correction value to the fractional-N synthesizer. This loop should be activated when the frequency errors are greater than approximately 40% of the transmit frequency deviation (see the AFC section).

Data Synchronizer

An oversampled digital PLL is used to resynchronize the received bit stream to a local clock. The oversampled clock rate of the PLL (CDR_CLK) must be set at 32 times the data rate. See the Register 3—Receiver Clock Register Comments section for a definition of how to program. The clock recovery PLL can accommodate frequency errors of up to ±2%.

FSK Correlator Register Settings

To enable the FSK correlator/demodulator, Bits R4_DB[5:4] should be set to 01. To achieve best performance, the bandwidth of the FSK correlator must be optimized for the specific deviation frequency that is used by the FSK transmitter.

The discriminator BW is controlled in Register 6 by Bit R6_DB[4:13] and is defined as

310800_

_

KCLKDEMODBWTORDISCRIMINA

where: DEMOD_CLK is as defined in the Register 3—Receiver Clock Register section, second comment. K = Round(200 × 103/FSK Deviation)

To optimize the coefficients of the FSK correlator, two addi-tional bits, R6_DB14 and R6_DB29, must be assigned. The value of these bits depends on whether K (as defined above) is odd or even. These bits are assigned according to Table 7 and Table 8.

Table 7. When K Is Even K K/2 R6_DB14 R6_DB29 Even Even 0 0 Even Odd 0 1

Table 8. When K Is Odd K (K + 1)/2 R6_DB14 R6_DB29 Odd Even 1 0 Odd Odd 1 1

Postdemodulator Bandwidth Register Settings

The 3 dB bandwidth of the postdemodulator filter is controlled by Bits R4_DB[6:15] and is given by

POSTDEMOD_BW_SETTING CLKDEMOD

fCUTOFF

_π2210

where fCUTOFF is the target 3 dB bandwidth in Hz of the post-demodulator filter. This should typically be set to 0.75 times the data rate (DR).

Some sample settings for the FSK correlator/demodulator are

DEMOD_CLK = 5 MHz DR = 9.6 kbps fDEV = 20 kHz

Therefore,

fCUTOFF = 0.75 × 9.6 × 103 Hz POSTDEMOD_BW_SETTING = 211 π 7.2 × 103 Hz/(5 MHz) POSTDEMOD_BW_SETTING = Round(9.26) = 9

and

K = Round(200 kHz)/20 kHz) = 10 DISCRIMINATOR_BW = (5 MHz × 10)/(800 × 103) = 62.5 = 63 (rounded to the nearest integer)

Data Sheet ADF7020

Rev. E | Page 23 of 47

Table 9. Register Settings1 Setting Name Register Address Value POSTDEMOD_BW_SETTING R4_DB[6:15] 0x09 DISCRIMINATOR_BW R6_DB[4:13] 0x3F DOT_PRODUCT R6_DB14 0 RXDATA_INVERT R6_DB29 1 1 The latest version of the ADF7020 configuration software can aid in

calculating register settings.

LINEAR FSK DEMODULATOR Figure 31 shows a block diagram of the linear FSK demodulator.

AV

ER

AG

ING

FIL

TE

R

EN

VE

LO

PE

DE

TE

CT

OR

SLICER

FREQUENCY

IF

LEVELI

Q

LIMITER

7MUX 1

ADC RSSI OUTPUT

LINEAR DISCRIMINATOR

R4_DB[6:15]

FREQUENCYREADBACKANDAFC LOOP

RxDATA

053

51-0

31

Figure 31. Block Diagram of Frequency Measurement System and

ASK/OOK/Linear FSK Demodulator

This method of frequency demodulation is useful when very short preamble length is required, and the system protocol cannot support the overhead of the settling time of the internal feedback AFC loop settling.

A digital frequency discriminator provides an output signal that is linearly proportional to the frequency of the limiter outputs. The discriminator output is then filtered and averaged using a combined averaging filter and envelope detector. The demodu-lated FSK data is recovered by threshold-detecting the output of the averaging filter, (see Figure 31). In this mode, the slicer output shown in Figure 31 is routed to the data synchronizer PLL for clock synchronization. To enable the linear FSK demodulator, set Bits R4_DB[4:5] to 00.

The 3 dB bandwidth of the postdemodulation filter is set in the same way as the FSK correlator/demodulator, which is set in R4_DB[6:15] and is defined as

CLKDEMODf

SETTINGBWPOSTDEMOD CUTOFF

_22

__10

where fCUTOFF is the target 3 dB bandwidth in Hz of the postdemodulator filter. DEMOD_CLK is as defined in the Register 3—Receiver Clock Register section, second comment.

ASK/OOK Operation

ASK/OOK demodulation is activated by setting Bits R4_DB[4:5] to 10.

Digital filtering and envelope detecting the digitized RSSI input via MUX 1, as shown in Figure 31, performs ASK/OOK demodulation. The bandwidth of the digital filter must be optimized to remove any excess noise without causing ISI in the received ASK/OOK signal.

The 3 dB bandwidth of this filter is typically set at approximately 0.75 times the user data rate and is assigned by R4 _DB[6:15] as

CLKDEMODf

SETTINGBWPOSTDEMOD CUTOFF

_22

__10

where fCUTOFF is the target 3 dB bandwidth in Hz of the postdemodulator filter.

It is also recommended to adjust the peak response factor to 6 in Register 10 for robust operation over the full input range. This improves the receiver’s AM immunity performance.

AFC The ADF7020 supports a real-time AFC loop, which is used to remove frequency errors that can arise due to mismatches between the transmit and receive crystals. This uses the frequency discriminator block, as described in the Linear FSK Demodulator section (see Figure 31). The discriminator output is filtered and averaged to remove the FSK frequency modulation, using a combined averaging filter and envelope detector. In FSK mode, the output of the envelope detector provides an estimate of the average IF frequency.

Two methods of AFC, external and internal, are supported on the ADF7020 (in FSK mode only).

External AFC

The user reads back the frequency information through the ADF7020 serial port and applies a frequency correction value to the fractional-N synthesizer’s N divider.

The frequency information is obtained by reading the 16-bit signed AFC_READBACK, as described in the Readback Format section, and applying the following formula:

FREQ_RB [Hz] = (AFC_READBACK × DEMOD_CLK)/215

Note that while the AFC_READBACK value is a signed number, under normal operating conditions, it is positive. The frequency error can be calculated from

FREQ_ERROR [Hz] = FREQ_RB (Hz) − 200 kHz

Thus, in the absence of frequency errors, the FREQ_RB value is equal to the IF frequency of 200 kHz.

ADF7020 Data Sheet

Rev. E | Page 24 of 47

Internal AFC

The ADF7020 supports a real-time internal automatic frequency control loop. In this mode, an internal control loop automatically monitors the frequency error and adjusts the synthesizer N divider using an internal PI control loop.

The internal AFC control loop parameters are controlled in Register 11. The internal AFC loop is activated by setting R11_DB20 to 1. A scaling coefficient must also be entered, based on the crystal frequency in use. This is set up in Bits R11_DB[4:19] and should be calculated using

AFC_SCALING_COEFFICIENT = (500 × 224)/XTAL

Therefore, using a 10 MHz XTAL yields an AFC scaling coefficient of 839.

AFC Performance

The improved sensitivity performance of the Rx when AFC is enabled and in the presence of frequency errors is shown in Figure 18. The maximum AFC frequency range is ±50 kHz, which corresponds to ±58 ppm at 868 MHz. This is the total error tolerance allowed in the link. For example, in a point-to-point system, AFC can compensate for two ±29 ppm crystals or one ±50 ppm crystal and one ±8 ppm TCXO.

AFC settling typically takes 48 bits to settle within ±1 kHz. This can be improved by increasing the postdemodulator bandwidth in Register 4 at the expense of Rx sensitivity.

When AFC errors have been removed using either the internal or external AFC, further improvement in the receiver’s sensi-tivity can be obtained by reducing the IF filter bandwidth using Bits R1_DB[22:23].

AUTOMATIC SYNC WORD RECOGNITION The ADF7020 also supports automatic detection of the sync or ID fields. To activate this mode, the sync (or ID) word must be preprogrammed into the ADF7020. In receive mode, this preprogrammed word is compared to the received bit stream and, when a valid match is identified, the external pin INT/LOCK is asserted by the ADF7020.

This feature can be used to alert the microprocessor that a valid channel has been detected. It relaxes the computational require-ments of the microprocessor and reduces the overall power consumption. The INT/LOCK is automatically deasserted again after nine data clock cycles.

The automatic sync/ID word detection feature is enabled by selecting Demodulator Mode 2 or Demodulator Mode 3 in the demodulator setup register. Do this by setting Bits R4_DB[25:23] = 010 or 011. Bits R5_DB[4:5] are used to set the length of the sync/ID word, which can be 12, 16, 20, or 24 bits long. The transmitter must transmit the MSB of the sync byte first and the LSB last to ensure proper alignment in the receiver sync byte detection hardware.

For systems using forward error correction (FEC), an error tolerance parameter can also be programmed that accepts a valid match when up to three bits of the word are incorrect. The error tolerance value is assigned in Bits R5_DB[6:7].

Data Sheet ADF7020

Rev. E | Page 25 of 47

APPLICATIONS INFORMATIONLNA/PA MATCHING The ADF7020 exhibits optimum performance in terms of sensitivity, transmit power, and current consumption only if its RF input and output ports are properly matched to the antenna impedance. For cost-sensitive applications, the ADF7020 is equipped with an internal Rx/Tx switch that facilitates the use of a simple combined passive PA/LNA matching network. Alternatively, an external Rx/Tx switch, such as the Analog Devices ADG919, can be used. It yields a slightly improved receiver sensitivity and lower transmitter power consumption.

External Rx/Tx Switch

Figure 32 shows a configuration using an external Rx/Tx switch. This configuration allows an independent optimization of the matching and filter network in the transmit and receive path and is, therefore, more flexible and less difficult to design than the configuration using the internal Rx/Tx switch. The PA is biased through Inductor L1, while C1 blocks dc current. Both elements, L1 and C1, also form the matching network, which transforms the source impedance into the optimum PA load impedance, ZOPT_PA.

053

51-0

32

PA

LNA

PA_OUT

RFIN

RFINB

VBAT

L1

ADF7020

ADG919

OPTIONALBPF

(SAW)

OPTIONALLPF

LA

CA

C1

CB

ZIN_RFIN

ZOPT_PA

ZIN_RFIN

ANTENNA

Rx/Tx – SELECT

Figure 32. ADF7020 with External Rx/Tx Switch

ZOPT_PA depends on various factors, such as the required output power, the frequency range, the supply voltage range, and the temperature range. Selecting an appropriate ZOPT_PA helps to minimize the Tx current consumption in the application. Application Note AN-767 contains a number of ZOPT_PA values for representative conditions. Under certain conditions, however, it is recommended that a suitable ZOPT_PA value be obtained by means of a load-pull measurement.

Due to the differential LNA input, the LNA matching network must be designed to provide both a single-ended-to-differential conversion and a complex conjugate impedance match. The network with the lowest component count that can satisfy these requirements is the configuration shown in Figure 32, which consists of two capacitors and one inductor.

A first-order implementation of the matching network can be obtained by understanding the arrangement as two L type matching networks in a back-to-back configuration. Due to the asymmetry of the network with respect to ground, a compromise between the input reflection coefficient and the maximum differential signal swing at the LNA input must be established. The use of appropriate CAD software is strongly recommended for this optimization.

Depending on the antenna configuration, the user may need a harmonic filter at the PA output to satisfy the spurious emission requirement of the applicable government regulations. The harmonic filter can be implemented in various ways, such as a discrete LC pi or T-stage filter. Dielectric low-pass filter components, such as the LFL18924MTC1A052 (for operation in the 915 MHz and 868 MHz band) by Murata Manufacturing, Co., Ltd., represent an attractive alternative to discrete designs. Application Note AN-917 describes how to replace the Murata dielectric filter with an LC filter if desired.

The immunity of the ADF7020 to strong out-of-band interference can be improved by adding a band-pass filter in the Rx path. Apart from discrete designs, SAW or dielectric filter components, such as the SAFCH869MAM0T00 or SAFCH915MAL0N00, both by Murata, are well suited for this purpose. Alternatively, the ADF7020 blocking performance can be improved by selecting the high linearity mode, as described in Table 5.

Internal Rx/Tx Switch

Figure 33 shows the ADF7020 in a configuration where the internal Rx/Tx switch is used with a combined LNA/PA matching network. This is the configuration used in the EVAL-ADF7020DBZ1 through EVAL-ADF7020DBZ3 evaluation boards. For most applications, the slight performance degradation of 1 dB to 2 dB caused by the internal Rx/Tx switch is acceptable, allowing the user to take advantage of the cost saving potential of this solution. The design of the combined matching network must compensate for the reactance presented by the networks in the Tx and the Rx paths, taking the state of the Rx/Tx switch into consideration.

053

51-0

33

PA

LNA

PA_OUT

RFIN

RFINB

VBAT

L1

ADF7020

OPTIONALBPF OR LPF

LA

CA

C1

CB

ZIN_RFIN

ZOPT_PA

ZIN_RFIN

ANTENNA

Figure 33. ADF7020 with Internal Rx/Tx Switch

ADF7020 Data Sheet

Rev. E | Page 26 of 47

The procedure typically requires several iterations until an acceptable compromise is reached. The successful implementation of a combined LNA/PA matching network for the ADF7020 is critically dependent on the availability of an accurate electrical model for the PC board. In this context, the use of a suitable CAD package is strongly recommended. To avoid this effort, however, a small form-factor reference design for the ADF7020 is provided, including matching and harmonic filter components. Gerber files and schematics are available on the product page at: www.analog.com/ADF7020.

IMAGE REJECTION CALIBRATION The image channel in the ADF7020 is 400 kHz below the desired signal. The polyphase filter rejects this image with an asymmetric frequency response. The image rejection performance of the receiver is dependent on how well matched the I and Q signals are in amplitude, and how well matched the quadrature is between them (that is, how close to 90º apart they are.) The uncalibrated image rejection performance is approximately 30 dB. However, it is possible to improve this performance by as much as 20 dB by finding the optimum I/Q gain and phase adjust settings.

Calibration Procedure and Setup

The image rejection calibration works by connecting an external RF signal to the RF input port. The external RF signal should be set at the image frequency and the filter rejection measured by monitoring the digital RSSI readback. As the image rejection is improved by adjusting the I/Q Gain and phase, the RSSI reading reduces.

The magnitude of the phase adjust is set by using the IR_PHASE_ ADJUST bits (R10_DB[24:27]). This correction can be applied to either the I channel or Q channel, by toggling bit (R10_DB28).

The magnitude of the I/Q gain is adjusted by the IR_GAIN_ ADJUST bits (R10_DB[16:20]). This correction can be applied to either the I or Q channel using bit (R10_DB22), while the GAIN/ATTENUATE bit (R10_DB21) sets whether the gain adjustment defines a gain or attenuation adjust.

The calibration results are valid over changes in the ADF7020 supply voltage. However, there is some variation with temperature. A typical plot of variation in image rejection over temperature after initial calibrations at +25°C, −40°C, and +85°C is shown in Figure 34. The internal temperature sensor on the ADF7020 can be used to determine if a new IR calibration is required.

0

10

20

30

40

50

60

–60 –40 –20 0 20 40 60 80 100

VDD = 3.0VIF BW = 25kHz

WANTED SIGNAL:RF FREQ = 430MHzMODULATION = 2FSKDATA RATE = 9.6kbps, PRBS9fDEV = 4kHzLEVEL= –100dBm

INTERFERER SIGNAL:RF FREQ = 429.8MHzMODULATION = 2FSKDATA RATE = 9.6kbps, PRBS11fDEV = 4kHz

053

51-0

58

TEMPERATURE (°C)

IMA

GE

RE

JEC

TIO

N (

dB

)

CAL AT +25°C

CAL AT +85°CCAL AT –40°C

Figure 34. Image Rejection Variation with Temperature after Initial

Calibrations at +25°C, −40°C, and +85°C

053

51-

059

EXTERNALSIGNALSOURCE

RFIN

RFINBMATCHING

ADF7020

LNA

4

4

PHASE ADJUSTMENT

QI

FROM LO

GA

INA

DJU

ST

POLYPHASEIF FILTER

SERIALINTERFACE

PHASE ADJUSTREGISTER 10 RSSI READBACK

GAIN ADJUSTREGISTER 10

RSSI/LOG AMP

7-BIT ADC

I/Q GAIN/PHASE ADJUST ANDRSSI MEASUREMENT

ALGORITHM

MICROCONTROLLER

Figure 35. Image Rejection Calibration Using the Internal Calibration Source and a Microcontroller

Data Sheet ADF7020

Rev. E | Page 27 of 47

TRANSMIT PROTOCOL AND CODING CONSIDERATIONS

053

51-0

34

PREAMBLESYNCWORD

IDFIELD DATA FIELD CRC

Figure 36. Typical Format of a Transmit Protocol

A dc-free preamble pattern is recommended for FSK/GFSK/ ASK/OOK demodulation. The recommended preamble pattern is a dc-balanced pattern such as a 10101010… sequence. Preamble patterns with longer run-length constraints such as 11001100… can also be used. However, this results in a longer synchronization time of the received bit stream in the receiver.

The remaining fields that follow the preamble header do not have to use dc-free coding. For these fields, the ADF7020 can accommodate coding schemes with a run-length of up to several bytes without any performance degradation, for example several bytes of 0x00 or 0xFF. To help minimize bit errors when receiving these long runs of continuous 0s or 1s, it is important to choose a data rate and XTAL combination that minimizes the error between the actual data rate and the on-board CDR_CLK/32. For example, if a 9.6 kbps data rate is desired, then using an 11.0592 MHz XTAL gives a 0% nominal error between the desired data rate and CDR_CLK/32. Application Note AN-915 gives more details on supporting long run lengths on the ADF7020.

The ADF7020 can also support Manchester-encoded data for the entire protocol. Manchester decoding needs to be done on the companion microcontroller, however. In this case, the ADF7020 should be set up at the Manchester chip or baud rate, which is twice the effective data rate.

DEVICE PROGRAMMING AFTER INITIAL POWER-UP Table 10 lists the minimum number of writes needed to set up the ADF7020 in either Tx or Rx mode after CE is brought high. Additional registers can also be written to tailor the part to a particular application, such as setting up sync byte detection or enabling AFC. When going from Tx to Rx or vice versa, the user needs to write only to the N Register to alter the LO by 200 kHz and to toggle the Tx/Rx bit.

Table 10. Minimum Register Writes Required for Tx/Rx Setup Mode Register Tx Reg. 0 Reg. 1 Reg. 2 Rx (OOK) Reg. 0 Reg. 1 Reg. 3 Reg. 4 Reg. 6 Rx (G/FSK) Reg. 0 Reg. 1 Reg. 3 Reg. 4 Reg. 6 Tx ↔Rx Reg. 0

Figure 39 and Figure 40 show the recommended programming sequence and associated timing for power-up from standby mode.

INTERFACING TO MICROCONTROLLER/DSP Low level device drivers are available for interfacing the ADF7020 to the Analog Devices ADuC841 analog micro-controller, or the Blackfin® ADSP-BF533 DSP, using the hardware connections shown in Figure 37 and Figure 38.

MISO

ADuC841 ADF7020

MOSI

SCLOCK

SS

P3.7

P3.2/INT0

P2.4

P2.5

DATA I/O

DATA CLK

CE

INT/LOCK

SREAD

SLE

P2.6

P2.7

SDATA

SCLK

GPIO

053

51-

035

Figure 37. ADuC841 to ADF7020 Connection Diagram

MOSI

ADSP-BF533 ADF7020

MISO

PF5

RSCLK1

DT1PRI

DR1PRI

RFS1

PF6

SDATA

SLE

DATA I/O

INT/LOCK

CE

VDDEXT

GND

VDD

GND

SCK SCLK

SREAD

DATA CLK

0535

1-0

36

Figure 38. ADSP-BF533 to ADF7020 Connection Diagram

ADF7020 Data Sheet

Rev. E | Page 28 of 47

POWER CONSUMPTION AND BATTERY LIFETIME CALCULATIONS Average Power Consumption can be calculated using

Average Power Consumption = (tON × IAVG_ON + tOFF × IPOWERDOWN)/(tON + tOFF)

Using a sequenced power-on routine like that illustrated in Figure 39 can reduce the IAVG_ON current and, hence, reduce the overall power consumption. When used in conjunction with a large duty-cycle or large tOFF, this can result in significantly increased battery life. Analog Devices, Inc., free design tool, ADIsimSRD Design Studio, can assist in these calculations.

2.0mA

3.65mA

14mA

AD

F70

20 I

DD

TIMEREG.

READYt1

WR0t2

WR1t3

VCOt4

WR3t5

WR4t6

WR6t7

19mA TO22mA

AGC/RSSIt8

CDRt9

AFCt10

RxDATAt11

tOFFtON

XTALt0

053

51-0

37

Figure 39. Rx Programming Sequence and Timing Diagram

Table 11. Power-Up Sequence Description Parameter Value Description Signal to Monitor t0 2 ms Crystal starts power-up after CE is brought high. This typically depends

on the crystal type and the load capacitance specified. CLKOUT pin

t1 10 μs Time for regulator to power up. The serial interface can be written to after this time.

MUXOUT pin

t2, t3, t5, t6, t7

32 × 1/SPI_CLK Time to write to a single register. Maximum SPI_CLK is 25 MHz.

t4 1 ms The VCO can power-up in parallel with the crystal. This depends on the CVCO capacitance value used. A value of 22 nF is recommended as a trade-off between phase noise performance and power-up time.

CVCO pin

t8 150 μs This depends on the number of gain changes the AGC loop needs to cycle through and AGC settings programmed. This is described in more detail in the AGC Information and Timing section.

Analog RSSI on TEST_A pin (Available by writing 0x3800 000C)

t9 5 × BIT_PERIOD This is the time for the clock and data recovery circuit to settle. This typically requires 5-bit transitions to acquire sync and is usually covered by the preamble.

t10 48 × BIT_PERIOD This is the time for the automatic frequency control circuit to settle. This typically requires 48-bit transitions to acquire lock and is usually covered by an appropriate length preamble.

t11 Packet Length Number of bits in payload by the bit period.

Data Sheet ADF7020

Rev. E | Page 29 of 47

2.0mA

3.65mA

14mA

AD

F70

20 I

DD

TIMEREG.

READYt1

WR0t2

WR1t3

XTAL + VCOt4

WR2t5

15mA TO30mA

TxDATAt12

tOFFtON

0535

1-03

8

Figure 40. Tx Programming Sequence and Timing Diagram

ADF7020 Data Sheet

Rev. E | Page 30 of 47

ADF7020TOP VIEW

(Not to Scale)

PIN 1INDICATOR

13 14 15 16 17 18 19 20 21 22 23 24

CV

CO

GN

D1

GN

D

VC

O G

ND

GN

D

VD

D

CP

OU

T

CR

EG

3

VD

D3

OS

C1

OS

C2

MU

XO

UT

48 47 46 45 44 43 42 41 40 39 38 37

MIX

_I

MIX

_I

MIX

_Q

MIX

_Q

FIL

T_I

FIL

T_I

GN

D4

FIL

T_Q

FIL

T_Q

GN

D4

TE

ST

_A

CE

CREG1

VDD1

RFOUT

RFGND VDD

RFIN

RFINB

RLNA

RSET

VDD4

CREG4

GND4

35VCOIN

36

34

33

32

31

30

29

28

27

26

25

1

2

3

4

5

6

7

8

9

10

11

12

CLKOUT

DATA CLK

DATA I/O

INT/LOCK

VDD2

CREG2

ADCIN

GND2

SCLK

SREAD

SDATA

SLE

053

51-0

56

VDD

VDD

CH

IP E

NA

BL

ET

O M

ICR

OC

ON

TR

OL

LE

R

TO

MIC

RO

CO

NT

RO

LL

ER

CO

NF

IGU

RA

TIO

NIN

TE

RF

AC

E

TO

MIC

RO

CO

NT

RO

LL

ER

Tx/R

x SIG

NA

LIN

TE

RFA

CE

RSETRESISTOR

RLNARESISTOR

MATCHING

T-STAGE LCFILTERANTENNA

CONNECTION

VDD

CVCOCAP

VDD

REFERENCE

XTAL

LOOP FILTER

Figure 41. Application Circuit

Data Sheet ADF7020

Rev. E | Page 31 of 47

SERIAL INTERFACE The serial interface allows the user to program the fourteen 32-bit registers using a 3-wire interface (SCLK, SDATA, and SLE). Signals should be CMOS compatible. The serial interface is powered by the regulator and, therefore, is inactive when CE is low.

Data is clocked into the register, MSB first, on the rising edge of each clock (SCLK). Data is transferred to one of fourteen latches on the rising edge of SLE. The destination latch is determined by the value of the four control bits (C4 to C1). These are the bottom four LSBs, DB3 to DB0, as shown in the timing diagram in Figure 3.

READBACK FORMAT The readback operation is initiated by writing a valid control word to the readback register and setting the readback enable bit (R7_DB8 = 1). The readback can begin after the control word has been latched with the SLE signal. SLE must be kept high while the data is being read out. Each active edge at the SCLK pin clocks the readback word out successively at the SREAD pin (see Figure 42), starting with the MSB first. The data appearing at the first clock cycle following the latch operation must be ignored. The last (eighteenth) SCLK edge puts the SREAD pin back in three-state.

AFC Readback

The AFC readback is valid only during the reception of FSK signals with either the linear or correlator demodulator active. The AFC readback value is formatted as a signed 16-bit integer comprising Bit RV1 to Bit RV16 and is scaled according to the following formula:

FREQ_RB [Hz] = (AFC_READBACK × DEMOD_CLK)/215

In the absence of frequency errors, the FREQ_RB value is equal to the IF frequency of 200 kHz. Note that, for the AFC readback to yield a valid result, the down-converted input signal must not fall outside the bandwidth of the analog IF filter. At low input signal levels, the variation in the readback value can be improved by averaging.

RSSI Readback

The RSSI readback operation yields valid results in Rx mode with ASK or FSK signals. The format of the readback word is shown in Figure 42. It comprises the RSSI level information (Bit RV1 to Bit RV7), the current filter gain (FG1, FG2), and the current LNA gain (LG1, LG2) setting. The filter and LNA gain are coded in accordance with the definitions in Register 9. With the reception of ASK modulated signals, averaging of the measured RSSI values improves accuracy. The input power can be calculated from the RSSI readback value as outlined in the RSSI/AGC section.

Battery Voltage/ADCIN/Temperature Sensor Readback

These three ADC readback values are valid by just enabling the ADC in Register 8 without writing to the other registers. The battery voltage is measured at Pin VDD4. The readback information is contained in Bit RV1 to Bit RV7. This also applies for the readback of the voltage at the ADCIN pin and the temperature sensor. From the readback information, the battery, ADCIN voltage or temperature can be obtained using

VBATTERY = (BATTERY_VOLTAGE_READBACK)/21.1

VADCIN = (ADCIN_VOLTAGE_READBACK)/42.1

Temperature = −40°C + (68.4 − TEMPERATURE_SENSOR_READBACK) × 9.32

Silicon Revision Readback

The silicon revision word is coded with four quartets in BCD format. The product code (PC) is coded with three quartets extending from Bit RV5 to Bit RV16. The revision code (RV) is coded with one quartet extending from Bit RV1 to Bit RV4. The product code for the ADF7020 should read back as PC = 0x200. The current revision code should read as RV = 0x8.

Filter Calibration Readback

The filter calibration readback word is contained in Bit RV1 to Bit RV8 and is for diagnostic purposes only. Using the automatic filter calibration function, accessible through Register 6, is recommended. Before filter calibration is initiated, decimal 32 should be read back as the default value.

053

51-0

39

READBACK MODE

AFC READBACK

DB15

RV16

X

X

RV16

0

RSSI READBACK

BATTERY VOLTAGE/ADCIN/TEMP. SENSOR READBACK

SILICON REVISION

FILTER CAL READBACK

READBACK VALUE

DB14

RV15

X

X

RV15

0

DB13

RV14

X

X

RV14

0

DB12

RV13

X

X

RV13

0

DB11

RV12

X

X

RV12

0

DB10

RV11

LG2

X

RV11

0

DB9

RV10

LG1

X

RV10

0

DB8

RV9

FG2

X

RV9

0

DB7

RV8

FG1

X

RV8

RV8

DB6

RV7

RV7

RV7

RV7

RV7

DB5

RV6

RV6

RV6

RV6

RV6

DB4

RV5

RV5

RV5

RV5

RV5

DB3

RV4

RV4

RV4

RV4

RV4

DB2

RV3

RV3

RV3

RV3

RV3

DB1

RV2

RV2

RV2

RV2

RV2

DB0

RV1

RV1

RV1

RV1

RV1

Figure 42. Readback Value Table

ADF7020 Data Sheet

Rev. E | Page 32 of 47

REGISTERS REGISTER 0—N REGISTER

TR1TRANSMIT/RECEIVE

0 TRANSMITRECEIVE1

M3 M2 M1 MUXOUT

0 REGULATOR READY (DEFAULT)0 R DIVIDER OUTPUT0 N DIVIDER OUTPUT

0 DIGITAL LOCK DETECT1 ANALOG LOCK DETECT1 THREE-STATE1 PLL TEST MODES1

001

10011

010

10101 Σ-∆ TEST MODES

PLE1 PLL ENABLE

0 PLL OFF1 PLL ON

053

51-0

40

N8 N7 N6 N5 N4 N3 N2 N1N COUNTERDIVIDE RATIO

0 310 32

.

.

.1 253

1 254

1

00

.

.

.1

1

1

01

.

.

.

.

.

.1

1

1

10

1

1

1

.

.

.

10

1

1

1

.

.

.

10

1

1

1

.

.

.

10

0

1

1

.

.

.

.

.

.

10

1

0

1 255

15-BIT FRACTIONAL-N8-BIT INTEGER-NTx/

Rx

PL

LE

NA

BL

E

MUXOUTADDRESS

BITS

N5

N4

N8

M5

M6

M7

M8

M12

M13

M15N1

N2

N3

M14

M9

M10

M11

M4

M3

TR

1

PL

E1

M1

M3

M2

C2(

0)

C1(

0)

C3(

0)

C4(

0)

M1

M2

N7

N6

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

21

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

22

DB

23

DB

24

DB

26

DB

27

DB

28

DB

25

DB

1

DB

0

DB

2

DB

3

DB

29

DB

30

DB

31

FRACTIONALDIVIDE RATIO

012...32,76432,76532,76632,767

M15

000...1111

M14

000...1111

M13

000...1111

.

.

.

.

.

.

.

.

.

.

.

M3

000...1111

M2

001...0011

M1

010...0101

Figure 43. Register 0—N Register

Register 0—N Register Comments

The Tx/Rx bit (R0_DB27) configures the part in Tx or Rx mode and controls the state of the internal Tx/Rx switch.

)2

__( 15NFRACTIONALNINTEGER

RXTALfOUT

If operating in 433 MHz band, with the VCO band bit set, the desired frequency, fOUT, should be programmed to be twice the desired operating frequency, due to removal of the divide-by-2 stage in the feedback path.

Data Sheet ADF7020

Rev. E | Page 33 of 47

REGISTER 1—OSCILLATOR/FILTER REGISTER

R3 R2 R1RF R COUNTERDIVIDE RATIO

00...

1

12...

7

10...

1

01...

1

X1 XTAL OSC0 OFF1 ON

VA2 VA1FREQUENCYOF OPERATION

0 850 TO 9200 860 TO 9301 870 TO 9401

0101 880 TO 950

D1XTALDOUBLER

0 DISABLEENABLED1

V1VCO Band(MHz)

0 862 TO 9561 431 TO 478

CP2 CP1 ICP (mA)

0 0 0.3

0 1 0.9

1 0 1.5

1 1 2.1

VB4 VB3 VB2 VB1VCO BIASCURRENT

0 0.375mA0 0.625mA.1

10.1

01.1

00 0.125mA000

0.1 3.875mA

IR2 IR1FILTERBANDWIDTH

0 100kHz0 150kHz1 200kHz1

0101 NOT USED

CL4 CL3 CL2 CL1CLKOUTDIVIDE RATIO

0 OFF

00..

.1

010..

.1

24..

.

001..

.1

000..

.1 30

VCO BIAS CP

CU

RR

EN

T

VC

O B

AN

D

XO

SC

EN

AB

LE

CLOCKOUTDIVIDE

ADDRESSBITSR COUNTERX

TA

LD

OU

BL

ER

VC

OA

DJU

ST

IF F

ILT

ER

BW

IR2

IR1

CL

1

CL

2

CL

3

CL

4

CP

2

VB

1

VB

3

VB

4

VA

1

VA

2

VB

2

X1

V1

CP

1

D1

R3

C2(

0)

C1(

1)

C3(

0)

C4(

0)

R1

R2

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

21

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

22

DB

23

DB

1

DB

0

DB

2

DB

3

053

51-0

41

Figure 44. Register 1—Oscillator/Filter Register

Register 1—Oscillator/Filter Register Comments

The VCO Adjust Bits R1_DB[20:21] should be set to 0 for operation in the 862 MHz to 870 MHz band and set to 3 for operation in the 902 MHz to 928 MHz band.

The VCO bias setting should be 0xA for operation in the 862 MHz to 870 MHz and 902 MHz to 928 MHz bands. All VCO gain numbers are specified for these VCO Adjust and Bias settings.

ADF7020 Data Sheet

Rev. E | Page 34 of 47

REGISTER 2—TRANSMIT MODULATION REGISTER (ASK/OOK MODE)

P6

0000..1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.1

P2

X001..1

P1

X010..1

POWER AMPLIFIER OUTPUT HIGH LEVEL

PA OFF–16.0dBm–16 + 0.45dBm–16 + 0.90dBm..13dBm

D6

X0000..1

.

.

.

.

.

.

.

.

.

D5

XX00...1

D2

XX001..1

D1

XX010..1

POWER AMPLIFIER OUTPUT LOW LEVEL

OOK MODEPA OFF–16.0dBm–16 + 0.45dBm–16 + 0.90dBm..13dBm

DI1

01

TxDATATxDATA

MODULATION PARAMETER POWER AMPLIFIERGFSK MODCONTROL

IND

EX

CO

UN

TE

R

TxD

AT

A I

NV

ER

T

PA BIASMODULATION

SCHEMEADDRESS

BITSPA

EN

AB

LE

MU

TE

PA

UN

TIL

LO

CK

PE1

01

POWER AMPLIFIER

OFFON

MP1

01

MUTE PA UNTILLOCK DETECT HIGH

OFFON

PA2

0011

PA1

0101

PA BIAS

5µA7µA9µA11µA

IC2

X

IC1

X

MC3

X

MC2

X

MC1

X

S3

00001

S2

00111

MODULATION SCHEME

FSKGFSKASKOOKGOOK

S1

01011

0535

1-04

2

D9

D8

MC

3

S3

P1

P2

P3

D1

D2

D4

D5

D6

D7

D3

P4

P5

P6

S2

S1

IC1

IC2

DI1

PA

2

PA

1

C2(

1)

C1(

0)

C3(

0)

C4(

0)

PE

1

MP

1

MC

2

MC

1

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

21

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

22

DB

23

DB

24

DB

26

DB

27

DB

28

DB

25

DB

1

DB

0

DB

2

DB

3

DB

29

DB

30

DB

31

Figure 45. Register 2—Transmit Modulation Register (ASK/OOK Mode)

Register 2—Transmit Modulation Register (ASK/OOK Mode) Comments

See the Transmitter section for a description of how the PA bias affects the power amplifier level. The default level is 9 μA. If maximum power is needed, program this value to 11 μA.

See Figure 13. D7, D8, and D9 are don’t care bits.

Data Sheet ADF7020

Rev. E | Page 35 of 47

REGISTER 2—TRANSMIT MODULATION REGISTER (FSK MODE)

MODULATION PARAMETER POWER AMPLIFIERGFSK MODCONTROL

IND

EX

CO

UN

TE

R

TxD

AT

A I

NV

ER

TPA BIAS

MODULATIONSCHEME

ADDRESSBITSP

AE

NA

BL

E

MU

TE

PA

UN

TIL

LO

CK

D9

D8

MC

3

S3

P1

P2

P3

D1

D2

D4

D5

D6

D7

D3

P4

P5

P6

S2

S1

IC1

IC2

DI1

PA

2

PA

1

C2(

1)

C1(

0)

C3(

0)

C4(

0)

PE

1

MP

1

MC

2

MC

1

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

21

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

22

DB

23

DB

24

DB

26

DB

27

DB

28

DB

25

DB

1

DB

0

DB

2

DB

3

DB

29

DB

30

DB

31

DI1

01

TxDATATxDATA

PA2

0011

PA1

0101

PA BIAS

5µA7µA9µA11µA

IC2

X

IC1

X

MC3

X

MC2

X

MC1

X

D9

0000.1

D3

0000.1

.

.

.

.

.

.

.

D2

0011.1

D1

0101.1

FOR FSK MODE,F DEVIATION

PLL MODE1 × fSTEP2 × fSTEP3 × fSTEP.511 × fSTEP

P6

0000..1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.1

P2

X001..1

P1

X010..1

POWER AMPLIFIER OUTPUT LEVEL

PA OFF–16.0dBm–16 + 0.45dBm–16 + 0.90dBm..13dBm

PE1

01

POWER AMPLIFIER

OFFON

MP1

01

MUTE PA UNTILLOCK DETECT HIGH

OFFON

S3

00001

S2

00111

MODULATION SCHEME

FSKGFSKASKOOKGOOK

S1

01011

0535

1-04

3

Figure 46. Register 2—Transmit Modulation Register (FSK Mode)

Register 2—Transmit Modulation Register (FSK Mode) Comments

fSTEP = PFD/214. When operating in the 431 MHz to 478 MHz band, fSTEP = PFD/215. PA bias default = 9 μA.

ADF7020 Data Sheet

Rev. E | Page 36 of 47

REGISTER 2—TRANSMIT MODULATION REGISTER (GFSK/GOOK MODE)

MODULATION PARAMETER POWER AMPLIFIERGFSK MODCONTROL

IND

EX

CO

UN

TE

R

TxD

AT

A I

NV

ER

T

PA BIASMODULATION

SCHEMEADDRESS

BITSPA

EN

AB

LE

MU

TE

PA

UN

TIL

LO

CK

D9

D8

MC

3

S3

P1

P2

P3

D1

D2

D4

D5

D6

D7

D3

P4

P5

P6

S2

S1

IC1

IC2

DI1

PA

2

PA

1

C2(

1)

C1(

0)

C3(

0)

C4(

0)

PE

1

MP

1

MC

2

MC

1

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

21

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

22

DB

23

DB

24

DB

26

DB

27

DB

28

DB

25

DB

1

DB

0

DB

2

DB

3

DB

29

DB

30

DB

31

DI1

01

TxDATATxDATA

PA2

0011

PA1

0101

PA BIAS

5µA7µA9µA11µA

IC2

0011

IC1

0101

INDEX_COUNTER

163264128

D9

0011

D8

0101

GAUSSIAN – OOKMODE

NORMAL MODEOUTPUT BUFFER ONBLEED CURRENT ONBLEED/BUFFER ON

053

51-0

44

MC3

00.1

MC2

00.1

GFSK_MOD_CONTROL

01.7

MC1

01.1

D7

0000.1

D3

0000.1

.

.

.

.

.

.

.

D2

0011.1

D1

0101.1

DIVIDER_FACTOR

INVALID123.127

PE1

01

POWER AMPLIFIER

OFFON

MP1

01

MUTE PA UNTILLOCK DETECT HIGH

OFFON

S3

00001

S2

00111

MODULATION SCHEME

FSKGFSKASKOOKGOOK

S1

01011

P6

0000..1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.1

P2

X001..1

P1

X010..1

POWER AMPLIFIER OUTPUT LEVEL

PA OFF–16.0dBm–16 + 0.45dBm–16 + 0.90dBm..13dBm

Figure 47. Register 2—Transmit Modulation Register (GFSK/GOOK Mode)

Register 2—Transmit Modulation Register (GFSK/GOOK Mode) Comments

GFSK_DEVIATION = (2GFSK_MOD_CONTROL × PFD)/212. When operating in the 431 MHz to 478 MHz band, GFSK_DEVIATION = (2GFSK_MOD_CONTROL × PFD)/213. Data Rate = PFD/(INDEX_COUNTER × DIVIDER_FACTOR). PA Bias default = 9 μA.

Data Sheet ADF7020

Rev. E | Page 37 of 47

REGISTER 3—RECEIVER CLOCK REGISTER

FS8

00.11

FS7

00.11

FS3

00.11

.

.

.

.

.

.

FS2

01.11

FS1

10.01

CDR_CLK_DIVIDE

12.254255

BK2

001

BK1

01x

BBOS_CLK_DIVIDE

4816

SK8

00.11

SK7

00.11

SK3

00.11

.

.

.

.

.

.

SK2

01.11

SK1

10.01

SEQ_CLK_DIVIDE

12.254255

OK2

0011

OK1

0101

DEMOD_CLK_DIVIDE

4123

SEQUENCER CLOCK DIVIDE CDR CLOCK DIVIDE

BB

OF

FS

ET

CL

OC

K D

IVID

E

DE

MO

DC

LO

CK

DIV

IDE

ADDRESSBITS

SK

8

SK

7

FS

1

FS

2

FS

3

FS

4

FS

8

SK

1

SK

3

SK

4

SK

5

SK

6

SK

2

FS

5

FS

6

FS

7

OK

2

OK

1

C2(

1)

C1(

1)

C3(

0)

C4(

0)

BK

1

BK

2

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

21

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

22

DB

23

DB

1

DB

0

DB

2

DB

3

0535

1-0

45

Figure 48. Register 3—Receiver Clock Register

Register 3—Receiver Clock Register Comments

Baseband offset clock frequency (BBOS_CLK) must be greater than 1 MHz and less than 2 MHz, where

DIVIDECLKBBOSXTALCLKBBOS

___

The demodulator clock (DEMOD_CLK) must be <12 MHz for FSK and <6 MHz for ASK, where

DIVIDECLKDEMODXTALCLKDEMOD

___

Data/clock recovery frequency (CDR_CLK) should be within 2% of (32 × data rate), where

DIVIDECLKCDRCLKDEMODCLKCDR

____

Note that this can affect your choice of XTAL, depending on the desired data rate. The sequencer clock (SEQ_CLK) supplies the clock to the digital receive block. It should be close to 100 kHz for FSK and close to

40 kHz for ASK.

DIVIDECLKSEQXTALCLKSEQ

___

ADF7020 Data Sheet

Rev. E | Page 38 of 47

REGISTER 4—DEMODULATOR SETUP REGISTER

DEMODULATOR LOCK SETTING POSTDEMODULATOR BW

DE

MO

DS

EL

EC

T

DE

MO

D L

OC

K/

SY

NC

WO

RD

MA

TC

H

ADDRESSBITS

DL

8

DL

7

DW

3

DW

4

DW

5

DW

6

DW

10

DL

1

DL

3

DL

4

DL

5

DL

6

DL

2

DW

7

DW

8

DW

9

DW

2

DW

1

C2(

0)

C1(

0)

C3(

1)

C4(

0)

DS

1

DS

2

LM

2

LM

1

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

21

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

22

DB

23

DB

24

DB

25

DB

1

DB

0

DB

2

DB

3

DS2

0011

DS1

0101

DEMODULATORTYPE

LINEAR DEMODULATORCORRELATOR/DEMODULATORASK/OOKINVALID

LM2

000011

DEMOD MODE

012345

LM1

001101

DEMOD LOCK/SYNC WORD MATCH

SERIAL PORT CONTROL – FREE RUNNINGSERIAL PORT CONTROL – LOCK THRESHOLDSYNC WORD DETECT – FREE RUNNINGSYNC WORD DETECT – LOCK THRESHOLDINTERRUPT/LOCK PIN LOCKS THRESHOLDDEMOD LOCKED AFTER DL8–DL1 BITS

INT/LOCK PIN

––OUTPUTOUTPUTINPUT–

DL8

0101XDL8

DL7

000.11

DL8

000.11

DL3

000.11

.

.

.

.

.

.

DL2

001.11

DL1

010.01

LOCK_THRESHOLD_TIMEOUT

012.254255 05

351-

046

MODE5 ONLY

Figure 49. Register 4—Demodulator Setup Register

Register 4—Demodulator Setup Register Comments

Demodulator Mode 1, Demodulator Mode 3, Demodulator Mode 4, and Demodulator Mode 5 are modes that can be activated to allow the ADF7020 to demodulate data-encoding schemes that have run-length constraints greater than 7, when using the linear demodulator.

POSTDEMOD_BW = DEMOD_CLK

fCUTOFF π211

where the cutoff frequency (fCUTOFF) of the postdemodulator filter should typically be 0.75 times the data rate. For Mode 5, Timeout Delay to Lock Threshold = (LOCK_THRESHOLD_SETTING)/SEQ_CLK

where SEQ_CLK is defined in the Register 3—Receiver Clock Register section.

Data Sheet ADF7020

Rev. E | Page 39 of 47

REGISTER 5—SYNC BYTE REGISTER

PL2

0011

PL1

0101

SYNC BYTELENGTH

12 BITS16 BITS20 BITS24 BITS

MT2

0011

MT1

0101

MATCHINGTOLERANCE

0 ERRORS1 ERROR2 ERRORS3 ERRORS

SYNC BYTE SEQUENCECONTROL

BITS

SY

NC

BY

TE

LE

NG

TH

MA

TC

HIN

GT

OL

ER

AN

CE

MT

2

MT

1

C2(

0)

C1(

1)

C3(

1)

C4(

0)

PL

1

PL

2

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

21

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

22

DB

23

DB

24

DB

26

DB

27

DB

28

DB

25

DB

1

DB

0

DB

2

DB

3

DB

29

DB

30

DB

31

0535

1-04

7

Figure 50. Register 5—Sync Byte Register

Register 5—Sync Byte Register Comments

Sync byte detect is enabled by programming Bits R4_DB[25:23] to 010 or 011. This register allows a 24-bit sync byte sequence to be stored internally. If the sync byte detect mode is selected, then the INT/LOCK

pin goes high when the sync byte is detected in Rx mode. Once the sync word detect signal goes high, it goes low again after nine data bits.

The transmitter must transmit the MSB of the sync byte first and the LSB last to ensure proper alignment in the receiver sync byte detection hardware.

Choose a sync byte pattern that has good autocorrelation properties, for example, 0x123456.

ADF7020 Data Sheet

Rev. E | Page 40 of 47

REGISTER 6—CORRELATOR/DEMODULATOR REGISTER

DISCRIMINATOR BWIF FILTER DIVIDER LN

AC

UR

RE

NT

LN

A M

OD

E

DO

TP

RO

DU

CT

RxD

AT

AIN

VE

RT

IF F

ILT

ER

CA

L

MIX

ER

LIN

EA

RIT

Y

RxRESET

ADDRESSBITS

FC

4

FC

3

FC

7

TD

5

TD

6

TD

7

TD

8

LG

1

LI1

ML

1

CA

1

FC

1

FC

2

LI2

TD

9

TD

10

DP

1

TD

4

TD

3

FC

8

FC

9

RI1

C2(

1)

C1(

0)

C3(

1)

C4(

0)

TD

1

TD

2

FC

6

FC

5

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

21

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

22

DB

23

DB

24

DB

26

DB

27

DB

28

DB

25

DB

1

DB

0

DB

2

DB

3

DB

29

DB

30

DB

31

RI1

01

RxDATAINVERT

RxDATARxDATA

CA1

01

FILTER CAL

NO CALCALIBRATE

01

RxRESET

NORMAL OPPERATIONDEMOD RESET

01

RxRESET

NORMAL OPPERATIONCDR RESET

ML1

01

MIXER LINEARITY

DEFAULTHIGH

DP1

01

DOT PRODUCT

CROSS PRODUCTDOT PRODUCT

LG1

01

LNA MODE

DEFAULTREDUCED GAIN

FC3

00....1

FC1

10....1

FILTER CLOCKDIVIDE RATIO

12....511

FC2

01....1

FC9

00....1

FC6

00....1

.

.

.

.

.

.

.

.

FC5

00....1

FC4

00....1

LI2

0

LI1

0

LNA BIAS

800µA (DEFAULT)

053

51-0

48

Figure 51. Register 6—Correlator/Demodulator Register

Register 6—Correlator/Demodulator Register Comments

See the FSK Correlator/Demodulator section for an example of how to determine register settings. Nonadherence to correlator programming guidelines results in poorer sensitivity. The filter clock is used to calibrate the IF filter. The filter clock divide ratio should be adjusted so that the frequency is 50 kHz. The

formula is XTAL/FILTER_CLOCK_DIVIDE. The filter should be calibrated only when the crystal oscillator is settled. The filter calibration is initiated every time Bit R6_DB19 is

set high. DISCRIMINATOR_BW = (DEMOD_CLK × K)/(800 × 103). See the FSK Correlator/Demodulator section. Maximum value = 600. When LNA mode = 1 (reduced gain mode), the Rx is prevented from selecting the highest LNA gain setting. This can be used when

linearity is a concern. See Table 5 for details of the different Rx modes.

Data Sheet ADF7020

Rev. E | Page 41 of 47

REGISTER 7—READBACK SETUP REGISTER

AD1AD2RB1RB2RB3

DB8 DB7 DB6 DB5 DB4 DB3 DB2

C2(1) C1(1)

CONTROLBITS

DB1 DB0

C3(1)C4(0)

READBACKSELECT

ADCMODE

AD2

0011

AD1

0101

ADC MODE

MEASURE RSSIBATTERY VOLTAGETEMP SENSORTO EXTERNAL PIN

RB2

0011

RB1

0101

READBACK MODE

AFC WORDADC OUTPUTFILTER CALSILICON REV

RB3

01

READBACK

DISABLEDENABLED

053

51-0

49

Figure 52. Register 7—Readback Setup Register

Register 7—Readback Setup Register Comments

Readback of the measured RSSI value is valid only in Rx mode. To enable readback of the battery voltage, the temperature sensor, or the voltage at the external pin in Rx mode, AGC function in Register 9 must be disabled. To read back these parameters in Tx mode, the ADC must first be powered up using Register 8 because this is off by default in Tx mode to save power. This is the recommended method of using the battery readback function because most configurations typically require AGC.

Readback of the AFC word is valid in Rx mode only if either the linear demodulator or the correlator/demodulator is active. See the Readback Format section for more information.

ADF7020 Data Sheet

Rev. E | Page 42 of 47

REGISTER 8—POWER-DOWN TEST REGISTER

PD1PD2PD3PD4PD5

DB8 DB7 DB6 DB5 DB4 DB3 DB2

C2(0) C1(0)

CONTROLBITS

DB1 DB0

C3(0)C4(1)

LOG AMP/RSSI

SY

NT

HE

NA

BL

E

VC

OE

NA

BL

E

LN

A/M

IXE

RE

NA

BL

E

FIL

TE

RE

NA

BL

E

AD

CE

NA

BL

E

DE

MO

DE

NA

BL

E

INT

ER

NA

L T

x/R

xS

WIT

CH

EN

AB

LE

PA

EN

AB

LE

Rx

MO

DE

PD7

DB13 DB12 DB11

LR1 PD6

DB10 DB9

LR2SW1

PD7

01

PA (Rx MODE)

PA OFFPA ON

SW1

01

Tx/Rx SWITCH

DEFAULT (ON)OFF

PD6

01

DEMOD ENABLE

DEMOD OFFDEMOD ON

PD5

01

ADC ENABLE

ADC OFFADC ON

LR2

XX

LR1

01

RSSI MODE

RSSI OFFRSSI ON

PD4

01

FILTER ENABLE

FILTER OFFFILTER ON

PD3

01

LNA/MIXER ENABLE

LNA/MIXER OFFLNA/MIXER ON

PLE1(FROM REG 0)

00001

PD2

0011X

LOOPCONDITION

VCO/PLL OFFPLL ONVCO ONPLL/VCO ONPLL/VCO ON

PD1

0101X

0535

1-0

50

Figure 53. Register 8—Power-Down Test Register

Register 8—Power-Down Test Register Comments

For a combined LNA/PA matching network, Bit R8_DB12 should always be set to 0. This is the power-up default condition. It is not necessary to write to this register under normal operating conditions.

Data Sheet ADF7020

Rev. E | Page 43 of 47

REGISTER 9—AGC REGISTER

AGC HIGH THRESHOLDLNAGAIN

FILTERGAIN

DIGITALTEST IQ A

GC

SE

AR

CH

GA

INC

ON

TR

OL

FIL

TE

RC

UR

RE

NT

AGC LOW THRESHOLDADDRESS

BITS

FG

2

FG

1

GL

5

GL

6

GL

7

GH

1

GH

5

GH

6

GS

1

GC

1

LG

1

LG

2

GH

7

GH

2

GH

3

GH

4

GL

4

GL

3

C2(

0)

C1(

1)

C3(

0)

C4(

1)

GL

1

GL

2

FI1

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

21

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

22

DB

23

DB

24

DB

26

DB

25

DB

1

DB

0

DB

2

DB

3

FI1

01

FILTER CURRENT

LOWHIGH

GS1

01

AGC SEARCH

AUTO AGCHOLD SETTING

GC1

01

GAIN CONTROL

AUTOUSER

FG2

0011

FG1

0101

FILTER GAIN

82472INVALID

LG2

0011

LG1

0101

LNA GAIN

<131030

GL3

0001...110

GL1

1010...010

AGC LOWTHRESHOLD

1234...787980

GL2

0110...110

GL7

0000...111

GL6

0000...000

GL5

0000...001

GL4

0000...110

GH3

0001...110

GH1

1010...010

AGC HIGHTHRESHOLD

1234...787980

GH2

0110...110

GH7

0000...111

GH6

0000...000

GH5

0000...001

GH4

0000...110 0

5351

-05

1

Figure 54. Register 9—AGC Register

Register 9—AGC Register Comments

This register does not need to be programmed in normal operation. Default AGC_LOW_THRESHOLD = 30, default AGC_HIGH_THRESHOLD = 70. See the RSSI/AGC section for details. Default register setting = 0xB2 31E9.

AGC high and low settings must be more than 30 apart to ensure correct operation. LNA gain of 30 is available only if LNA mode, R6_DB15, is set to 0.

ADF7020 Data Sheet

Rev. E | Page 44 of 47

REGISTER 10—AGC 2 REGISTER

AGC DELAYI/Q GAIN ADJUST LEAK FACTORI/Q PHASEADJUST

GA

IN/A

TT

EN

UA

TE

RE

SE

RV

ED

SE

LE

CT

I/Q

SE

LE

CT

I/Q

PEAK RESPONSEADDRESS

BITS

R1

SIQ

1

PH

3

GL

4

GL

5

GL

6

GL

7

DH

4

GC

1

GC

3

GC

4

GC

5

UD

1

GC

2

DH

1

DH

2

DH

3

PR

4

PR

3

PH

4

SIQ

2

C2(

1)

C1(

0)

C3(

0)

C4(

1)

PR

1

PR

2

PH

2

PH

1

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

21

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

22

DB

23

DB

24

DB

26

DB

27

DB

28

DB

25

DB

1

DB

0

DB

2

DB

3

SIQ2

01

SELECT IQ

PHASE TO I CHANNELPHASE TO Q CHANNEL

SIQ2

01

SELECT IQ

GAIN TO I CHANNELGAIN TO Q CHANNEL

DEFAULT = 0xA DEFAULT = 0x2

DEFAULT = 0xA

0535

1-05

2

IF DB21 = 0, THEN GAINIS SELECTED.IF DB21 = 1, THENATTENUATE IS SELECTED

Figure 55. Register 10—AGC 2 Register

Register 10—AGC 2 Register Comments

This register is not used under normal operating conditions. For ASK/OOK modulation, the recommended settings for operation over the full input range are peak response = 2, leak factor = 10

(default), and AGC delay =10 (default). Bit DB31 to Bit DB16 should be cleared. For bit-rates below 4 kbps the AGC_WAIT_TIME can be increased by setting the AGC_DELAY to 15. The SEQ_CLK should also be set at a minimum.

REGISTER 11—AFC REGISTER

AFC SCALING COEFFICIENTCONTROL

BITS

AF

C E

NA

BL

E

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

M16

AE

1

M3

C2(

1)

C1(

1)

C3(

0)

C4(

1)

M1

M2

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

1

DB

0

DB

2

DB

3

AE1

01

INTERNALAFC

OFFON 05

351-

053

Figure 56. Register 11—AFC Register

Register 11—AFC Register Comments

See the Internal AFC section to program the AFC scaling coefficient bits. The AFC scaling coefficient bits can be programmed using the following formula:

AFC_SCALING_COEFFICIENT = Round((500 × 224)/XTAL)

Data Sheet ADF7020

Rev. E | Page 45 of 47

REGISTER 12—TEST REGISTER

CO

UN

TE

RR

ES

ET

DIGITALTEST MODES

Σ-∆TEST MODES

ANALOG TESTMUX MANUAL FILTER CAL

OS

C T

ES

T

FO

RC

EL

D H

IGH

SO

UR

CE

PR

ES

CA

LE

R

PLL TEST MODESADDRESS

BITS

SF

6

SF

5

T5

T6

T7

T8

SF

1

SF

2

SF

3

SF

4

T9

T4

T3

PR

E

C2(

0)

C1(

0)

C3(

1)

C4(

1)

T1

T2

QT

1

CS

1

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

21

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

22

DB

23

DB

24

DB

26

DB

27

DB

28

DB

25

DB

1

DB

0

DB

2

DB

3

DB

29

DB

30

DB

31

P

01

PRESCALER

4/5 (DEFAULT)8/9

CR1

01

COUNTER RESET

DEFAULTRESET

CS1

01

CAL SOURCE

INTERNALSERIAL IF BW CAL

DEFAULT = 32. INCREASENUMBER TO INCREASE BWIF USER CAL ON

0535

1-0

54

CR

1

Figure 57. Register 12—Test Register

Register 12—Test Register Comments

This register does not need to be written to in normal operation. The default test mode is 0x0000 000C, which puts the part in normal operation.

Using the Test DAC on the ADF7020 to Implement Analog FM Demodulation and Measuring of SNR

The test DAC allows the output of the postdemodulator filter for both the linear and correlator/demodulators (see Figure 30 and Figure 31) to be viewed externally. It takes the 16-bit filter output and converts it to a high frequency, single-bit output using a second-order Σ-Δ converter. The output can be viewed on the CLKOUT pin. This signal, when filtered appropriately, can then be used to

Monitor the signals at the FSK/ASK postdemodulator filter output. This allows the demodulator output SNR to be measured. Eye diagrams can also be constructed of the received bit stream to measure the received signal quality.

Provide analog FM demodulation.

While the correlators and filters are clocked by DEMOD_CLK, CDR_CLK clocks the test DAC. Note that although the test DAC functions in a regular user mode, the best performance is achieved when the CDR_CLK is increased up to or above the frequency of DEMOD_CLK. The CDR block does not function when this condition exists.

Programming the test register, Register 12, enables the test DAC. In correlator mode, this can be done by writing to Digital Test Mode 7 or 0x0001C00C.

To view the test DAC output when using the linear demodu-lator, the user must remove a fixed offset term from the signal using Register 13. This offset is nominally equal to the IF frequency. The user can determine the value to program by using the frequency error readback to determine the actual IF and then programming half this value into the offset removal field. It also has a signal gain term to allow the usage of the maximum dynamic range of the DAC.

Setting Up the Test DAC

Digital test modes = 7: enables the test DAC, with no offset removal (0x0001 C00C).

Digital test modes = 10: enables the test DAC, with offset removal (needed for linear demodulation only, 0x02 800C).

The output of the active demodulator drives the DAC, that is, if the FSK correlator/demodulator is selected, the correlator filter output drives the DAC.

The evaluation boards for the ADF7020 contain land patterns for placement of an RC filter on the CLKOUT line. This is typically designed so that the cut-off frequency of the filter is above the demodulated data rate.

ADF7020 Data Sheet

Rev. E | Page 46 of 47

REGISTER 13—OFFSET REMOVAL AND SIGNAL GAIN REGISTER

KPKICONTROL

BITSPULSE

EXTENSIONTEST DAC GAIN TEST DAC OFFSET REMOVAL

PE

1

PE

2

PE

3

PE

4

C2(

0)

C1(

1)

C3(

1)

C4(

1)

DB

16

DB

15

DB

14

DB

17

DB

20

DB

19

DB

18

DB

21

DB

13

DB

12

DB

11

DB

10

DB

9

DB

8

DB

7

DB

6

DB

5

DB

4

DB

22

DB

23

DB

24

DB

26

DB

27

DB

28

DB

25

DB

1

DB

0

DB

2

DB

3

DB

29

DB

30

DB

31

PE4

000...1

PE3

000...1

PE2

001...1

PULSE EXTENSION

NORMAL PULSE WIDTH2 × PULSE WIDTH3 × PULSE WIDTH...16 × PULSE WIDTH

PE1

010...1 05

351-

055

KI DEFAULT = 3 KP DEFAULT = 2

Figure 58. Register 13—Offset Removal and Signal Gain Register

Register 13—Offset Removal and Signal Gain Register Comments

Because the linear demodulator’s output is proportional to frequency, it usually consists of an offset combined with a relatively low signal. The offset can be removed, up to a maximum of 1.0, and gained to use the full dynamic range of the DAC: DAC_INPUT = (2TEST_DAC_GAIN) × (Signal − TEST_DAC_OFFSET_REMOVAL/4096)

Ki (default) = 3. Kp (default) = 2.

Data Sheet ADF7020

Rev. E | Page 47 of 47

OUTLINE DIMENSIONS

FOR PROPER CONNECTION OFTHE EXPOSED PAD, REFER TOTHE PIN CONFIGURATION ANDFUNCTION DESCRIPTIONSSECTION OF THIS DATA SHEET.

COMPLIANT TO JEDEC STANDARDS MO-220-WKKD.

1

0.50BSC

BOTTOM VIEWTOP VIEW

PIN 1INDICATOR

7.00BSC SQ

48

1324

25

36

37

12

EXPOSEDPAD

PIN 1INDICATOR

4.254.10 SQ3.95

0.450.400.35

SEATINGPLANE

0.800.750.70

0.05 MAX0.02 NOM

0.20 MIN

0.20 REF

COPLANARITY0.08

0.300.230.18

08-1

6-2

010-

B

Figure 59. 48-Lead Lead Frame Chip Scale Package [LFCSP_WQ]

7 mm × 7 mm Body, Very Very Thin Quad (CP-48-5)

Dimensions shown in millimeters

ORDERING GUIDE Model1 Temperature Range Package Description Package Option2 ADF7020BCPZ −40°C to +85°C 48-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-48-5 ADF7020BCPZ-RL −40°C to +85°C 48-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-48-5 EVAL-ADF70xxMBZ2 Evaluation Platform EVAL-ADF7020DBZ1 902 MHz to 928 MHz Daughter Board EVAL-ADF7020DBZ2 860 MHz to 870 MHz Daughter Board EVAL-ADF7020DBZ3 430 MHz to 445 MHz Daughter Board 1 Z = RoHS Compliant Part. 2 Formerly CP-48-3 package.

©2005–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05351-0-9/16(E)


Recommended