+ All Categories
Home > Documents > High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/....

High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/....

Date post: 14-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
16
American Mineralogist, Volume 64, pages 86-101, 1979 High-temperature heat capacities of corundum, periclase, anorthite, Q1{lrSirO, glass, - muscovite, pyrophtllite, KAISisOB glass, grossular' and NaAlSirOr glass KBNNnruM. Knupre, RlcHnRD A. RoeIr nNp BRucr S. HrutNcwev U.S. GeologicalSuruey Reston, Virginia 22092 Abstract The heatcapacities (CF)of corundum, periclase, anorthite, CaAlrSirO, glass, muscovite, pyrophyllite, KAlsi3os glass, grossular, and NaAlSirO, glass havebeendetermined to an accuracy of *1.0 percent by differential scanning calorimetry between 350and 1000 K. Our results havebeen combined smoothly with existing low-temperature heat capacity and en- tropy data, and fitted by least squares to the following equations (I in Kelvin and CP in J/mol.K): cf (anorthite) :516.8 -0.092497 - 1.408 Xl08T-2 -4588T 1/2+4.188 X l0 'r (298-r800 K) CF(CaAl,Si,O,glass) = 375.2 + 0.031977 - 2.815 X l061 2 - 24597-t/2 (298-rs00 K) Cf(muscovite):917.7-0.08lllT+2.834x1067-2-103487-t/2 (298-r000 K) c3(pyrophvllitel=679.r-0.064127-69027-1/2-5.997x106T'z (2e8-800 K) CP(KAlSi3O8glass) : 629.5 - 0.1084f + 2.496 x l06f-2 - 72107-t/2 + 1.928 x l0 uT' (298-r300 K) Cf (grossular) : 1633.3 - 0.75997 + 9.1 l3 X 106?' 2 - 207837-t/2 + 2.669 x 10-17' (298-1200 K) C3(NaAlSi,O,glass) :934.4 - 0.38917+ 5.594 X l06I-'z - 118207-t/2 + 1.476x10-lT'z (298-r200 K) The accuracy of the differential scanning calorimeter was checked by measuring the heat capacities ofcorundum andpericlase andcomparing these results with those published by the U. S.National Bureau of Standards. We have combined our calorimetric data for muscovite, pyrophyllite, and grossular with data from recent equilibrium studies to deriveimproved values for LH?.r* and AGf,r* for muscovite, pyrophyllite, and grossular. Our values for LH?.""and AGP.,,s are -597160045180 J/mol and -5595500+5190 J/mol respectively for disordered 2M, muscovite, -5639800+3950 J/mol and -5265900+3960 J,/mol respectively for pyrophyllite, and -6657100+.4720 J/mol and -6295300+4730 J,/molrespectively for grossular. Introduction data has been drop calorimetry. In this method, the sample is held at d constant (elevated) temperature, Heat capacity values above 300 K are of funda- I, within a flurnace and is then dropped into a re- mental importance for thermodynamic calculations ceiver (calorimeter) maintained at some reflerence of mineral equilibrium at high temperatures. Until temperature, Tno, commonly 298 K. The quantity ac- recently the principal method of determining these tually measured is 0003-o04x/79/0102-0086$02.00 86
Transcript
Page 1: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

American Mineralogist, Volume 64, pages 86-101, 1979

High-temperature heat capacities of corundum, periclase, anorthite, Q1{lrSirO, glass,- muscovite, pyrophtllite, KAISisOB glass, grossular' and NaAlSirOr glass

KBNNnru M. Knupre, RlcHnRD A. RoeIr nNp BRucr S. HrutNcwev

U.S. Geological SurueyReston, Virginia 22092

Abstract

The heat capacities (CF) of corundum, periclase, anorthite, CaAlrSirO, glass, muscovite,pyrophyll ite, KAlsi3os glass, grossular, and NaAlSirO, glass have been determined to anaccuracy of *1.0 percent by differential scanning calorimetry between 350 and 1000 K. Ourresults have been combined smoothly with existing low-temperature heat capacity and en-tropy data, and fitted by least squares to the following equations (I in Kelvin and CP inJ / m o l . K ) :

c f ( ano r th i t e ) : 516 .8 -0 .092497 - 1 .408 X l08T-2 -4588T 1 /2+4 .188 X l 0 ' r

(298-r800 K)

CF(CaAl ,Si ,O,g lass) = 375.2 + 0.031977 - 2.815 X l061 2 - 24597-t /2(298-rs00 K)

C f ( m u s c o v i t e ) : 9 1 7 . 7 - 0 . 0 8 l l l T + 2 . 8 3 4 x 1 0 6 7 - 2 - 1 0 3 4 8 7 - t / 2(298-r000 K)

c3 (py rophv l l i t e l=679 . r -0 .064127 -69027 -1 /2 -5 .997x106T ' z(2e8-800 K)

CP(KAlSi3O8glass) : 629.5 - 0.1084f + 2.496 x l06f-2 - 72107-t /2 + 1.928 x l0 uT'

(298-r300 K)

Cf (grossular) : 1633.3 - 0.75997 + 9.1 l3 X 106?' 2 - 207837-t/2 + 2.669 x 10-17'(298-1200 K)

C3(NaAlSi ,O,g lass) :934.4 - 0.38917+ 5.594 X l06I- 'z - 118207-t /2 + 1.476x10- lT 'z(298-r200 K)

The accuracy of the differential scanning calorimeter was checked by measuring the heatcapacities ofcorundum and periclase and comparing these results with those published by theU. S. National Bureau of Standards. We have combined our calorimetric data for muscovite,pyrophyll ite, and grossular with data from recent equil ibrium studies to derive improvedvalues for LH?.r* and AGf,r* for muscovite, pyrophyll ite, and grossular. Our values forLH?."" and AGP.,,s are -597160045180 J/mol and -5595500+5190 J/mol respectively for

disordered 2M, muscovite, -5639800+3950 J/mol and -5265900+3960 J,/mol respectivelyfor pyrophyll ite, and -6657100+.4720 J/mol and -6295300+4730 J,/mol respectively forgrossular.

Introduction data has been drop calorimetry. In this method, thesample is held at d constant (elevated) temperature,

Heat capacity values above 300 K are of funda- I, within a flurnace and is then dropped into a re-mental importance for thermodynamic calculations ceiver (calorimeter) maintained at some reflerence

of mineral equil ibrium at high temperatures. Until temperature, Tno, commonly 298 K. The quantity ac-

recently the principal method of determining these tually measured is

0003-o04x/79/0102-0086$02.00 86

Page 2: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

KRUPKA ET AL.: HEAT CAPACITIES 87

H3 - H3" :

The true differential heat capacity, C3, is derivedfrom these heat. content measurements by graphicaldifferentiation of the experimental Hf - f1f o values,or by fitting the heat content data to an equation andthen differentiating the equation. In either case, dif-ferentiation of the experimental Hf - H9"" data in-troduces uncertainty in the derived value of Cf whichis approximately an order of magnitude larger thanthe uncertainty ofl the measurements. Thus, althoughHf - Hg"" can with care be measured to *0.1 per-cent, the Cf values derived from them have an uncer-tainty of the order of * L0 percent. The accuracy ofthe derived Cp values depends both upon the accu-racy of the heat content measurements and upon thetemperature spacing of the measurements which con-trol the accuracy of the smoothing function. Exceptfor the highly accurate and closely spaced measure-ments of Ditmars and Douglas (1971) on a-AlrO3(corundum), there are probably no heat capacity val-ues, derived from Hf - H9"" studies, that have anuncertainty of less than 1.0 percent. See for example,Figure 7 of Ditmars and Douglas for an overall pic-ture of the state of H,f - .Ffir, calorimetric measure-ments.

Heat capacities can be directly measured by adia-batic calorimetry, but are not routinely determinedby this method above 400 K because ofl greatly in-creased experimental difficulties. At the present time,only the adiabatic calorimeters described by Gron-vold (1967) (with an upper l imit of 1050 K), and byTrowbridge and Westrum (1963) (with an upper limitof 800 K) are operat ional. West and Westrum (1963)have discussed the problems of instrumentation con-nected with the construction and operation of adia-batic heat capacity calorimeters for temperatures ashigh as 1000 K.

Watson et al. (1964) introduced a new method ofthermal analysis which they called differential scan-ning calor imetry, and O'Nei l l and Fyans (1971) de-scribed a much improved version of the differentialscanning calorimeter (DSC). In contrast to the dropmethod, the differential scanning calorimeter mea-sures Cp directly and has an accuracy comparablewith that obtained in all but a very few investigationswhere a drop calorimeter is used.

Using this method, we have determined the high-temperature heat capacities between 350 and 1000 Kfor corundum, periclase, anorthite, CaAlrSi2O, glass,muscovite, pyrophyllite, KAlsiso8 glass, grossular,

and NaAlSirO, glass. Using these new values withancillary thermodynamic data from Robie el a/.(1978a), we have derived improved values of AHl.r ,and LGl,r"t for 2Mt disordered muscovite, pyrophyl-lite, and grossular.

Apparatus

The calorimeter was a Perkin-Elmer Model DSC-2differential scanning calorimeter similar to that de-scr ibed by O'Nei l l and Fyans (1971). Our heat capac-ity measurements were made at a heating rate of l0K/min with a range setting of 1.25 J/min (5 mcal/sec). All samples were encapsulated in gold pans andweighed by means of either a Mettler M-5A micro-balance or a Cahn Model 4100 electrobalance. Tem-perature calibration of the calorimeter was checkedby measuring the transition temperature (extrapo-lated onset temperature) of the inorganic com-pounds supplied in the thermal standard sets, Nns-Icrn Standard Reference Materials 758 and 759(McAdie et al., 1972).

In order to check the accuracy of the differentialscanning calorimeter, we have measured the heat ca-pacities of a-AlrOs (corundum) both in the form ofsingle-crystal discs and in powder florm, and com-pared our results with the values reported by Ditmarsand Douglas (1971). We have also made a less exten-sive series of measurements on MgO (periclase) forcomparison with the data of Victor and Douglas(1963) .

Materials

Corundum (a-Alzos)

The sample of single-crystal corundum was a discof Linde synthetic sapphire 6.3 mm in diameter by0.25 mm thick and weighed 30.20 mg. The chemicalanalyses given by Ditmars and Douglas (1971) in-dicate that the purity of Linde synthetic sapphire is99.98 percent. Unit-cell dimensions were measuredby means of an X-ray diffractometer at 296+l Kusing CurKa, radiation and a scanning rate of lo /min. The cell constants were a: 0.4760t0.0003 andc = 1.2993L0.0019 nm ( l nm = l0A).The powderedcorundum was Fisher Scientific Co. reagent No. 591(anhydrous aluminum oxide), and i t weighed 28.59mg. Chemical analyses by Fisher Scientific Co. in-dicate that its purity is 99.4 percent or better. Unit-cell dimensions were measured under the same condi-tions as those of the Linde sapphire, and they wete a: 0.4758+0.0006 and c : 1.2992L0.0023 nm.

f T

I cfar

Page 3: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

KRUPKA ET AL

Periclase (MSO )The single-crystal periclase sample was furnished

by G. Weber (Pennsylvania State University) frommaterial produced by an arc growth process. Its pur-ity was comparable with commercially availablehigh-purity MgO (Weber, 1975). The single-crystalsample was square in cross section (4.4 mm) by 0.36mm thick and weighed 26.92m9. The unit-cel ldimen-sion was a = 0.421210.0002 nm.

NaAlSi'O" glass, KAISi'O" glass, CaAlrSirO" glass,and anort.hite

The materials used were portions of the samplesused by Robie et al. (1978b) for low-temperature heatcapacity studies. The NaAlSi3O' glass and KAlSirO.glass were discs 6.3 mm in diameter by 0"81 mm thickand weighed 62.38 and 57.60 mg respectively. TheCaAlrSirO, glass and anorthite samples were - 100mesh powders, which weighed 30.37 and 29.81 mgrespectively.

2 M, muscouite I KAI,( AlSirO*)( OH )z] andpyrophyl lit e I A l2Si4O n( O H )z]

The materials were portions of the samples used byRobie et al. (1976) for low-temperature heat capacitymeasurements. The 2M, muscovite was a single-crys-tal disc, 6.3 mm in diameter by 0.35 mm thick, andweighed 31.20 mg. The pyrophyl l i te was -100 meshpowder. Two samples of the pyrophyllite powderwere used, and they weighed 20.80 and 24.80 mg.

G rossulqr ( C ay4 lzSi"O p)

Heat capacity measurements were made on bothnatural and synthetic grossular. Two samples ofgrossular from the Jeffrey Mine, Asbestos, Quebec(NMNH 123106) were used, weighing 24.11 and16.95 mg. The unit-cell dimension of this grossular isc : 1.1850t0.0002 nm. The synthetic grossular wasprepared by J. J. Hemley of the U.S. GeologicalSurvey from a gel at923 K and 517 bars ( l bar : 105pascals). Two samples weighing 17.12 and 19.88 mgwere used. The unit-cell dimension of the syntheticgrossular is c : 1.1853t0.0002 nm.

Experimental results

Our measured values of the molar heat capacitiesof corundum, periclase, anorthite, CaAlrSizO. glass,

muscovite, pyrophyll ite, KAlsisos glass, grossular,

and NaAlSirOs glass are l isted in Tables I through 9

respectively and shown graphically in Figures I

through 3. For the sake of clarity, some of the experi-

HEAT CAPACITIES

mental Cf values in Tables I through t have been

omitted from Figures I through 3. Our measured

heat capacities of anorthite, CaAlrsirOr glass, and

synthetic grossular were not included, because of the

similarit ies between these data and those in Figures 2

and 3. The gram-formula weights were calculated

using the 1973 atomic weights (Commission on

Atomic Weights, 1974). Calorimetric unit conversionwas made using I cal : 4.184 J. The experimentaldata for muscovite, pyrophyll ite, KAlSi3O. glass, and

NaAlSieOa glass have been corrected for deviations of

the samples from their ideal chemical formulae using

the same approximations used by Robie et al. (1976,

1978b ) .

Our experimental Cf values are believed to be ac-

curate to tl.0 percent, based upon: (l) a comparison

of our heat capacity measurements on corundum andpericlase by differential scanning calorimetry with the

Table l Experimental heat capacities for corundum, a-AlrOg

T e n p . l { e a t T e n p .c a p a c i t y

K J / ( o o l . K ) K

l l e a t T e o p . H e a t

c a p a c i t y c a p a c i t y

J / ( n o 1 . K ) K J / ( n o l . K )

3 5 0 . 23 7 0 . 13 9 0 . 04 I 0 . 04 r 9 . 94 2 9 . 94 1 9 . 94 3 9 . 94 5 9 . 84 7 9 . 74 8 9 . 74 9 9 . ' t5 0 9 . 65 0 4 . 75 0 9 . 7

5 1 9 . 75 3 9 . 75 5 9 . 65 7 9 . 65 8 9 . 65 9 9 . 65 9 4 . 7

6 0 9 . 76 2 9 . 76 4 9 . 66 5 9 . 66 5 9 . 66 7 9 , 68 4 9 . 5

e o ?

9 r . 89 4 . 49 7 . 1o c 1

9 9 . 79 8 . 3

1 0 0 . r1 0 2 . 61 0 4 . 31 0 5 . 41 0 6 . 21 0 7 . 5t o 7 . 41 0 8 . 0

r 0 8 . 4r 1 0 . 11 1 1 . 1l l r . 61 1 2 . r1 L 2 . 61 1 2 . 31 1 2 . 5r 1 3 . 21 1 2 . 91 1 4 . 1r t 4 . )1 r 5 . 21 r 6 . 41 2 t . 2

1 6 . 31 6 . 5r 6 . 91 7 . 21 6 . 9

3 4 9 . 13 5 9 . 13 6 9 . 13 7 9 . 13 8 9 . r3 9 9 . 14 0 9 . I4 L 9 . 14 2 9 , L4 L 9 . 24 2 9 . 24 3 9 . 24 4 9 . 24 5 9 . 24 6 9 . 2

8 8 . 59 0 . r9 1 . 69 3 . 09 4 . 69 6 . 09 6 . 89 8 . 59 9 . 59 8 . 29 8 . 8

t 0 0 . 01 0 1 . 51 0 2 . 21 0 3 . 6

4 7 9 . 2 L 0 4 . 44 8 9 . 2 I 0 5 . 24 9 9 . 2 1 0 6 . 35 0 9 . 2 1 0 7 . 45 0 4 . 2 1 0 6 , 25 0 9 . 2 r 0 6 . 45 r 9 . 2 I 0 7 . 35 2 9 . 2 r 0 8 . 25 3 9 . 2 1 0 9 . 05 4 9 . 2 1 0 9 . 85 5 9 . 2 1 1 0 . 35 6 9 . 2 1 1 1 . 15 1 9 . 2 1 1 1 . 25 8 9 . 2 1 1 2 . 15 9 9 . 2 1 1 3 . 0

3 9 9 . 5 9 6 . 04 0 9 . 5 9 7 . 54 L 9 . 5 9 8 . 84 3 9 , 5 1 0 1 . 34 5 9 . 5 r O 2 . 94 7 9 . 5 1 0 5 . 24 8 4 . 5 1 0 5 . 34 7 4 . 5 r 0 3 . 64 8 4 . 5 I 0 4 . r4 9 9 . 5 1 0 5 . 65 1 9 . 5 1 0 6 . 65 3 9 . 5 1 0 8 . 45 4 9 . 5 1 0 9 . 05 5 9 . 5 1 1 0 . 05 4 9 . 5 r 0 9 . I

5 5 9 . s) t v . )5 9 9 . 56 t 4 . 56 2 4 , 56 3 4 . 56 2 4 . 56 3 4 . 55 4 9 . 56 6 9 . 56 8 9 . 46 9 9 . 47 0 9 . 4

7 0 9 . 2

1 0 9 . 5r l 1 . l1 1 1 . 81 t 2 . 91 1 3 . 41 1 4 . r1 1 3 . 01 1 3 . 61 1 4 . 5

8 5 9 . 3 r 2 1 . 28 7 4 . 0 1 2 r . 58 9 8 . 5 1 2 2 . O9 0 8 . 3 1 2 2 . 79 1 8 . 1 r 2 2 . 89 2 3 . 0 I 2 3 . 39 5 9 . 6 1 2 3 . 59 6 9 . 6 1 2 4 . 09 7 9 . 6 r 2 4 , 29 8 9 . 6 1 2 4 . 39 9 9 . 5 r 2 5 . O9 0 3 . 4 1 2 2 . 29 1 8 . 1 r 2 3 . 4

7 2 9 . 2 L r 7 . 67 4 9 . 2 1 1 8 . 37 6 9 , 2 1 1 9 . 37 7 4 . 2 1 1 9 . 73 5 4 . 8 9 0 . 03 7 4 . 7 9 2 . 53 9 4 . 7 9 5 . 84 0 9 . 6 9 7 . 89 2 7 , 9 1 2 3 . 79 3 7 . 7 1 2 3 . 49 4 7 . 5 r 2 4 . 09 5 7 . 3 1 2 4 . 5

6 7 4 . 06 7 9 . 06 8 9 . 06 9 9 . 07 0 9 . 07 1 9 . 07 2 9 . 07 3 9 , 01 4 9 . 07 5 9 . 07 6 4 . 03 4 9 . 8

I 1 6 . 1I I 6 . 41 r 5 . 41 I 7 . 1r 1 7 . 0

1 7 . 6r 7 . 91 8 . 51 8 . 31 8 . 91 9 . 58 9 . 3

Page 4: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

KRUPKA ET AL.: HEAT CAPACITIES

Table 2. Experimental heat capacities for periclase, MgO Table 4. Experimental heat capacities for CaAlrSirOr glass

T e n p . H e a tc a p a c l E y

K J / ( n o l . K )

T e n p . H e a tc a p a c i t y

K , J / ( n o 1 . K )

T e E p . l { e a t T e m p . l l e a tc a p a c i t y c a p a c t t y

K J / ( n o l . K ) K J / ( n o l . K )

T e e p . H e e tL d y o r r L ,

K J / ( n o 1 . K )

3 5 0 . 13 7 0 . 03 9 0 . 04 0 9 . 94 r 9 . 94 2 9 . 94 1 9 . 94 3 9 . 94 5 9 . 84 7 9 . 84 8 9 . 8

4 0 . 44 1 . 34 2 . r4 2 . 8+ J . J

4 3 . 64 3 . 64 3 . 94 4 . 54 5 . 24 5 . 4

3 4 9 . 13 5 9 , 13 6 9 . 1

2 3 0 . 92 3 3 . 62 3 8 . 02 4 r . 22 4 3 , 72 4 6 . 52 5 0 . I2 5 2 . 52 5 4 . 72 5 r . 72 5 2 . 4

4 9 9 . 8 4 5 . 75 0 9 . 7 4 6 . 15 9 4 . 8 4 7 . 55 9 9 . 8 4 7 . 76 0 9 . 7 4 7 . 66 2 9 . 7 4 8 . 06 4 9 . 7 4 8 . 36 5 9 . 6 4 8 . 46 6 9 . 6 4 8 . 56 7 9 . 6 4 8 . 7

6 9 9 . L 2 9 8 . 37 0 9 . I 2 9 9 . 67 1 9 . t 2 9 9 - 87 2 9 . 1 3 0 r . 47 3 9 . 1 3 0 2 . 07 4 9 . r 3 0 2 . 77 5 9 . r 3 0 4 . 47 6 4 . t 3 0 6 . 43 4 9 . 5 2 3 2 . 83 5 4 . 5 2 3 4 . 53 7 4 . 5 2 4 0 . O

3 9 4 . 5 2 4 6 . 54 0 9 . 5 2 5 l . I3 9 9 . 5 2 4 6 . 24 0 9 . 5 2 4 9 . O4 L 9 . 5 2 5 1 . 54 3 9 . 5 2 5 7 . O4 5 9 . 5 2 6 2 . 54 7 9 . 5 2 6 6 . 24 8 4 . 5 2 6 7 . 54 1 4 . 5 2 6 3 . 54 8 4 . 5 2 6 5 . 8

4 9 9 . 5 2 6 8 . 05 r 9 . 5 2 7 2 . 95 3 9 . 5 2 7 6 . 85 4 9 . 5 2 7 8 . 55 5 9 . 5 2 1 9 - 65 4 9 . 6 2 7 8 . 65 5 9 . 5 2 8 0 . 05 7 9 . 6 2 8 3 . 75 9 9 . 6 2 8 ' l . 65 1 4 . 5 2 8 9 . 46 2 4 . 5 2 9 0 - 66 3 4 . 5 2 9 2 . r

6 2 4 . 5 2 9 0 . 36 3 4 . 5 2 9 2 . 26 4 9 . 5 2 9 2 . 86 6 9 . 5 2 9 4 . 46 8 9 . 4 2 9 8 . 46 9 9 . 4 2 9 9 . 17 0 9 . 4 3 0 0 . 36 9 9 . 5 2 9 8 . 97 0 9 . 5 3 0 1 . 37 2 9 . 5 3 0 3 . 37 4 9 . 5 3 0 5 . 2

7 6 9 . 5 3 0 7 . 07 7 4 . 5 3 0 7 . 67 6 4 . 5 3 0 7 . 67 7 4 . 5 3 0 5 . 97 8 9 . 5 3 0 8 . 08 0 9 . 5 3 1 2 . 18 2 9 . 5 3 1 3 . 18 3 9 . 5 3 1 4 . 28 4 4 . 8 3 L t . 28 5 9 . 5 3 r 2 . 88 9 8 . 7 3 1 5 . 0

9 0 8 . 5 3 r 5 . 79 1 8 . 3 3 1 8 . 59 2 3 . 2 3 1 7 . 69 1 3 . 4 3 L 5 . 79 2 3 . 2 3 1 7 . 29 3 7 . 9 3 1 9 . 09 9 6 . 6 3 2 2 . 49 5 7 . 4 3 r 9 . 99 6 7 . 2 3 1 8 . 89 7 7 . 0 3 2 1 . 99 8 5 . 8 3 2 5 . 69 9 6 . 5 3 2 3 . 8

3 7 9 .3 8 9 .3 9 9 .4 0 9 .4 1 9 .4 2 9 .4 1 4 .4 1 9 .

values of Cf calculated from the heat content data ofDitmars and Douglas (1971) for corundum, and ofVictor and Douglas (1963) for periclase; and (2) acomparison of our measurements in the temperaturerange 350-380 K for muscovite, pyrophyllite, thethree feldspar glasses, and anorthite with the valuesof Cf determined by Robie el al. (1976, 1978b) bylow-temperature adiabatic calorimetry (accuracyt0. I percent) on the same materials. Our heat capac-

Table 3. Experimental heat capacities for anorthite, CaAlzSLOs

4 2 9 .4 3 9 .4 4 9 .4 5 9 .469 .4 7 9 .489 .4 9 9 .5 0 9 .5 0 4 .

5 1 9 .5 2 9 .

549 .5 5 9 .5 6 9 .5 7 9 .5 8 9 .5 9 9 .

6 7 9 .6 8 9 .

2 5 5 . 52 5 8 . 52 6 0 . 02 6 1 , 82 6 4 . O2 6 6 . O2 6 7 . 92 7 0 . 32 7 2 . 02 7 0 . 72 7 2 . O

2 1 3 . 82 7 6 . 42 7 7 . 42 8 0 . 82 8 1 . 82 8 3 . 1r a l o

2 8 6 . 02 8 6 . 72 9 5 . 22 9 5 . 32 9 6 . 5

T e n p . H e a tc a p a c i t y

K J / ( m o 1 . K )

T e n p . H e a t T e E p . H e a tc a p a c i t y c a p a c i t y

K J / ( n o l . K ) K J / ( u o l . K ) ity measurements on corundum agree with the valuesreported by Ditmars and Douglas (1971) for the cer-tification of Standard Reference Material 720 with anaverage deviation of 0.3 percent.

Previous studies

Pankratz (1964) measured the relative enthalpyHf - H9"" of a muscovite sample at approximately100 K intervals between 400 and 903 K. Heat capaci-ties calculated from his derived Cf equation aresmaller than those obtained directly in this investiga-tion by l 2 percent at 500 K and 1.8 percent at 900 K.Although his muscovite sample was less pure than themuscovite sample we used, his data were not cor-rected for the deviation of the sample from the exactstoichiometric formula KAlr(AlSiaOroXOH), as wereour data.

White (1919) measured HF - Hlr, of anorthite,NaAlSi'O, glass, CaAl2Si2O, glass, and KAlSirO,glass at 200 K intervals to 1673 K, ll73 K,973 K,and 1373 K respectively. From these data Kelley(1960) derived approximate heat capacity equationsfor each compound which give values agreeing with

3 4 9 . 0 2 3 t , 93 5 9 . 0 2 3 4 , 53 6 9 . 0 2 3 7 . 93 7 9 . 0 2 4 1 . 23 8 9 . 0 2 4 3 . 73 9 9 . 0 2 4 6 . 44 0 9 . 0 2 4 9 . O4 1 9 . 1 2 5 3 . 3

6 6 9 . 5 2 9 2 . 96 8 9 . 4 2 9 5 . 66 9 9 . 4 2 9 6 . 71 0 9 . 4 2 9 8 . 26 9 9 . 5 2 9 8 . 37 0 9 . 5 2 9 9 . 77 2 9 . 5 3 0 t . 47 4 9 . 5 3 0 2 . r

7 6 9 . 5 3 0 4 . 27 7 4 . 5 3 0 5 . 07 6 4 , 5 3 0 4 . 47 4 4 ; 5 3 0 4 . 77 8 9 . 5 3 0 5 . 98 0 9 . 5 3 0 7 . 28 2 9 . 5 3 0 8 . 68 3 9 . 5 3 0 9 . 68 4 4 . 8 3 0 7 . 58 5 9 . 5 3 0 8 . 18 7 9 . 1 3 0 8 . 38 9 8 . 7 3 0 9 . 49 0 8 . 5 3 1 0 . 29 1 8 . 3 3 1 3 . 8

9 2 3 . 2 3 r 5 . 49 r 3 . 4 3 1 1 . 09 2 3 . 2 3 1 r . 29 3 7 . 9 3 t 2 . 49 5 7 . 4 3 L 6 . 49 6 7 . 2 3 1 6 . 39 1 7 . O 3 I 5 . 89 8 6 . 8 3 2 0 . 49 6 5 . 5 3 1 9 . 7

6 7 9 . 16 8 9 . 16 9 9 . 17 0 9 . 17 1 9 . 17 2 9 . 17 3 9 . 17 4 9 . t

2 9 5 . 2

2 9 5 . 72 9 6 . 8

2 9 8 . 22 9 9 . 23 0 0 . 7

4 2 9 . 14 1 4 . 04 I 9 . I4 2 9 . 1

2 5 5 . 52 5 2 . 42 5 2 . 42 5 5 . 62 5 8 . 22 5 9 . 82 6 I . 72 6 3 . 52 6 6 . O2 6 7 . 22 6 9 . 12 7 0 . 52 7 1 . 22 7 2 . 4

439 .4 4 9 .4 5 9 .4 6 9 .4 7 9 .4 8 9 .4 9 9 .5 0 9 .

5 r 9 . 2 2 7 4 . 75 2 9 . 2 2 7 6 . 0< ? o t 7 7 7 \

5 4 9 . 2 2 7 9 . 55 5 9 . 2 2 7 9 . 65 6 9 . 2 2 8 2 . 05 7 9 . 2 2 8 1 . 85 8 9 . 2 2 8 3 . I5 9 9 . 2 2 8 4 . 36 7 4 , L 2 9 4 . 4

7 5 9 . t 3 0 2 . 77 6 4 . I 3 0 4 . 33 4 9 . 5 2 3 3 . 33 5 4 . 5 2 3 4 . 03 7 4 . 5 2 4 t . 23 9 4 . 5 2 4 8 . 44 0 9 . 5 2 5 2 . 83 9 9 . 5 2 4 7 . 74 0 9 . 5 2 5 0 . 64 l 9 . 5 2 5 2 . 74 3 9 . 5 2 5 8 . 04 5 9 . 5 2 6 2 , 74 7 9 . 5 2 6 5 , 64 8 4 . 5 2 6 6 . 9

4 7 4 . 5 2 6 5 . 24 8 4 . 5 2 6 7 . 34 9 9 . 5 2 7 0 . r5 1 9 . 5 2 7 5 . 15 3 9 . 5 2 1 8 . 25 4 9 . 5 2 7 9 . 75 5 9 . 5 2 4 r . 56 2 4 . 5 2 8 9 . 06 3 4 . 5 2 9 0 . 36 4 9 . 5 2 9 1 . 1

5 0 4 . 25 0 9 . 2

Page 5: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

Tab le 5 . Exper imenta l heat capac i t ies fo rKAl,(AlsisoroxoH),

KRIJPKA ET AL.: HEAT CAPACITIES

muscovite, rophyll ite, and his heat capacity values show a largescatter.

T e n p . H e e tc a p e c i t y

K J / ( n o l . K )

T e n p , I l e a tc a p a c i t y

K J / ( n o l . K )

Thermodynamic functions

Our results for anorthite, CaAlrSirOs glass, mus-covite, KAlSisOs glass, grossular, and NaAlSigOeglass between 350 and 1000 K, and for pyrophyllitebetween 350 and 650 K were combined with the low-temperature heat capacity values of Robie el a/.(1976, 1978b) and Westrum et al. (1978), and were fitby least squares to the equation

Cf : A + Bf + CT-2 + DT-t/2 + ET'z

suggested by Haas and Fisher (1976). Only fourterms were used if a fifth term made no significantcontribution to the statistical fit, i.e., no sfgnificantdecrease in the root mean square percent deviation'The curve fitting was accomplished by means of thecomputer program HINc written by D. W. Osborneof Argonne National Laboratory and modified byB. S. Hemingway. The equations were constrained tojoin smoothly with the Cf values between 300 and

Tab le 6 . Exper imenta l heat capac i t ies fo r pyrophy l l i te ,Alrsi.o,o(oH),

T e E p . H e a tc a p a c i t y

T e n p . H e a tc a p a c i t y

. l / ( m o l . K ) J / ( n o 1 . K )

3 3 2 . 53 4 2 . 53 6 2 . 53 8 2 . 63 9 2 . 63 9 7 . 63 7 4 . 63 8 4 . 63 9 4 . 64 0 9 . 6

4 2 9 . 54 4 9 . 64 6 9 . 64 3 9 . 64 4 9 . 64 5 9 , 64 7 4 . 74 8 9 . 75 0 9 . 75 2 9 . 75 2 4 . 7

5 2 9 . 75 3 9 . 75 5 9 . 75 7 9 . 85 9 9 . 86 1 9 . 85 8 4 , 65 9 4 . 65 9 9 . 66 1 9 . 6

3 4 9 . 53 5 4 . 53 6 4 . 33 7 r . 93 7 9 . 93 8 3 . 13 7 0 . 03 7 6 . 73 8 2 . 43 9 0 , 4

4 0 0 . I4 0 9 . 1

4 0 4 . 24 0 7 . 14 1 1 . 64 t 8 . 74 2 3 . O4 2 8 . 84 3 3 . 44 3 5 . 0

4 3 7 . t4 3 9 . 04 4 3 . 04 4 9 . 24 5 3 . 34 5 9 . 74 6 1 . 54 5 4 . 74 5 3 . 84 5 9 . 6

6 3 9 . 66 5 9 . 66 7 9 . 76 7 4 . 76 7 9 . 76 9 9 . 77 1 9 . 77 3 9 . 77 5 9 . 77 7 9 . 7

689 . 7 .6 9 9 . 77 1 9 . 77 3 9 . 77 5 9 . 77 6 9 . 67 7 9 . 67 5 9 . 67 6 9 . 67 8 9 . 68 1 9 . 6

8 2 9 . 68 6 9 . 38 7 9 . 2c o o n

9 0 8 . 99 2 3 . 39 3 3 . r9 4 2 . 89 5 7 . 69 6 7 . 4

4 6 4 . 74 7 I . l4 / r . 6

4 6 9 . 44 6 9 . 34 7 5 . 14 1 9 - t

4 8 3 . 04 8 5 . 34 8 9 . 7

4 7 5 . 34 7 5 . 34 7 8 . 74 8 3 , 74 8 6 . 64 8 9 . 04 9 3 . 84 8 2 . 34 8 2 . 34 8 3 . 34 9 0 . 8

4 9 4 , 94 9 9 . 54 9 5 . 54 9 9 . 55 0 6 . 65 0 7 . 65 0 0 . 25 0 4 . 05 1 3 . 55 2 0 . 6

our measurements to within 12.5 percent up to 1000K. Ferrier (1969) measured Hf - H9"" of syntheticanorthite to 1850 K and CaAIzSizOe glass to 1500 Kwith a precision of approximately 2.0 percent. Fer-rier, unfortunately, presented his data only in theform of graphs and equations.

Westrum et al. (1978) have measured the heat ca-pacity of grossular from Asbestos, Quebec between 5and 600 K by precise adiabatic calorimetry. Theirresults were corrected for deviation of the samplefrom the exact formula CasAlrSirOtr. Our measuredheat capacities on synthetic grossular are in agree-ment with these smoothed, composition-correctedvalues to within an average deviation of 1.0 percentbetween 350 and 600 K.

Kushov ( I 973 ) determined the specific heat of nat=ural pyrophyllite over the range of 298-773 K bythermal analysis. Kushov's heat capacity values werenot used in this study, because his pyrophyllitesample deviates significantly with respect to siliconand aluminum from the ideal composition of py-

3 3 5 . 93 5 5 . 83 7 5 . 73 9 5 . 64 1 5 . 6

4 3 5 . 54 ) ) . +4 7 5 . 34 9 5 . 25 1 5 . 1

3 3 5 . 93 5 5 . 83 7 5 . 73 9 5 . 64 1 5 . 6

4 3 4 . 44 J ) . 4

4 T ) . J

4 9 5 . 25 1 5 . r

3 3 2 . 53 4 2 . 53 6 2 . 6

3 2 0 . 53 2 9 . 63 3 9 . 73 4 7 . 63 5 4 . 3

3 6 2 . 33 7 0 . 23 7 4 . 33 8 4 . 83 9 3 . 3

3 1 7 . I3 2 8 . 63 3 7 . 63 4 7 . 43 5 6 . 7

3 6 5 . r3 7 r . 93 8 0 . 43 8 6 . 63 9 t . 9

3 1 4 . 43 2 1 . 43 3 r . 5

3 8 2 . 6 3 4 I . 03 9 2 . 6 3 4 5 . 83 7 4 . 5 3 3 8 . 93 8 4 . 6 3 4 4 . Ol s t r . d 3 4 8 . 4

4 0 9 . 6 3 5 4 . 94 2 9 . 6 3 6 3 . 44 4 9 . 5 3 7 1 . 94 6 9 . 6 3 8 1 . 44 3 9 . 6 3 6 4 . 9

4 4 9 . 6 3 7 1 . 64 5 9 . 6 3 7 5 . E4 7 4 . 6 3 8 2 . 64 8 9 . 7 3 8 6 . 55 0 9 . 7 3 8 8 . 8

5 2 9 . 7 3 9 2 . 45 2 4 . 7 3 9 5 . 65 2 9 . 7 3 9 7 . 2s 3 s . 7 j * f l . 25 5 9 . 8 4 0 4 . 0

5 7 g . 8 4 0 g . 25 9 9 . 8 4 r 5 . 46 1 9 . 8 4 2 0 . 86 5 9 . 6 4 2 9 . r6 7 9 . 6 4 2 9 . 7

Page 6: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

KRUPKA ET AL.:

370 K obtained by accurate low-temperature adia-batic calorimetry.

For anorthite, CaAlrSirO, glass, KAlSirO, glass,and NaAlSirO, glass, the curve-fitting processes wereextended to 1800 K, 1500 K, 1300 K, and 1200 Krespectively, using the heat content data of White(1919) and Ferrier (1969). White's Hf - Hgr" datawere corrected to the 1973 values of the atomicweights, recalculated to H,f - .Ffir, values, and fittedby least squares to the equation

Hf - H3"" : c + Ar + ] 7 "

- CT-t + 2DTi2 *4 r ,

with the constraints that Hi - H3"":0 at Zqg.f S fand that Cf at 298.15 K is equal to the value given byRobie er al. (1978b). Heat capacity values derivedfrom this equation were added to the heat capacitiesobtained by differential scanning calorimetry.

Ferrier (1969) only gave four-term polynomialequations for Hf - Hg", values of anorthite and

Table 7. Experimental heat capacities for KAlSisO, glass

HEAT CAPACITIES

Table 8a. Experimental heat capacities for synthetic grossular,CarAlrSisO,,

9 l

T e n p . H e a tc a p a c l t y

K J / ( n o 1 . K )

T e E p . H e a t

c a p a c l t y

K J / ( E o l . K )

T e n p . I l e a tc a p a c i t y

K J / ( n o t . K )

T e n p . l l e a tc a p a c l t y

J / ( n o 1 . K )

3 5 0 . 23 7 0 . I3 9 0 . 04 1 0 . 04 1 9 . 94 2 9 . 94 1 9 . 94 3 9 . 94 5 9 . 8

4 8 9 . 74 9 9 . 75 0 9 . 65 0 4 . 75 0 9 . 75 t 9 . 7s 3 9 . 75 5 9 . 6

5 7 9 . 65 8 9 . 65 9 9 . 65 9 4 . 75 9 9 . 76 0 9 . 76 2 9 . 76 4 9 . 66 5 9 . 6

3 7 1 . 13 7 9 . 93 9 2 . 64 0 1 . 04 0 3 . 84 0 8 . 74 0 1 . 84 r 0 . 04 r 9 . 6

4 2 4 . 94 2 4 . 44 2 9 . 74 3 0 . 84 3 4 . 44 3 8 . 84 4 0 . 54 4 6 . 94 5 0 . 7

4 5 2 . 74 5 2 . 94 ) 1 . o

4 5 6 . 7c ) d . )

4 5 7 . 94 5 9 . 94 6 2 . 44 6 2 . L

6 6 9 . 6 4 6 4 . 06 7 9 . 6 4 6 7 . 96 1 9 . 8 4 5 3 . 66 2 9 . 8 4 5 4 . 56 4 9 . 7 4 5 8 . 36 6 9 . 7 4 6 0 . 46 8 9 . 7 4 6 2 . 36 9 9 . 7 4 6 2 . 87 0 9 . 7 4 6 5 . 4

7 5 9 . 7 4 6 8 . 07 6 9 . 7 4 6 3 . 47 8 9 . 6 4 6 5 . 78 1 9 . 6 4 7 2 . 98 2 9 . 6 4 7 7 . 68 6 9 . 3 4 9 4 . 88 7 9 . 2 4 9 L . 48 9 9 . 0 4 9 5 . 79 0 8 . 9 4 9 7 . 2

9 1 8 . 8 4 9 2 . 19 0 3 . 7 4 8 0 . r9 1 8 . 4 4 8 0 . 59 3 8 . 0 4 8 L . 29 4 7 . 8 4 8 5 . 49 5 2 . 7 4 8 2 . Z9 6 2 . 5 4 8 1 , 89 7 7 . 2 4 8 9 . 79 8 7 . r 4 8 5 . 6

CaAlrSirO, glass which reportedly fit his data to *2percent. Values calculated from his equations wereincluded with the data sets from our measurementsand those of White for the final curve fitting.

Our results for synthetic grossular and naturalgrossular from Asbestos, Quebec, were separatelycombined with low-temperature heat capacity valuesof Westrum et al. (1978) and fitted by least squares tothe general Cf equation. Because of the greater accu-racy of the data by Westrum et al. (1978), their Cfvalues were weighted by a factor of three in the curve-fitting process. The equation for the natural grossularwas not used for the derivation of the thermodynamicfunctions because the sample lacked chemical charac-terization.

The final Cf equations for anorthite, CaAl2Si2O8glass, muscovite, pyrophyllite, KAlSisos glass,grossular, and NaAlSieO, glass are listed in Table 10.The errors in the derived thermodynamic functionsare estimated to be t0.7 percent in Cf and (Hf -Hg"")/T, and a0.3 percent in Sf and (Gf - H9"")/Tbetween 300 and 1000 K. Tabulated values of thethermodynamic functions Cf, (Hf - H3")/7, 53,

3 5 0 . 23 7 0 . r3 9 0 . 04 r 0 . 04 1 9 . 94 2 9 . 94 1 9 . 94 3 9 . 94 5 9 . 84 7 9 . 8

4 8 9 . 84 9 9 . 8s 0 9 . l5 0 4 . 75 0 9 . 75 1 9 . 75 3 9 . 75 5 9 . 65 7 9 . 65 8 9 . 6

5 9 9 . 65 9 4 . 85 9 9 . 76 0 9 . 76 2 9 . 76 4 9 . 76 5 9 . 66 t 4 . h

6 7 9 . 66 t 9 . 76 2 9 . 7

2 2 8 . 6

2 4 8 . 72 5 1 . 02 5 3 . 42 4 9 . 6z ) 4 . 6

2 5 9 . 32 6 4 . r

2 6 4 . 8

2 6 9 . 42 6 7 . 2

2 6 9 . 02 7 2 . 82 t 5 . 02 7 7 . 62 7 8 . 0

2 8 2 . 52 8 3 . 72 8 4 . 02 8 5 . 02 8 6 . 82 8 8 . 12 8 9 . 02 9 1 . 22 9 1 . 52 8 6 . 82 9 0 . 02 9 3 . 8

6 6 9 . 76 8 9 . 76 9 9 . 77 0 9 . 76 8 9 . 86 9 9 . 87 1 9 . 97 3 9 . 97 5 9 . 97 7 0 . O

7 8 0 . 07 5 9 . 97 7 0 . 07 9 0 . 08 1 0 . 08 2 0 . 08 3 0 . 18 6 4 . 78 7 4 . 68 8 8 . 0

9 0 8 . 99 r 8 . 78 9 9 . r9 0 8 . 99 2 8 . 69 3 8 . 49 4 8 . 29 2 3 . 79 3 3 . 59 4 8 . 29 5 8 . 09 6 7 . 9

2 9 8 . 42 9 7 . 72 9 8 . 52 9 5 . 82 9 6 . 62 9 7 . 42 9 9 . 43 0 2 . 33 0 4 . 4

3 0 5 . 33 0 r . 73 0 2 . 93 0 4 . 33 0 5 . 73 0 6 . 13 0 6 . 13 0 6 . 73 0 7 . 93 1 0 . 3

3 0 9 . 63 0 8 . 63 0 7 . 9J U / . O

3 0 9 . 43 1 0 . 83 1 2 . 4J I J . )

J I J . O

3 1 3 . 53 1 4 . 0

Page 7: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

92 KRUPKA ET AL, HEAT CAPACITIES

T e n p . H e a tc a p a c i E y

K J / ( n o l . K )

T e n p . H e a tc a p a c i t y

K J / ( m o l . K )

Table 8b. Experimental heat capacities for grossular from Jeffreymine, Asbestos, Quebec

on a knowledge of the entropies and heat capacities(as a function of temperature) for all the phases in-volved in the equil ibrium. For a reaction l ike thedehydration of muscovite or pyrophyll ite, in whichnone of the phases is a solid solution, a value of theenthafpy of reaction at 298.15 K, LHypsB, can becalculated from each equil ibrium bracket using therelation

-LH| , , " " : fA [ (Cf - H|" ) /n+ I .PLVSdP

* RZln lZ,H,O) ( l )

where A Zf is the difference in the molar volumes ofthe solid phases in the reaction. For the pressurerange over which equil ibrium measurements exist forthe dehydration of muscovite and pyrophyll ite, theapproximation can be made that

I,,LVfdP = (P - l) LWsa

Table 9 Experimental heat capacities for NaAlSirOr glass

T e m p . H e a tc a p a c i t y

K J / ( n o l . K )

T e n p . H e a tc a p a c i t y

K J / ( n o l , K )

3 4 9 . 1? q o I

3 6 9 . r3 7 9 . 13 8 9 . l? o o I

4 0 9 . r4 1 9 . r4 2 9 . 15 0 4 . 2

5 0 9 . 25 1 9 . 2q r o 2q ? o ,

5 4 9 . 25 5 9 . 25 6 9 . 25 7 9 . 25 8 9 . 25 9 9 . 2

5 9 4 . 05 9 9 . 06 0 9 . 06 1 9 . 06 2 9 . O6 3 9 . 06 4 9 . 06 5 9 . 06 6 9 . 06 7 9 . 0

3 5 4 . 93 6 1 . 13 6 5 . 13 6 9 . 2J T ) . 1

3 7 8 . 73 8 4 . 03 8 8 , 53 9 1 . 84 2 7 . 9

4 2 2 . 44 2 6 . 74 2 9 . 34 3 2 . 44 3 4 . 64 3 6 . 24 3 7 . 64 4 0 . 94 4 4 . 1

4 4 2 . 2

4 4 8 . 24 5 0 . 74 5 3 . 04 5 4 . 94 5 6 . 04 5 6 . 84 5 8 . 54 5 7 . 9

3 5 8 . 53 6 1 . 03 7 1 . 43 8 3 . r3 8 7 , 33 8 4 . r3 8 8 . 63 9 3 . 54 0 2 . 24 0 8 . 04 7 4 . 34 t 6 . 44 7 2 . 4

4 8 4 . 54 9 9 . 55 r 9 . 55 3 9 . 55 4 9 . 55 5 9 . 55 4 9 . 55 5 9 . 55 7 9 . 55 9 9 . 5

6 t 4 . 56 2 4 . 56 3 4 . 56 2 4 . 56 3 4 . 56 4 9 . 56 6 9 . 56 8 9 . 46 9 9 . 47 0 9 . 4

6 9 9 . 27 0 9 . 27 2 9 . 27 4 9 . 27 6 9 . 27 7 4 . 27 6 3 . 67 1 4 . 67 8 9 . 68 0 9 . 6

8 2 9 . 78 3 9 . 79 5 9 . 69 6 9 . 69 7 9 . 69 8 9 . 6o o o q

9 0 3 . 49 1 8 . 19 2 7 . 99 3 7 . 79 4 7 . 59 ) t . 5

4 1 5 . 14 1 8 . 44 2 2 , 74 2 9 . 94 3 2 . 94 3 5 . 74 3 0 . 94 3 3 . 04 3 7 . O4 4 1 . 3

4 4 4 . 64 4 5 . 84 4 8 . 34 4 3 . 24 4 5 . 44 4 8 . 74 5 1 . 64 5 6 . 04 5 7 . 74 5 9 . 5

4 6 r . 54 6 0 . 74 6 4 . r4 6 1 . 84 7 0 . 64 6 7 . 54 6 8 . 34 6 9 . 74 7 3 . 7

4 7 6 . r4 7 6 . 34 9 3 . 34 9 5 . 04 8 9 . 54 9 5 . 54 9 8 . 04 8 8 . 74 9 7 . 34 9 2 . 34 9 3 . 14 9 5 . 84 9 4 . 9

3 5 0 . 23 7 0 . 13 9 0 . 04 1 0 . 04 t 9 . 94 2 9 . 94 r 9 . 94 3 9 . 94 5 9 . 84 7 9 . 8

4 8 9 . 84 9 9 , 85 0 9 . 75 0 4 . 75 0 9 . 7q l o 7

) J t . I

5 5 9 . 6) t i . o

5 8 9 . 6

5 9 9 . 65 9 4 . 85 9 9 . 86 0 9 . 76 2 9 . 16 4 9 . 16 5 9 . 6o / 4 . o

6 7 9 . 66 7 4 : 6

6 7 9 . 66 8 9 . 67 0 9 . 67 2 9 . 67 4 9 . 6

2 2 8 . 32 3 6 . r2 4 3 . 32 4 9 . 02 5 1 . 42 5 3 . 92 4 9 . 02 5 4 . r? s e q

2 6 3 . 3

2 6 4 . 0z o o . o

2 6 8 . 52 6 7 . r2 6 7 . 62 6 8 . 82 7 2 . 52 7 4 . 52 7 6 . 92 7 9 . 3

2 8 1 . 72 8 2 . 92 8 3 . 32 8 4 . 22 8 6 , I2 8 6 . 6r a o ?

2 9 0 . 52 9 0 . 92 8 6 . r

2 9 4 . 32 9 7 . 42 9 9 . 33 0 2 . 93 0 5 . 9

7 5 9 . 6 3 0 5 . 37 6 4 . 6 3 0 5 . 36 1 9 . 1 2 8 9 . 86 2 9 . 7 2 9 1 . r6 4 9 . 7 2 9 4 . 36 6 9 . 7 2 9 6 . 66 8 9 . 7 2 9 8 . 26 9 9 . 7 2 9 9 . 97 0 9 . 7 3 0 1 . 96 8 9 . 8 2 9 7 . 6

3 4 9 . 83 5 4 . 7

3 9 4 . 74 0 9 . 6

4 0 9 . 54 r 9 . 54 3 9 . 54 5 9 . 54 7 9 . 54 8 4 . 5 ,4 t 4 - )

6 9 9 . 87 1 9 . 97 3 9 . 97 6 0 . 07 7 0 . 07 8 0 . 07 6 0 . 07 7 0 . 08 1 0 , 08 2 0 . r

8 3 0 . I8 6 4 . 78 7 4 . 68 8 9 . 39 0 8 . 99 r 8 , 88 9 9 . 09 0 8 . 99 2 8 . 69 3 8 . 9

9 4 8 . 2o t 1 7

9 3 3 . 59 4 8 . 29 5 8 . 09 6 7 . 9

2 9 8 . 92 9 8 . 83 0 0 . 53 0 4 , 33 0 6 . 93 0 7 . 13 0 3 . 53 0 4 . 23 0 9 . 23 1 0 . 2

3 1 0 . 91 l ? c

3 r 3 . 1J L 4 . '

3 r 6 . 23 7 7 . 4) \ 4 . I

J I I . J

3 1 9 . 53 1 8 . 2

3 1 8 . 63 1 7 . 13 1 8 . 63 2 0 . 13 2 0 . 73 2 1 . 4

and (Gf - H3,,)/T derived from the Cf equations inTable l0 are given in Robie et al. (1978a).

Thirdlaw derivation of AH?,2s8 and AGl,z'. for mus-covite, pyrophyllite, and grossular

It has been shown (for example, Darken andGurry, 1953; Lewis and Randall , 1961, p. 177; Robie,1965; Stull and Prophet,1971, p. 5) that the so-calledthird-law method provides a rigorous means of ex-tracting values of the enthalpy of reaction at298.15K, A1l1,2e8, from equil ibrium measurements. It alsosimultaneously furnishes a critical test of the accu-racy of the equil ibrium data. This approach is based

Page 8: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

KRUPKA ET AL

The value of A,Hl,"r" calculated by this method isindependent of the enthalpies of formation and theirassociated errors for the reacting phases. The third-law method uses the difference of Gibbs free-energyfunctions, At(Gf - Hg"r)/Tf, which is derived solelyfrom heat capacity data, usually the most accurate ofthe data used in a thermodynamic calculation. Thedifference of Gibbs free-energy functions, which aregiven in most tabulations of thermodynamic proper-ties, is a continuous, monotonically changing func-tion of temperature and varies nearly l inearly at hightemperatures. Figure 4 shows the variation of thedifferences of the Gibbs free-energy functions withrespect to temperature for two mineral reactions dis-cussed later. Values of the Gibbs free-energy functioncan be easily interpolated, which results in an accu-rate integration of the entropy contribution of a reac-t ron.

Values of the enthalpy of formation, LHo,.r"r, arederived for muscovite, pyrophyll ite, and grossular,based on: (1) recent equil ibrium studies, (2) values ofthe Gibbs energy function, (G+ - H|,J/ 7, calculated

130

120

0

/

I

I

lt/

Coiundum, !nsb cryild

0 r00 200 300 ifi**J:t,, *;t:

700 E00 e00 1000

Fig. l . Exper imental molar heatcapaci t ies, Cp, ofcorundum (a-AlrOr) and periclase (MgO) obtained by differential scanningcalor imetry (DSC). For corundum, the sol id curve is f rom thevalues given by Di tmars and Douglas (1971). For per ic lase, thesol id curve is f rom the work of Victor and Douglas (1963) above273.15 K, and Barron et a l (1959) below 273.15 K.

HEAT CAPACITIES

150

5 r o

= r 0

t50

50

IEMPERATURE IN ItLVINS

Fig. 2. Exper imental molar heat capaci t ies, CB, of muscovi te

[KAl , (AlSi .O,o)(OH), ] , pyrophyl l i te [Al ,SinO,o(OH), ] , andKAlSi .O, g lass f rom Tables 5, 6 and 7, respect ively, obtained byDSC Above 298 K, the solid curves are generated from the C!equat ions given for muscovi te, pyrophyl l i te, and KAlSi .O, g lass inTable 10. Below 298 K, the curves are from the data of Robie el a/( 1976) for muscovi te and pyrophyl l i te, and f rom the data of Robieet al (1978b) for KAISi'O' glass.

0 r00 200 r00 rll*lr,*rJi'* *r,J,',i,

r00 800

Fig. 3. Experimental molar heat capacities, C?, of grossular(CarAlrSirO,r) from Jeffrey mine, Asbestos, Quebec, and ofNaAlSisOe glass f rom Table 9 obtained by DSC. For grossular , thesolid curve is the least-squares fit of the results of Westrum e, a/.(1978) and the exper imental data l is ted in Table 88. ForNaAISirOe glass, the solid curve above 298 K is generated from theC! equation given for NaAISLO, glass in Table 10. The solid curvebelow 298 K is from the data of Robie et al. (1978b) on the samesample of NaAlSirO, glass.

- l m

dlfr(f

,n

r/t

r NaArS, r ( G a s s0

//

Page 9: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

94

Table 10.

KRUPKA ET AL. HEAT CAPACITIES

Molar heat capacity equations obtained by a leaslsquares fit to the experimental CE data for anorthite, CaAl,SirO" glass,muscovite, pyrophyllite, KAISiBOB glass, grossular, and NaAlSi3Os glass

ConpoundTemperature Aver. t

range deviationof equation between data

and equation

Equations for ci in J,z(moI.K)

Anorthite

caAl2S i20g

CaAI2Si2OS 91ass

Muscovite (2M1)KA12 (A1s i3012) (OH)

2

Pyrophyll iteA12Si40rO (OH)

2

KAISi308 glass

Grossular*c"3o l2S i3o12

Grossu la r * *(Asbestos, Quebec)

NaAIS i3OS 91ass

(298 - 1800 K)

(298 - rsoo K)

(298 - 1000 K)

(298 - 800 K)

(298 - 1300 K)

(298 - 1200 K)

(298 - 1000 K)

(298 - 1200 K)

o . 7

o . 4

0 . 3

o . 4

1 . 0

0 . 6

n ?

c$ = sre.e - o.o9249r -

c f l = s l s . z + 0 .03197T -

c F = 9 L 7 . 7 - o . 0 8 1 1 1 r

cf i = e lg. l - 0.06412r -

c l = 629 .5 - 0 . I 084 r +

c i *= r 0 : : . : - o . 7599T +

c i * * = 6 3 0 . 4 + O . 1 3 O O T

c i = ssa .a - o . 3891 r +

r.4oaxto6r-2 - nsrer-L + 4.rBBxro-5T2

2.815x10fo-2 - ,+ugr-\

+ 2.834x106r-2 - IOSAST-L

egozr-\ - 5.99zxro5r2

z.ag6xLo6,r-2 - rzto*-\ + r.928x10-5T2

g.ttgxto6r-2 - zozazr-b + 2.66gxLo-4r2

- 3.6g5xto6r-2 - eslqr-\

5.59axto6r-2 - ttezor-L + L.4z6xlo-4t2

* ci equation used to derive the themodynmic functions l isted in

** The C; data for the grossular sanple from Asbestos, euebec, were

equation was used onfy to derive the smooth curve for grossular

Tab le 15 .

not corrected for

i h F i d ' r r 6 q

conposition. The Ci

from precise heat capacity measurements, and (3)previously-published values for the enthalpies of for-mation at 298.15 K of the ancillary reactants. TheGibbs energy functions of muscovite, pyrophyllite,grossular, and anorthite are derived from the Cfequations obtained in this study; those of corundumare from Ditmars and Douglas (1971); those of wol-lastonite, quartz, andalusite, and steam are tabulatedin Robie et al. (1978a); and those of high sanidine arefrom values given by Hemingway, Krupka and Robie(unpublished data, 1976). Values for the fugacity ofwater, J(T,HrO), were taken from Burnham et al.(1969). The molar volumes, VBrr, of the solid phasesat 298.15 K and I bar pressure were taken fromseveral sources. We have used 22.688t0.001 cm3,25.575+0.007 cm3, and 51.53t0.04 cms as the molarvolumes for low quartz, corundum, and andalusite,respectively, taken from the compilation of Robie elal. (1967). For the molar volume of 2M1 muscovite,we used 140.73+0.20 cm3, which is the average of thevolumes obtained from the cell parameters of Chat-terjee and Johannes (1974), Robie et al. (1976), andGiiven (1971). For pyrophyllite, we averaged theunit-cell volume data of Wardle and Brindley (1972)

and Taylor and Bell (1971) to obtain a molar volumeof 127.82+0.29 cml. For high sanidine, we used amolar volume of 108.91t0.04 cm3, which is an aver-age calculated from the unit-cell volumes of Open-shaw e, al. (1976), Stewart and Wright (1974\, andChatterjee and Johannes (1974).

Chatterjee and Johannes (1974) investigated thereactions

muscovite = high sanidine

* corundum + steam (2)

high sanidine

* andalusite f steam (3)

Reaction (2) was studied in the PHrO range of 1000to 8000 bars, at temperatures between 873 and 1073K. They gave the uncertainties for the experimentalpressures and temperatures obtained for reaction (2)as tl00 bars and 16 K at PH,O < 8000 bars, andtl00 bars and +10 K at PH,O : 8000 bars. Reac-tion (3) was studied in the PH,O range of 500 to 5000bars, at temperatures between 793 and 973 K. For

and

muscovite * quartz a

Page 10: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

KRUPKA ET AL.' HEAT CAPACITIES 95

=Y 163

. R

t . " .

I

Dehydralion of muscovite

Dehydra t ion oJ pyrophy l l r te

200 400 600 800 1000 1200

TEIIIPERATURE. IN KELVINS

Fig. 4. Plot of the difference of the Gibbs free-energy functions,-A(C? - H"""")/71, with respect to temperature for two reactionsstudied in this paper. The triangles represent the dehydrationreaction muscovite = high sanidine * corundum * HrO. Thesquares represent the dehydration reaction pyrophyllite eandalusite + 3 quartz + HrO.

reaction (3), the uncertainties are given as 450 barsand +6 K at P < 2000 bars, and f 100 bars and +6 Kat P > 2000 bars. Our calculations of the enthalpiesof reactions (2) and (3) at 298.15 K, based on theequilibrium results of Chatterjee and Johannes(1974), are shown in Tables l1 and 12 respectively.The uncertainties for the average values of LHo,.2s8represent two standard errors (twice the standarddeviation of the mean).

The calculated values of LHo,,zs8, especially for re-action (2), show a drift with temperature and pres-sure. Calculations by Zen (1977), using the sameexperimental data, show a similar variation in thevalues of AG?,zgs of muscovite calculated by themethod described by Fisher and Zen (1971). Thissuggests an error with either the model chosen for thethird-law calculation and/or the experimental data.Chatterjee and Johannes (1974, p. 89) give equationsfor the equilibrium constants for reactions (2) and (3)obtained by a linear least-squares fit to their experi-mental brackets. These equations may be rewritten in

terms of LG',,, and then differentiated with respect totemperature to obtain the entropy change for thereaction, AS?,r using the relation

QLGI /a7)p : - AS?, r

The value calculated from Chatterjee and Johannes'equations for AS?,,ooo of reaction (2) is fta.2 J/K andfor AS?,,00 of reaction (3) is 159.6 J/K. Values ofAS?,r can also be calculated using the value for Sor*of sanidine given by Chatterjee and Johannes and theauxiliary entropy data from the same source used byChatterjee and Johannes, i.e. Robie and Waldbaum(1968). From these data, AS?,rooo of reaction (2) is155.4 J/K and AS?,,00 of reaction (3) is 155.0 J/K.However, Hemingway and Robie (1977) point outthat Chatterjee and Johannes used an incorrect valuefor S?r, of sanidine. The value of AS?,rooo for reaction(2) is 137.2 J/K and AS?,'oo for reaction (3) is 139.0J/K, based on: (1) ,Sor* values for sanidine fromOpenshaw et al. (1976) and for muscovite from Robieet al. (1976); (2) Si values for sanidine from Heming-way, Krupka and Robie (unpublished data, 1976)and for muscovite from this study; and (3) S?ge andSi values for andalusite, corundum, quartz, andsteam from Robie e/ al. (1978a). These values arevery different from those calculated from the equa-tions of the equilibrium constants.

The reason for these discrepancies is not clear. Themodel chosen for the third-law calculations considers

Table ll. Calculation of AH"..r"" for reaction (2)*, muscovite ehigh sanidine * corundum * HrO

fc;-Hie8)l (P-r-)^vies rr,n.o ro'rr,n^o ^"i,zgs

u [ - - - - T - - ] _ _ - . - - z . z

K bars J/K J/K bars J/K J

1 5 5

873 1000883 1000

913 2000933 2000

943 3000953 3000

953 4000983 4000

993 50001003 5000

1013 60001023 6000

1053 80001073 8000

-158 .4-158 .2

-L57 .6-r57 .2

-157 .0-156 .8

- r ) o . b-L56.2

- 1 5 6 . 0-155 .8

- 1 5 5 . 6- r 5 f . c

- r54 .8-L54 ,4

-0 .7336 631.0-0 .7252 646.0

-L.404 LLTL-L.373 1230

-2 .OL7

- 2 , 6 6 2- 2 . 6 0 8

- 3 . 2 2 1- 3 , L 9 5

-3 .796- 3 . 7 5 9

-4 .870 9813-4 .779 10096

53.61 92L2053,80 92830

58.75 9153059,L6 92750

62.59 9095062.79 91510

65,80 9000065.16 91070

68,89 8970069,O4 90220

7r .57 889707L.72 89450

76.42 8766076.66 88540

18591903

27362456

39644040

54745576

AveraCe AIt;,298 = 90520 t 840 J

*The experinental brackets fo! reactl.on (2) are froE the data

of Chatter jee ad Johanes (1974).

Page 11: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

t " ^ ft i-*isal (P-r)^vie8 rr,rr"o n'rr,"^o ^"l,zgs

"L - - r J rK bars J/K J/K bars J/K J

KRUPKA ET AL., '

Table 12. Calculation of LH",.2" for reaction (3)*, muscovite *quartz a high sanidine * andalusite * H,O

HEAT CAPACITIES

different muscovite polytypes is a function of temper-ature, pressure, and time. Chatterjee and Johannesused X-ray diffraction to identify the phases in therun products and to establish the direction of thereaction. It would be almost impossible to identify amuscovite polytype other than 2M, muscovite if itcomprises only l0 or 20 percent of the total amountof muscovite in an X-ray diffractogram which alsocontains all of the phases in reaction (2) or (3).

If one considers muscovite as an ordered phase (forexample, 3T muscovite) and subtracts out the config-urational-entropy contribution for the AllSi dis-order, the calculated LHor,zse values for reactions (2)and (3) show little or no variation with respect totemperature. The slopes of the calculated reactioncurves are then consistent with the experimental re-sults. However, these LHo,,r" values result in twodifferent LHor.r"" values for muscovite, which areboth considerably more negative than the value givenby Hemingway and Robie (1977) for a 2M' mus-covite. Until a detailed structure analysis is made onthe final synthetic muscovite produced in the equilib-rium investigations, we submit that the only logicalmodel to use in the thermodynamic calculation is thatof the AllSi-disordered 2M' muscovite.

The mean value of AHo,,", for reaction (3) (Tablel2), 88330+850 J, was combined with the values ofA,Ifs,ze for quartz, andalusite, and steam from Robieet al. (l '978a), and for sanidine (Z : 0.12+0.02) fromHemingway and Robie (1977) to yield a value of-5966500+4040 J/mol for the L,Ho1.ze of muscovitefrom the elements. Hemingway and Robie obtained avalue of -5976700+3240 J/mol for the LH"1.2"s ofmuscovite, from a recalculation of the solution calo-rimetry of Barany (1964), based on their new mea-surements of the enthalpies of formation of gibbsite,and the heat of solution of quartz.

The mean of the calorimetric value of LHor.r"for muscovite (Hemingway and Robie, 1977) andthe AH].2rs value calculated from reaction (3) is-5971600+5180 J/mol. We believe that this repre-sents the best value now available for AH].rr. ofdisordered 2M' muscovite. The equilibrium curvesfor reactions (2) and (3), calculated from this value ofLHo,."" and the high-temperature values of the Gibbsenergy functions (Figs. 5 and 6), are in rather pooragreement with the experimental data of Chatterjeeand Johannes (1974) for reaction (2) and in fairagreement with their data for reaction (3). Montoyaand Hemley (1975) give a temperature of 873 K at1000 bars for the breakdown of 2M' muscovite in thepresence of quartz [reaction (3)]. Our calculated equi-

10151062

16301724

255L26L2

37283849

793 500833 500

823 1000843 1000

863 2000878 2000

893 3000912 3000

933 4000943 4000

963 5000978 5000

-160.2-759 .4

- r 5 9 . 6

- 1 5 8 . 8- 1 5 8 . 4

-158 .1

- 1 s 7 . 3- r 5 7 . 1

- 1 5 6 . 6- a ) o . J

-o.1924-0 .1831

-0 .3711-o,3623

- 0 . 7 0 8 1-0 .6960

-1 .O27-1 .004

-1 . 310-L.296

-L .587- r .562

340.0 48 .47 887s0369.0 49 . rs 91990

550.5 s2 .47 88470585.0 s2 .98 89850

57.56 8798057.93 88820

6r .50 871806t.96 88330

6s.22 8713065.42 87680

68.38 8648068.64 87260

Average AIt;,298 = 88330 t 850 J

*The experiEental brackets for react lon (3) are froo the data

of Chatter jee dd Johannes (1974).

muscovite and sanidine to be completely disorderedwith respect to AllSi. The crystal structure determi-nations for 2M, muscovite by Giiven (1971) using X-ray diffraction and by Rothbauer (1971) using neu-tron diffraction indicate complete disorder of the Aland Si atoms in the 2M, muscovite structure. Becausethe AllSi disorder might be an artifact of the symme-try restrictions used in the data reduction by Giiven(1971), Guggenheim and Bailey (1975) re-refined the2M, muscovite structure in the subgroup symmetryCc using Rothbauer's intensity data. Their subgrouprefinement also shows an Al/Si disorder in the 2M'muscovite structure. Without structural data on themuscovite produced by Chatterjee and Johannes intheir run products, we had to assume that their mus-covite is a 2M' muscovite with complete AllSi dis-order.

Chatterjee and Johannes also report the cell dimen-sions and the long-range order parameter Z (Thomp-son, 1969; Hovis, 1974) for four sanidines producedby reaction (2). The narrow range of these valuessuggests the sanidines are completely disordered withrespect to Al/Si over the entire range of their experi-ments.

The experimental run times used by Chatterjee andJohannes decrease significantly as the temperaturesand pressures of their experiments increase. Experi-mental run times, however, can be an important fac-tor in interpreting the final results as recently shownin a study on ferrierites by Cormier and Sand (1976).Velde (1965) has also shown that the stability of the

Page 12: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

? a

0 580 90 100

. i lo 120 130 l4o

IO','T lN KELVINS '

Fig. 5. Plot of loglT ' ,HrO)us.7 ' for the react ion muscovire =high sanidine * corundum + HrO. The equi l ibr ium curve wascalculated from the AH?.r", of muscovite as determined in thisstudy The stippled area represents the uncertainty contributed bythe thermodynamic funct ions in the calculat ion of the curve. Theexperimental brackets are from the data of Chatterjee andJohannes ( 1974).

l ibrium curve for reaction (3) (Fig. 6) is in agreementwi th th is value.

The mean value of LHor,n" of muscovite was com-bined with the values for the entropies of muscovite(Table 12) and its constituent elements (Robie er a/.,1978a) to obta in -5595500+5190 J/mol for theGibbs free energy of formation, LGoy.2ss, for dis-ordered 2M, muscovite. The range of LGo,.rn" valuesfor muscovite calculated by Zen (1977) from the ex-perimental data of Chatterjee and Johannes agreevery well with the value obtained in this study.Zen's L,G],2s8 values for muscovite vary between-5597500+4600 J/mol and -5600300+5900 J/mol.

Hemley (1967), Kerrick (1968), and Haas andHoldaway (1913) have studied the equil ibrium

pyrophyll ite = andalusite I 3 quartz * steam (4)

at temperatures between 638 and 736 K and in thePH,O range of 1000 to 7000 bars. Values of the

HEAT CAPACITIES

Gibbs energy functions for pyrophyll ite from thisstudy and for andalusite, quartz, and steam (Robie elal., 1978a) were combined with the experimental datain a third-law calculation to obtain LHo,,"n, for thereaction (Table l3). Two distinct sets of L,H",,rrval-ues can be calculated from the three sets of experi-mental data. Neither set of LHo,.zss values shows anysignificant variation with temperature. The averagevalue of LHo,,r, derived from the data of Hemley(1967) and Kerrick ( 1968) is 79670i I 100 J, whereasthat calculated from results of Haas and Holdaway(1973)is77440t370 J. The set ofexperimental brack-ets from Hemley and Kerrick and the set from Haasand Holdaway are each internally consistent As Ker-rick and Haas and Holdaway used the same experi-mental technique, we have no basis for favoring ei-ther set of experimental values. Equil ibrium curvesfor reaction (4) calculated from each average value ofLHo,.zge we determined are shown in Figure 7.

Fig. 6. Plot of logl I ,HrO)us.7- ' for the react ion muscovi te *quartz = high sanidine * andalusi te + H,O. The equi l ibr iumcurve was calculated from the Al1?.r* of muscovite determined inthis study. The stippled area represents the uncertainty contributedby the thermodynamic functions in the calculation of the curveThe experimental brackets are from the data of Chatterjee andJohannes (1974). The solid square represents the experimentalpoint taken f rom Montoya and Hemley (1975).

TEIV]PERATURE, IN DEGRI€S CTLSIUS

roo 600

KRUPKA ET AL.

500

-9

\ \ ! I\4uscovile

\*

\

Hrgh sanrdrne+corundum+Hzo

- Chat ler iee and Johannes (19/4)

l-{ Chattdiee ond .lohannes (1971)

I itontDya and Hemle, (1975)

Page 13: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

KRUPKA ET AL.: HEAT CAPACITIES

t t ^["i-"ig-dl

(P-1)^v;e8 rr,n"0 Rl'rr,u"o ^Ei,zes. L T I T .

K bars J lK J/K bers J/K J

r99 .5 44 .O3 78300252,8 46 .00 80490

358.0 48 .90 79230440.3 50 ,61 81380

Table 13. Calculat ion of LH", . " , for react ion (4) , pyrophyl l i te =andalusite * 3 quartz * HrO

we calculate LHo,,"n" equal to 54300+1800 J/mol forthe enthalpy change for reaction (5). This value, com-bined with the enthalpies of formation at 298.15 Kfor woflastonite and quartz (Robie et al.,1978a) andanorthite (Hemingway and Robie, 1977) yields-6657100+4720 J/mol for L,H],n" of grossular.From the entropies and molar volumes of the phasesat 800 K (Table l4), the init ial slope of the equil ib-rium curve (i.e., at I bar pressure) was calculatedusing the relation

dP/dT: AS?oolAZ?oo

: (68 .5 J /mo l 'K ) / (32 .1cm3) : 2 l t 4ba r /K

This value agrees, within the combined experimentaluncertainty, with the l ine drawn through the experi-mental P-T data,26t2bar/K. Combining this resultwith the entropies of the elements, wollastonite, and

10.4, IN KELVINS '

Fig. 7. Plot of log/(Z,H,O)us 7 ' for the reaction pyrophyllite= andalusite f 3 quartz + HrO. The equilibrium curve at thelower temperatures was calculated from the average A.F1'..r"" for thedehydration of pyrophyllite determined from the experimentaldata of Haas and Holdaway (1973). The other equi l ibr ium curvewas calculated from the average Af1',.r* for the same reactionusing the data of Hemley (1967; personal communicat ion, 1976)and Kerr ick (1968)

1 0 0 0 * - L 6 5 . 4 4 - L 3 2 21000* -165.23 -L.263

1800** -165.23 -2 .2741800** -L65 .O2 -2 .L16

638568

668698

6 8 8718

643665

668678

687697

728736

3900**3900**

7784079870

- 1 6 5 . 0 9 - 4 . 7 8 5- 1 6 4 . 8 8 - 4 . 5 8 5

9 1 9 . 0 5 6 . 7 31 0 9 8 . 3 5 8 . 2 2

Average AH;.298 = 79520 ! IO9O J

24OO*** -L65.4L -3 .15024OO*** -L55 .25 _3 .046

3500*** -165 .23 -4 ,4233500*** _165.16 _4 .358

4 8 0 0 * * * - 1 6 5 . 1 0 - 5 . 8 9 84800*** -165.03 -5 .814

7000*** -164 . 81 -8 , I187000*** -164.75 _8 .030

3 7 6 . 5 4 9 . 3 14 4 6 . 6 5 0 . 7 3

6 9 4 . 8 5 4 . 4 L7 4 4 . 5 5 4 . 9 8

5 9 . 3 0s9 .80

6 7 , 7 r6 7 . 4 2

r2521329

32033323

7668078180

7694O77660

767407 7400

770407 7540

A v e r a g e A H o , 2 9 g = 7 7 2 8 0 ! 3 6 0

*Experlmental bracket Is a revised value by I lenley (personalc o m u D . , 1 9 7 6 ) f o r r h a r g i v e n t n H e n l e y ( 1 9 6 7 ) .

**Experimental blackets from Kerr ick (1968).

***Experinental brackets from l laas and Holdaway (1973).

The mean of the two average values of A//o",rn, forreact ion (4) is 78400t1850 J. We bel ieve that th isrepresents the best value for LHo,,zge for reaction (4)and is a fair representation of the state of the art ofphase equil ibrium measurements for pyrophyll ite.Combining this value with the AHo 7,rn" values adoptedby Robie et al. (1978a) for quartz, andalusite, andsteam, the enthalpy of format ion of pyrophyl l i tef rom the e lements is -5639800+3950 J/mol . Theenthalpy of formation of pyrophyll ite was combinedwith the entropies for pyrophyll ite and its constituentefements (Robie et al., 1978a) to obtain a value of-526900+3960 J/mol for AG"1'"" of pyrophyll ite.

Newton ( 1966), Hays ( 1967), Boet tcher ( 1970), andWindom and Boettcher (1976) have determined theequil ibrium curve shown in Figure 8 for the reaction

grossular * quar tza anorth i te * 2wol lastoni te (5)

at temperatures between 875 and 1575 K, and in thepressure range of 2000 to 19500 bars. Extension ofthe equil ibrium curve to a pressure ofone bar passesthrough 800+15 K. From this extrapolation and therelation

LG", . r : LHo, . r " "+ ZAI(GA - H"r" ) /71

o Haas and Holdaway (1973)

r Hemley (1967, 1976)

a Kemck (1968)

Page 14: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

KRUPKA ET AL: HEAT CAPACITIES

quartz (Robie et al., 1978a) and our new entropy andenthalpy values for anorthite and grossular yieldsL,Go1.zse equal to -6295300+4730 J/mol for grossu-lar .

Summary

By combining data from recent equil ibrium studieswith new heat capacity values for anorthite, mus-covite, pyrophyll ite, and grossular, improved valuesof LH"r,rsa and AG?,zga for muscovite, pyrophyll ite,and grossular were calculated by means of the third-law method. The best value for AH}.""" of disordered2M, muscovi te f rom the e lements is -5971600+5180

J /mol, which is the mean of the calorimetric value ofLHol.zss for muscovite given by Hemingway andRobie (1977) and the value of LHo, . r " der ived f romreaction (3). The new value of AH",."u of muscovitey ie lds a value of -5595500+5190 J/mol for theGibbs free energy of formation, L,Gor,zse, for dis-ordered 2M, muscovite. Similarly, an improved valuefor LH"1,2"" of pyrophyll ite is -5639800+3950 I/mol.This value and the appropriate entropy data werecombined to obtain a value of -5265900Xj960 J/mol for L,G",."re of pyrophyll ite. A new value of-6657100+4720 J/mol was determined for LH",.,r"of grossular. The value of L,G"r,""" of grossular wascalculated to be -6295300+4730 J/mol.

Table 14. Thermodynamic constants used in determining Al l?,2"e

of srossular

Compound S|OO viOO*

J/ (mo1.K) "r3

(c400 - rues)/r

J / (m1 ' r )

Ano r thi Ee

caA-l25i208

Wo11s tonite

CaSi0a

Grossular

Ca3A12S i301 2

s i02

460 .7

1 8 6 . 3

665 .3

9 9 . 5 8

1 0 1 . 4

4 0 . 3 8

! 2 6 . 7

23.36

-290.0

- r18 .4

-397 .7

iENIPERATIJRE, IN KITVINS

Fig 8 Plot of the P-I conditions for the reaction grossular *quartz c anorth i te * 2 wol lastoni te. The oqui l ibr ium curve was

extrapolated to 800+ l5 K and I bar using the exper imental data ofNewton (1966), Hays (1967), Boettcher (1970), and Windom andBoettcher ( 1976).

*Ihe themal expaosion data which was ued are fron:

Anorthi te -- czank and Schulz (197I)

w o l l a s t o n l t e - - H . T . E v a n s , J r . ( u n p u b . d a t a ' 1 9 7 7 )

Grossular -- Skinner (1956)

s-Quartz -- Skinner (1966)

Acknowledgments

The authors thank E. F. Westrum, Jr . , E. J. Essene and D.

Perkins of the Univers i ty of Michigan for a copy of their unpub-

l ished low-temperature heat capaci ty values for grossular , and J. J.

Hemley of the U.S Geological Survey for valuable discussions

concerning exper imental phase-equi l ibr ia studies The authors are

part icular ly grateful to H T. Evans, Jr . of the U S Geological

Survey for measur ing the uni t -cel l parameters of wol lastoni te

between 303 and 873 K We also thank E-an Zen and S Lud-

ington of the U S. Geological Survey for cr i t ical ly reviewing the

manuscr ipt and for their helpfu l comments.

References

Barany, R. (1964) Heat and free energy of formation of muscovite.

IJ S. Bur Mines Rep. Inuest 6356

Barron, T H. K , W. T. Berg and J. A. Morr ison (1959) On the

heat capacity of crystalline magnesium oxide' Proc R Soc.

(Londbn). A250,70-83.Boettcher, A. L (1970) The system CaO-Al,O'-SiO,-HzO at high

pressures and temperatures. J Petol , 1 1,337-379'

Burnham, C. W, J. R. Hol loway and N. F. Davis (1969) Ther-

modynamic properties of water to 1000"C and 10,000 bars. Geol.

Soc. Am Spec Pap. 132

Chatter jee, N. D. and W. Johannes (1974) Thermal stabi l i ty and

standard thermodynamic properties of synthetic 2M,-muscovite,

KAlr[AlSi,O,o(OH)r]. Contrib Mineral Petrol, 48, 89-l 14.

Commission on Atomic Weights (1974) Atomic weights of the

elements, 1973. Pure Appl Chem., 32,591-603.

Cormier, W. E. and L B. Sand (1976) Synthesis and phase t ransi-

t ions of Na-. NaK-, and K-ferr ier i tes. Am Mineral ' 61, 1259-

t266.Czank, M. and H. Schul tz (1971) Thermal expansion of anorth i te.

N aturwissenscha ften, 58, 94.

l 6

v Newion (1966)

A lays (19671

O Eodths (19 /0)

n WLf ldom and Boet lcher {19 /6)

Grossular+ quadz

IIl l

Anodhr te+ 2 Wol las lon te

1200

5 1 29

- 1 0

E

0 L600

Page 15: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

100 KRUPKA ET AL: HEAT CAPACITIES

Darken, L. S. and R. W. Gurry (1953) physical Chemistry ofMetals McGraw-Hill, New York.

Di tmars, D. A. and T. B. Douglas (1971) Measurements of therelative enthalpy of pure a-Al2Os (NBS heat capacity and en-thalpy standard reference material no.720) from273 to I123 K.Natl Bur. Stand. J. Res.,75A. 4Ot-420.

Ferrier, A. (1969) Etude experimentale de I'enthalpie d I'anorthitesynthetique entre 298 and 1950 K. C. R Acad. Sci. paris.269.ser. C,951-954.

Fisher, J. R. and E-an Zen (1971) Thermodynamic calculationsfrom hydrothermal phase equilibrium data and the free energyo f H ,O . Am J . Sc i , 270 ,297 -314 .

Gronvold, F. (1967) Adiabatic calorimeter for the investigation ofreactive substances in the range from 25 1o775"C. Heat capacityof a-aluminum oxide. Acta Chem. Scand., 22. 1695-1713.

Guggenheim, S. and S. W. Bailey (1975) Refinement of the marga-rite structure in subgroup symmetry. Am. Mineral., 60, lO23_t029.

Gi iven, N. (1971) The crystal s t ructures of 2M, phengi te and 2M,muscovite. Z. Kristallogr., 134, 196-212.

Haas, H. and M. J. Holdaway (1973) Equi l ibr ia in the systemAl,Os-SiOr-HrO involving the stability limits of pyrophyllite,and thermodynamic dara of pyrophyl l i te. Am J. Sci ,273,449_461 .

Haas, J. L. , Jr . and J. R. Fisher (1976) Simul taneous evaluat ionand correlat ion of thermodynamic data. Am J. ic i ,276,525-545.

Hays, J. F. (1967) Lime-alumina-silica. Carnegie Inst. Wash. year9ook.65.234-239.

Hemingway, B. S. and R. A. Robie (1977) Enthalp ies of format ionof low albite, NaAISLO., gibbsite, Al(OH)s, and NaAlO,; re-vised values for A,Ho,,2" and AG?.r", of aluminosilicates. U SGeol. Suru. J. Res.. 5.413-429.

Hemley, J. J . (1967) Stabi l i ty re lat ions ofpyrophyl l i te, andalusi te,and quartz at elevated pressures and temperatures (abstr.). ,4n.Geophys. Union Trans., 48, 224.

Hovis, G. L. (1974) A solution calorimetric and X-ray investiga-tion of Al-Si distribution in monoclinic potassium feldspars. InW. S. MacKenzie and I. Zussman, Eds., The Feldspars, p. l14-144. Manchester University Press.

Kelley, K. K. (1960) Contributions to the data on theoreticalmetallurgy XIII. High-temperature heat capacity ano enrropydata for the elements and inorganic compounds. U.S. Bur.Mines Bull 584.

Kerrick, D. M. (1968) Experiments on the upper stability limits ofpyrophyl l i te at 1.8 k i lobars and 3.9 k i lobars water pressure. ,4rzJ. Sci- . 266,204-214.

Kushov, O. L. (1973) The thermodynamic constants of pyrophyl-lite and the anomalous specific heats of metapyrophyllite andmetakaolin. Geochem. Int.. 10. 406-412

Lewis, G. N. and M. Randall (1961) Thermodynamics Secondedition, revised by K. S. Pitzer and L. Brewer. McGraw-Hill,New York.

McAdie, H. H. , P. D. Garn and O. Menis (1972) Standard refer-ence materials: selection of differential thermal analysis temper-ature standards through a cooperat ive study (SRM 759,759,760). Natl Bur Stand. Spec Publ 260-40

Montoya, J. W. and J. J. Hemley (1975) Act iv i ty re lat ions andstabilities in alkali feldspar and mica alteration rcacLions. Econ.Geol . ,70. 577-582.

Newton, R. C ( 1966) Some calc-silicate equilibrium rclations. AmJ. Sci ,264.204-222.

O'Neill, M. J. and R L. Fyans (1971) Design of dffirentiat scan-ning calorimeter and the performance of a new system Paperpresented at the Eastern Analytical Symposium, New York,November 1971.

Openshaw, R. 8. , B. S. Hemingway, R. A. Robie, D. R. Wald-baum and K. M. Krupka (1976) The heat capaci t ies at lowtemperatures and entropies at 298.15 K of low albite, analbite,microcl ine, and high sanidine. U.S. Geol Suru J. Res ,2,195_204.

Pankratz, L. B. (1964) High-temperature heat contents and en-tropies of muscovite and dehydrated muscovite U S. Bur MinesRep. Inuest 6371.

Robie, R A. (1965) Heat and free energy of formation of herzen-bergite, troilite, magnesite, and rhodochrosite calculated fromequilibrium data. U.S. Geol Suns. Prof. Pap.,525-D,D65-D72.

- , P. M. Bethke and K. M. Beardsley (1967) Selected X-raycrystallographic data, molar volumes, and densities of mineralsand related substances. U S. Ceol. Suru Bull. 1248

-, B. S Hemingway and J. R. Fisher (1978a) Thermodynamicproperties of minerals and related substances at 298.15 K andone bar (106 pascals) pressure and at higher temperatures. U,SGeol. Suru Bull. 1452

and W. H. Wi lson (1976) The heat capaci t ies ofCa lo r ime t r y Con fe rence coppe r , muscov i t eKAl, (AlSi i )O,o(OH), , pyrophyl l i te AlrSi40,o(OH)r, and i l l i teK.(Al,Mg)(Si,.Al,)O4o(OH)E between l5 and 375 K, and theirstandard entropies at 298.15 K. U.S Geol . Suru J Res. ,4,631-644.

and - (1978b) Low-temperature heat capaci_ties and entropies of KAlSi3O,, NaAISLO", and CaAl,Si,O"glasses and of anorthite. Am. Mineral., 63, 109-123.

- and D R. Waldbaum (1968) Thermodynamic propert ies ofminerals and re lated substances at 298.15 K (25.0.C) and oneatmosphere (1.013 bars) pressure and at h igher temperatures.U S Geol Suru Bull. 1259

Rothbauer, R. (1971) Untersuchung eines 2M, Muskovi ts mi tNeutronstrahlen. Neues Jahrb. Mineral. Monatsh . 143-154.

Skinner, B. J. (1956) Physical propert ies of end-members of thegarnet group. Am. Mineral., 4l, 428436.

- (1966) Thermal expansion. In S. P. Clark, Ed., Handbook ofPhysical Constants, Reuised edition, p. 75-16 Geol. Soc. Am.Mem. 97 .

Stewart, D B. and T. L. Wright (1974) Al/Si order and symmetryof natural potassic feldspars and the relationship of strained cellparameters to bulk composilion. Bull Soc. fr Mineral. Crystal-logr 97,356-377

Stull, D. R. and H. Prophet (1971) JANAF Thermochemical Ta-b/es U S Nat l . Bur. Stand. NSRDS-NBS 37.

Taylor , L. A. and P. M. Bel l (1971) Thermal expansion of py-rophyllite. Carnegie Inst. LVash Year Book,69, 193-194.

Thompson, J. B. (1969) Chemical react ions in crystals Am. Min-eral . 54. 341-375.

Trowbr idge, J C. and E. F. Westrum, Jr . (1963) Heat capaci t iesand thermodynamic propert ies of g lobular molecules. VI I . Tran-sition and fusion of triethylenediamine J Phys Chem., 67,238 l -238s

Velde, B. (1965) Experimental determination of muscovite poly-morph stabilities Am Mineral , 50, 436-449.

Victor, A. C. and T. B. Douglas (1963) Thermodynamic propert iesof magnesium oxide and beryllium oxide from 298 to 1200 K.Natl. Bur. Stand. J. Res.,67A,325-329.

Wardle, R. and G. W. Brindley (1972) The crystal structures of

Page 16: High-temperature - heat capacities of corundum, …ancillary thermodynamic data from Robie el a/. (1978a), we have derived improved values of AHl.r, and LGl,r"t for 2Mt disordered

KRUPKA ET AL.:

pyrophyllite, lTc, and of its dehydroxylate. Am. Mineral., 57

732-',t50.Watson, E. S., M. J. O'Neil l, J. Justin and N. Brenner (1964) A

differential scanning calorimeter for quantitative differentialthermaf analysis. Anal. Chem., 36, 1233-1238.

Weber, G. W. (1975) Difusion of"'Cr in MgO and Cr-doped MgO.Ph.D. Thesis, Pennsylvania State University, University Park,Pennsylvania.

West, E. D. and E. F. Westrum, Jr. (1968) Adiabatic calorimetryfrom 300 to 800 K. In J. P. McCullough and D. W. Scott, Eds.,Experimental Thermodynamics, Vol. I, p. 333-367. Butterworths,London.

Westrum, E F, Jr., E. J. Essene and D. Perkins, I l l (1979)

HEAT CAPACITIES

Thermophys ica l p roper t ies o f the garnet g rossu la r i te ,(CarAl,Si3O'r). J Chem Thermodynamics (in press).

white, w. P. (1919) Silicate specific heats, second series. Am. J.Sc i .47 . l -43

Windom, K. E. and A. L. Boettcher (1976) The effect of reducedactivity of anorthite on the reaction grossular + quartz : anor-thite + wollastonite: a model for plagioclase in the earth's lowercrust and upper mantle. Am Mineral.,61, 889-896.

Zen,E-an (1977) The phase-equilibrium calorimeter, the petroge-netic grid, and a tyranny of numbers. Am. Mineral., 62, 189-204.

Manuscript receiued, December 14, 1977;

accepted for publication, June 29, 1978.

t 0 l


Recommended