+ All Categories
Home > Documents > Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC...

Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC...

Date post: 07-Nov-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
38
Highlights of Super-KEB Physics LoI Highlights of Super-KEB Physics LoI Toru Iijima Nagoya University April 20, 2005 2 nd Super B Factory Workshop in Hawaii
Transcript
Page 1: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

Highlights of Super-KEB Physics LoI

Highlights of Super-KEB Physics LoI

Toru IijimaNagoya University

April 20, 20052nd Super B Factory Workshop in Hawaii

Page 2: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

2

In This Talk, …

Physics case with 5ab-1 50 ab-1 data at Super-Bbased on

Letter of Intent for KEK Super B Factory ( KEK Report 2004-4 )Physics at Super B Factory ( hep-ex/0406071 )

Contents;Super-B MotivationSuper-B Physics ReachStudies of NP ScenarioSummary

cf) SLAC-R-709The Discovery Potential of a Super B FactoryProceedings of the 2003 SLAC Workshops

Page 3: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

3

Success of B FactoriesFirst precise test of KM picture for CPV.

sin2φ1= +0.726±0.037 is now a precise measurement (~5%). The other angles are being measured more seriously.

φ2 from Sρρ and ρπ Dalitz– 2φ1+φ3 from B D(*)π

φ3 from B DK (w/ D Dalitz)+ side measurements too.

|Vcb|, |Vub|. ∆md

Paradigm change: look forAlternatives to CKM

Corrections by NP ?

~300fb-1(KEKB)~250fb-1(PEP-II)

A bit old…sorry. !

Page 4: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

4

New Physics in b s loop ?Present constraint mainly with transitions between– 3⇔1 generation– 2⇔1 generation

CPV (b sqq) Anomaly?

-ηf x Sf

<b s penguin> = 0.43±0.07 (’05 winter)

<charmonium> =0.726±0.037

3.7σ deviation !!

0.39 ± 0.11 (Belle) 0.45 ± 0.10 (BABAR)

Page 5: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

5

B Physics in LHC EraOnce NP found in B/LHC, the next question would be

What is the NP scenario ?

Orthogonality of B physics to LHCThe squark/slepton mass matrix

Sensitive to SUSY breaking mechanism.

( )2q ij

m =%

211m 2

12m 213m

221m 2

22m 223m

231m 2

32m 233m iq jqiq% jq%

2q 23(13)(m )%

Page 6: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

6

B Physics in LHC EraOnce NP found in B/LHC, the next question would be

What is the NP scenario ?

Orthogonality of B physics to LHCThe squark/slepton mass matrix

Sensitive to SUSY breaking mechanism.

( )2q ij

m =%

211m 2

12m 213m

221m 2

22m 223m

231m 2

32m 233m iq jqiq% jq%

2q 23(13)(m )%

cf) Top quark: Mass/width by TevatronMixing/phase by B factories

Off-diagonal termsFlavor Physics Luminosity frontier

Diagonal terms:LHC/ILC Energy frontier

B and τ are in the 3rd generation (“hub” quark & lepton)probe for both 3 2, 3 1 transitions.

Page 7: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

7

Cont’d

B & τ decays would be ideal probes for flavor structure of NP.

Super-B key measurements• CPV in b s• FCNC (Kll, Kvv etc.)• LFV (τ decays)• Higgs mediation (B Dτν etc.)• CKM+ their correlation

B physics

LHC LC

LFVEDM

Muon g-2K physics

Charm physics

+ Synergy to LHC and other flavor physics exp’s.

Page 8: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

8

Super Belle

Page 9: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

9

Super Belle

SC solenoid1.5T

New readout and computing systems

CsI(Tl) 16X0

pure CsI (endcap)Aerogel Cherenkov counter+ TOF counter

“TOP” + RICH

Si vtx. det.4 lyr. DSSD

2 pixel/striplet lyrs. + 4 lyr. DSSD

Tracking + dE/dxsmall cell + He/C2H5

remove inner lyrs.Use fast gas

µ / KL detection14/15 lyr. RPC+Fe

tile scintillator

Page 10: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

10

Feature of Super-Belle Exp.Cleaner than hadron machines even after the upgrade– Many off-timing hits, but

typical track eff. 91% 89%

B decays with neutrinosB Dτν, τν, u lν etc.

B decays with γ, π0

B Xsγ, π0π0 etc.

B vertex reconstruction with Ksonly !

B Ksπ0, Ksπ0γ etc.

10 cm

BELLE

10 cm

BELLESuperBelleBelle

π+ π−Ks trajectoryIP profileB vertex

γγ

Υ(4S)e−(8GeV)

e+(3.5GeV)

B

Bπ full (0.1~0.3%)

reconstructionB Dπ etc.

Dτν etc.B meson beam !

Charged Higgs Vub

direct CPV φ2(α) isospin analysis

Page 11: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

11

Physics Reach at Super-KEKB

LHCb (0.002 ab-1)

-0.5 -0.3 -0.1 0.1 0.3 0.5

|Vub|φ3(Bs → DsK)φ3(Bs → KK)

φ3(DK(*))φ2(ρπ)

φ2(ππ isospin)sin2φ1

Br(B0 → Dτν)Br(B+ → Dτν)

Br(B+ → K+νν)Br(Bs → µ+µ-)

C10 w/ AFB(K*l+l-) no info

C9 w/ AFB(K*l+l-) no info

ACP(B → Xsγ)Br(B → Xsγ)

S(K*0γ)sin2χ(Bs → J/ψφ)

∆S(π0Ks)∆S(KsKsKs)

∆S(η’Ks)∆S(K+K-Ks) no info

∆S(φKs)

SuperKEKB at 50 ab-1

-0.5 -0.3 -0.1 0.1 0.3 0.5

|Vub|φ3(Bs → DsK)φ3(Bs → KK)

φ3(DK(*))φ2(ρπ)

φ2(ππ isospin)sin2φ1

Br(B0 → Dτν)Br(B+ → Dτν)

Br(B+ → K+νν)Br(Bs → µ+µ-)

C10 w/ AFB(K*l+l-)C9 w/ AFB(K*l+l-)

ACP(B → Xsγ)Br(B → Xsγ)

S(K*0γ)sin2χ(Bs → J/ψφ)

∆S(π0Ks)∆S(KsKsKs)

∆S(η’Ks)∆S(K+K-Ks)

∆S(φKs)

SuperKEKB at 5 ab-1

-0.5 -0.3 -0.1 0.1 0.3 0.5

|Vub|φ3(Bs → DsK)φ3(Bs → KK)

φ3(DK(*))φ2(ρπ)

φ2(ππ isospin)sin2φ1

Br(B0 → Dτν)Br(B+ → Dτν)

Br(B+ → K+νν)Br(Bs → µ+µ-)

C10 w/ AFB(K*l+l-)C9 w/ AFB(K*l+l-)

ACP(B → Xsγ)Br(B → Xsγ)

S(K*0γ)sin2χ(Bs → J/ψφ)

∆S(π0Ks)∆S(KsKsKs)

∆S(η’Ks)∆S(K+K-Ks)

∆S(φKs)

SuperKEKB 5ab-1 50ab-1 LHCb 2fb-1

CK

Mw

/ νFC

NC

CP

V (b

s)

and rich τ physics

Physics at Super B Factory (hep-ex/0406071)

Page 12: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

12

Measurement of φ2 and φ3

φ2 measurement– B ππ (isospin analysis)

∆φ2 = 3.9/1.2 deg. (5/50ab-1)– B ρπ (Dalitz plot analysis)

∆φ2 = 2.9/0.9 deg. (5/50ab-1)

φ2 measurement– B ππ (isospin analysis)

∆φ2 = 3.9/1.2 deg. (5/50ab-1)– B ρπ (Dalitz plot analysis)

∆φ2 = 2.9/0.9 deg. (5/50ab-1)

φ3 measurement by B DK– Dalitz analysis

∆φ3 = 4/1.2 deg. (5/50ab-1)Model error ?

– ADS method∆φ3 = 16/ 5 deg. (5/50ab-1) Limited by stat.

φ3 measurement by B DK– Dalitz analysis

∆φ3 = 4/1.2 deg. (5/50ab-1)Model error ?

– ADS method∆φ3 = 16/ 5 deg. (5/50ab-1) Limited by stat.

Belle @ present14

3 1564 13 11φ +

−= ± ±

o

o

o o o (model)

Page 13: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

13

Measurement of |Vub|

Inclusive b u l ν with fully reconstructed tag.

Mx, q2, P+

– Good determination of mb by b c l ν / b sγ is essential.

Exclusive B π l ν with full recon or D* l ν tagging.– High quality data in high q2

– Form factor by unquenched lattice D π l ν @ CLEO-c

~5% determination is possible.~5% determination is possible.

Extrapolation from present (Mx,q2) measurement.

δmb ~ 70 MeV presently

Page 14: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

14

CKM at Super-B 50 ab-1

1

3

sin 2 0.014

( ) 0.005 0.015| | 4.4%

1.2

B d

ub

f BV

φ

φ

∆ =

∆ = ±

∆ =

∆ = o

Vub & φ3

sin2φ1 & ∆md

CKM is only one part of Super-B physics programs, but still provides model indep. approach to constrain NP.

M12=M12SM+M12

NP

Page 15: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

15

New CPV Phases in b sqqb s loop is the ideal place to look for new CPV phases.

b sg%

b%

s%s%

s s

23dδ

CP dN1 PA (t) sin2( + ) sin(∆ t)mφφ∝ ×

0 0 0 0, , ,...B K K K K Kφ η + −′→

0.02

0.03

0.04

0.050.060.070.080.090.1

0.2

0.3

0.4

0.50.6

10-1

1 10

∆S(φK 0S)

∆S(η ′K 0S)

∆S(K +K -K 0

S)

Integrated luminosity (ab-1)

Err

or o

n ∆S

Belle (Aug. 2003, 140 fb-1)

Super KEKB (1 year, 5 ab-1)

∆S theory errorφK0: ~0.05h’K0: ~0.10

The region for 5σ discovery w/ present <b s Penguin>

-0.5

0

0.5

-8 -6 -4 -2 0 2 4 6 8∆t(ps)

(Nqξ

=−1−N

qξ=+

1)/(N qξ

=−1+N

qξ=+

1)

Expectation at 5ab-1

J/ψ KS0

φK0 (input S=+0.24)

Page 16: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

16

Cont’d5σ confidence region for A and S (5ab-1/50ab-1)

φKs K+K-Ks η’Ks

-ηf x Sf -ηf x Sf -ηf x Sf

A A A

<0.3 <0.55 <0.5 <0.60<0.37 <0.60

Sanda @ CKM2005.The reason why present B is so successful.“Luminosity requirement was set so that wecan find CPV even if sin2φ1 ~0.10, but it is turned out to be large (~0.72)”

Theoretical limitation

The region to cover

Luminosity goal

Page 17: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

17

B Xsγ CP AsymmetrySensitive NP.Theoretically clean.Standard Model “~Zero”.– Helicity flip of γ suppressed

by ~ms/mb

0.0050.0110.051 / 0.038Acpdir(B Xsγ)

0.040.140.56 / 0.09Acpmix(B K*γ, K* Ksπ0)

50ab-15ab-1Present Belle (stat./syst.)

b s

γ

t

W −

C7

Belle

Present resultS= -0.79 ±0.09 (Belle)S= +0.25±0.63±0.14 (BaBar)

+0.63-0.50

Page 18: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

18

B Xsll FB AsymmetryGood electroweak probe for b sloop.q2 distribution has different pattern depending on sign(C7).

*10 9 7( ( ) ( ) )eff

FBA C sC s r s C⎡ ⎤∝ ℜ +⎣ ⎦

FBA

2( )GeV2q

b s

+l

−l, Zγ

t

W −b s

+l −l

W − W +

t

ν

+l

−l

B

−l

+l

B

-1-0.8-0.6-0.4-0.2

00.20.40.60.8

1

0 2 4 6 8 10 12 14 16 18 20q2 GeV2/c2

AF

B

(a) K* l+ l-

SM

wrong sign C7

Belle at 250fb-1

※ shown w/ reversed sign definition.

q0(the point w/ AFB=0) is sensitive for New PhysicsSM; q0

2=(4.2±0.6)GeV2

Page 19: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

19

B Xsll FB AsymmetryGood electroweak probe for b sloop.q2 distribution has different pattern depending on sign(C7).

*10 9 7( ( ) ( ) )eff

FBA C sC s r s C⎡ ⎤∝ ℜ +⎣ ⎦

FBA

2( )GeV2q

-1-0.8-0.6-0.4-0.2

00.20.40.60.8

1

0 2 4 6 8 10 12 14 16 18 20q2 GeV2/c2

AF

B

(a) K* l+ l-

SM

wrong sign C7

Belle at 250fb-1

※ shown w/ reversed sign definition.

+l

−l

B

−l

+l

B

b s

+l

−l, Zγ

t

W −b s

+l −l

W − W +

t

ν

q0(the point w/ AFB=0) is sensitive for New PhysicsSM; q0

2=(4.2±0.6)GeV2

Update from a recent study @ 5ab-1

δC9 ~ 11%δC10 ~14%δ q0 ~11%

Page 20: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

20

Lepton Flavor ViolationLFV in neutrino sector ⇒LFV in charged leptons ?

Search for “SM Zero”

τ ( )eµ

γ

τ%0χ%

( )eµ% %

223(13)l(m )%

τ µ

( )sµ

( )sµ

h

τ 3l, lη

τ lγ

τ lγτ lπ/η/η’

τ 3l

τ l Ksτ B γ/π

Extrapolationw/ improvement Present CLEO

Search region enters into O(10-8 10-9)B-factory = “Tau-factory” 1010 τ pairs at 10ab-1

Page 21: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

21

τ lγ/3l,lητ lγ

SUSY + SeasawLarge LFV Br(τ µγ)=O(10-7~9)

0tanβ = 30, A = 0, µ > 0Gaugino mass = 200GeV

Super-BPresent Belle

( )2

32

426

2( a10 1) t nL

L

SUSY

B TeVm

mr

mτ µγ β−

⎛ ⎞⎜ ⎛ ⎞

⎜ ⎟⎝ ⎠

⎟→ ×⎜ ⎟⎝ ⎠%

%

τ 3l,lη• Neutral Higgs mediated decay.• Important when MSUSY >> EW scale.

( ) 4627 32

2

tan 10060

( 3 )

4 10A

L

L

B

Gm

r

m

meVβ

τ µ

→ =

⎛ ⎞⎜ ⎟× ×⎜ ⎟⎝ ⎠

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

%

%

( ) : ( 3 ) : ( )5 :1: 0.5

Br Br Brτ µη τ µ τ µγ→ → →=

Page 22: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

22

Search for Charged HiggsB Dτν (semileptonic decay)

cb

τ +

H+/W+

ντ

( )tan cotb c um mβ β+

tanmτ β

( )( )B D vBB D v

τ

µ

τµ

Γ →=

Γ →

Band width from form-factor uncertainty

• Full reconstruction tag• Signal large missing mass• Expected at 5ab-1

Mode Nsig Nbkg dB/B

280 550 7.9%

620 3600

0 ( )D τ ττ ν ν ν+ +ll

0 ( )D h τ ττ ν ν+ +

Page 23: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

23

Sensitivity for Charged Higgs

βtan 20 40 60

)2 M

ass

(GeV

/c±

H

100

200

300

400

500

Tevatron Run I Excluded (95% C.L.)

LEP Excluded (95% C.L.)

)-1

(140 fbντ →

Belle B

ντ→Hb, H→ t-1CMS 100fb

-1

5ab

ντ D

→B

-1 5

0ab

ντ D

→B

ντ

→tH

, H→

gb

-1

CM

S 10

0fb

βtan 20 40 60

)2 M

ass

(GeV

/c±

H

100

200

300

400

500

∆(Fo

rm-fa

ctor)

~5%

∆(Form-fa

ctor) ~

15%

B Dτν

B τν(present)

Constraint from B Xs γ

LHC100fb-1

∆(form-factor) can be reduced with the present B Dµν data.

Page 24: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

24

Elucidation of NP ScenarioT. Goto, Y.Okada, Y.Shimizu,T.Shindou, M.Tanaka, hep-ph/0306093, also in SuperKEKB LoI

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Higgs slepton gaugino squark

Mass

(GeV

/c2 )

mSUGRAtanβ=30Mgluino = 600GeV/c2

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Higgs slepton gaugino squark

Mass

(GeV

/c2 )

SUSY SU(5)⊕νR(non-degenerate)

tanβ=30Mgluino = 600GeV/c2Hard to distingusih only

with mass

1

2

3

4

Can we distinguish these 4 senarios at Super-KEKB?

Page 25: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

25

Acp(B φKs) vs SUSY Models

( )gm GeV%

mSUGURAtanβ=30

U(2)tanβ=30

SU(5)+νRtanβ=30degenerate

SU(5)+νRtanβ=30non-degenerate

Acp

mix

5ab-1

50ab-1

280fb-1

If confirmed with the central value unchanged.Large impact on LHC physics and cosmology if new CPV in b s:

Eg. mSUGRA, Gauge mediated SUSY breaking

Page 26: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

26

Acp(B Xsγ) vs SUSY models

mSUGURAtanβ=30

U(2)tanβ=30

SU(5)+νRtanβ=30degenerate

SU(5)+νRtanβ=30non-degenerate

( )gm GeV%

mSUGURAtanβ=30

U(2)tanβ=30

SU(5)+νRtanβ=30degenerate

SU(5)+νRtanβ=30non-degenerate

( )gm GeV%

Mixing CPVDirect CPV

Acp

dir

Acp

mix

5ab-1 50ab-1

up to 2TeV can be explored.gm %

Page 27: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

27

CPV in b s and SUSY ScenarioDifferent SUSY breaking scenario can be distinguished in Acp

mix(φKs) - Acpmix(K*0γ) correlation.

Expected precision at 5ab-1

Correlation of other ovservables are also useful.Acp

dir(Xsγ), AFB(Xsll), Br(τ µγ), CKM

Page 28: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

28

More Tests of SUSY ScenarioAcp

mix (φKs)

Acpdir (Xsγ)

Br(Xsγ)

A FB(Xsll)

Br(τµγ)

-1

0

10.2 0.6 1

S(φKs)

S(K

*0γ)

-1

0

1-0.005 0.005 0.015

A(b→sγ)S

(K*0

γ)-1

0

12.5 3.5 4.5

B(b→sγ)• 104

S(K

*0γ)

-1

0

10.02 0.07 0.12

AFB(b→sll)

S(K

*0γ)

-1

0

10 0.5 1

B(τ→µγ)• 107

S(K

*0γ)

0.5

1-0.005 0.005 0.015

A(b→sγ)

S(φ

Ks)

0.5

12.5 3.5 4.5

B(b→sγ)• 104

S(φ

Ks)

0.5

10.02 0.07 0.12

AFB(b→sll)

S(φ

Ks)

0.5

10 0.5 1

B(τ→µγ)• 107

S(φ

Ks)

0

0.01

2.5 3.5 4.5

B(b→sγ)• 104

A(b

→sγ

)

0

0.01

0.02 0.07 0.12

AFB(b→sll)

A(b

→sγ

)

0

0.01

0 0.5 1

B(τ→µγ)• 107

A(b

→sγ

)

3

4

0.02 0.07 0.12

AFB(b→sll)

B(b

→sγ

)• 1

04

3

4

0 0.5 1

B(τ→µγ)• 107

B(b

→sγ

)• 1

04

0.05

0.1

0 0.5 1

B(τ→µγ)• 107

AFB

(b→

sll)

mSUGRAtanβ=30Mgluino=600GeV/c2

-1

0

10.2 0.6 1

S(φKs)

S(K

*0γ)

-1

0

1-0.005 0.005 0.015

A(b→sγ)S

(K*0

γ)-1

0

12.5 3.5 4.5

B(b→sγ)• 104

S(K

*0γ)

-1

0

10.02 0.07 0.12

AFB(b→sll)

S(K

*0γ)

-1

0

10 0.5 1

B(τ→µγ)• 107

S(K

*0γ)

0.5

1-0.005 0.005 0.015

A(b→sγ)

S(φ

Ks)

0.5

12.5 3.5 4.5

B(b→sγ)• 104

S(φ

Ks)

0.5

10.02 0.07 0.12

AFB(b→sll)

S(φ

Ks)

0.5

10 0.5 1

B(τ→µγ)• 107

S(φ

Ks)

0

0.01

2.5 3.5 4.5

B(b→sγ)• 104

A(b

→sγ

)

0

0.01

0.02 0.07 0.12

AFB(b→sll)

A(b

→sγ

)

0

0.01

0 0.5 1

B(τ→µγ)• 107

A(b

→sγ

)

3

4

0.02 0.07 0.12

AFB(b→sll)

B(b

→sγ

)• 1

04

3

4

0 0.5 1

B(τ→µγ)• 107

B(b

→sγ

)• 1

04

0.05

0.1

0 0.5 1

B(τ→µγ)• 107

AFB

(b→

sll)

SU(5)+vR degeneratetanβ=30Mgluino=600GeV/c2

-1

0

10.2 0.6 1

S(φKs)

S(K

*0γ)

-1

0

1-0.005 0.005 0.015

A(b→sγ)S

(K*0

γ)-1

0

12.5 3.5 4.5

B(b→sγ)• 104

S(K

*0γ)

-1

0

10.02 0.07 0.12

AFB(b→sll)

S(K

*0γ)

-1

0

10 0.5 1

B(τ→µγ)• 107

S(K

*0γ)

0.5

1-0.005 0.005 0.015

A(b→sγ)

S(φ

Ks)

0.5

12.5 3.5 4.5

B(b→sγ)• 104

S(φ

Ks)

0.5

10.02 0.07 0.12

AFB(b→sll)

S(φ

Ks)

0.5

10 0.5 1

B(τ→µγ)• 107

S(φ

Ks)

0

0.01

2.5 3.5 4.5

B(b→sγ)• 104

A(b

→sγ

)

0

0.01

0.02 0.07 0.12

AFB(b→sll)

A(b

→sγ

)

0

0.01

0 0.5 1

B(τ→µγ)• 107

A(b

→sγ

)

3

4

0.02 0.07 0.12

AFB(b→sll)

B(b

→sγ

)• 1

04

3

4

0 0.5 1

B(τ→µγ)• 107

B(b

→sγ

)• 1

04

0.05

0.1

0 0.5 1

B(τ→µγ)• 107

AFB

(b→

sll)

SU(5)+vR non-degeneratetanβ=30Mgluino=600GeV/c2

-1

0

10.2 0.6 1

S(φKs)

S(K

*0γ)

-1

0

1-0.005 0.005 0.015

A(b→sγ)S

(K*0

γ)-1

0

12.5 3.5 4.5

B(b→sγ)• 104

S(K

*0γ)

-1

0

10.02 0.07 0.12

AFB(b→sll)

S(K

*0γ)

-1

0

10 0.5 1

B(τ→µγ)• 107

S(K

*0γ)

0.5

1-0.005 0.005 0.015

A(b→sγ)

S(φ

Ks)

0.5

12.5 3.5 4.5

B(b→sγ)• 104

S(φ

Ks)

0.5

10.02 0.07 0.12

AFB(b→sll)

S(φ

Ks)

0.5

10 0.5 1

B(τ→µγ)• 107

S(φ

Ks)

0

0.01

2.5 3.5 4.5

B(b→sγ)• 104

A(b

→sγ

)

0

0.01

0.02 0.07 0.12

AFB(b→sll)

A(b

→sγ

)

0

0.01

0 0.5 1

B(τ→µγ)• 107

A(b

→sγ

)

3

4

0.02 0.07 0.12

AFB(b→sll)

B(b

→sγ

)• 1

04

3

4

0 0.5 1

B(τ→µγ)• 107

B(b

→sγ

)• 1

04

0.05

0.1

0 0.5 1

B(τ→µγ)• 107

AFB

(b→

sll)

U(2) FStanβ=30Mgluino=600GeV/c2

-1

0

10.2 0.6 1

S(φKs)

S(K

*0γ)

-1

0

1-0.005 0.005 0.015

A(b→sγ)S

(K*0

γ)-1

0

12.5 3.5 4.5

B(b→sγ)• 104

S(K

*0γ)

-1

0

10.02 0.07 0.12

AFB(b→sll)

S(K

*0γ)

-1

0

10 0.5 1

B(τ→µγ)• 107

S(K

*0γ)

0.5

1-0.005 0.005 0.015

A(b→sγ)

S(φ

Ks)

0.5

12.5 3.5 4.5

B(b→sγ)• 104

S(φ

Ks)

0.5

10.02 0.07 0.12

AFB(b→sll)

S(φ

Ks)

0.5

10 0.5 1

B(τ→µγ)• 107

S(φ

Ks)

0

0.01

2.5 3.5 4.5

B(b→sγ)• 104

A(b

→sγ

)

0

0.01

0.02 0.07 0.12

AFB(b→sll)

A(b

→sγ

)

0

0.01

0 0.5 1

B(τ→µγ)• 107

A(b

→sγ

)

3

4

0.02 0.07 0.12

AFB(b→sll)

B(b

→sγ

)• 1

04

3

4

0 0.5 1

B(τ→µγ)• 107

B(b

→sγ

)• 1

04

0.05

0.1

0 0.5 1

B(τ→µγ)• 107

AFB

(b→

sll)

SU(5)+vR non-degeneratetanβ=30Mgluino=600GeV/c2

( ) ( )≈ 2 3

R L

i(φ -φ )2 2d l23 23m m e% %

Acpmix(Xsγ)

Acpmix(φKs)

Acpdir(Xsγ)

Br(Xsγ)

AFB(Xsll)

SUSY GUTrelation

Correlation tob s

Page 29: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

SummarySuper-B is an unique facility to provide O(1010)

B and τ in clean environment (5 50ab-1)

The Mission

Page 30: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

30

SummarySuper-B is an unique facility to provide O(1010)

B and τ in clean environment (5 50ab-1)

The Mission

Synergy to LHC (need more studies)

Theoretical limitation ? Detector feasibility

Page 31: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

1032/1019

1015/100

温度/E(K/GeV)

1012/0.1

1028/1015

10-44

10-36

10-10

10-5

時間(秒)

Particle Physics

l

lq

WZ

?X

H

q

nnp

p

Big Bang !

νν

qq qq q

qq qq q

qq

Standard Model

New Physics ~1 TeV

Dark Matter(23%)Dark Energy (73%)

Baryogenesis

SUSYHiggs

WMAP

String

Gauge Theory

GUT

Hadrons

Inflation

CP Violation

Neutrino Mass

Quark/Lepton

Nuclei

Cosmology

New hadrons?Nucleo-synsesisQGP

Accelerator frontier

(Energy/Luminosity)Physics at Super-KEKB/BelleNew Origin of Flavor Mixing and CPV

Elucidation of NP Scenario

Physics at Super-KEKB/BelleNew Origin of Flavor Mixing and CPV

Elucidation of NP Scenario

Particle Physics at Higher Energyat TeV (Higgs, SUSY…), GUT

Synergy with HE frontier andother flavor physics exp’s

Synergy with HE frontier andother flavor physics exp’s

CosmologyBaryogenesis

Hadron PhysicsNew states

Super-B hasSignificant impact on particle physics in LHC era

Links to other fields

We should convince community in and around HEP the importance of Super-B.

Page 32: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

32

Backup Slides

Page 33: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

33

KEKB Upgrade Scenario

~1010 BB/year !!& similar number

of τ+τ-

Lpeak = 1.4×1034cm-2s-1

Ltot = 330fb-1 (Nov.30, 2004)

1.4x1034

330 fb-15x1034

~1 ab-15x1035

~10 ab-1Lpeak (cm-2s-1)Lint

Crabcavities

Major upgrade ofKEKB & Belle detector(>1yr shutdown)

world records !

Page 34: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

34

Pattern of Deviation from SMUnitarity triangle Rare decay Y.Okada

Bd-unitarity

ε ∆ m(Bs) B->φKs B->Msγindirect CP

b->sγdirect CP

mSUGRA- - - - - +

SU(5)SUSY GUT + νR

(degenerate)- + + - + -

SU(5)SUSY GUT + νR

(non-degenerate)- - + ++ ++

+

U(2) Flavor symmetry + + + ++ ++ ++

++: Large, +: sizable, -: small

Page 35: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

35

UT vs SUSY models

φ3 (degree)

∆m(Bs)/∆m(Bd)

mSUGRAtanβ=30

U(2)tanβ=30

SU(5)+νRtanβ=30degenerate

SU(5)+νRtanβ=30non-degenerate

5ab-1

50ab-1

Page 36: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

36

CP Asymmetries in B −>φ Ks and b−> sγ

Direct asymmetry in b −> s γ

CP asymmetry in B −>φ Ks

CP asymmetry in B −> K*γ

Page 37: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

37

Agashe,Perez,Soni,hep-ph/0406101(PRL); hep-ph/0408134SUSY vs. Warped Extra Dimensions

B(B Xsl+l-) = (4.5±1.0) x 10-6 (present WA)also constrains RR and LL mass insertions: i.e. related to S(φKs)

at LHCb SuperKEKB

“DNA Identification” of New Physics from Flavor Structure

Page 38: Highlights of Super-KEB Physics LoI · What is the NP scenario ? Orthogonality of B physics to LHC The squark/slepton mass matrix Sensitive to SUSY breaking mechanism. ()2 q ij m%

38

Search for New Hadrons

→+ +B XK+ -π π J/ψ

X(3872)

Observation of a New Narrow Charmonium State…PRL 91, 262001 (2003)

Observation of double cc production in e+e- annihilation…PRL 89, 142001 (2002)

Observation of DsJ(2317) and DsJ(2457) in B decaysPRL 89, 142001 (2002)

DsJ(2317)

DsJ(2457)

ηc χc0

ηc (2S)

pKS

pK-Λ(1520)

Θ(1540) pK-

e+e- many KInteraction with material

Pentaquark searchin various methods

→ 0 +cB Θ pπ

D-p

Charmed partner


Recommended