+ All Categories
Home > Documents > History of IGM

History of IGM

Date post: 13-Jan-2016
Category:
Upload: lynnea
View: 22 times
Download: 0 times
Share this document with a friend
Description:
History of IGM. F(HI) = 0. C.Carilli (NRAO) Heidelberg 05. F(HI) = 1. Epoch of Reionization (EoR). last phase of cosmic evolution to be tested bench-mark in cosmic structure formation indicating the first luminous structures. F(HI) = 1e-5. z=5.80. z=5.82. z=5.99. z=6.28. - PowerPoint PPT Presentation
Popular Tags:
48
History of IGM last phase of cosmic evolution to be tested bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) Heidelberg 05 F(HI) = 0 F(HI) = 1 F(HI) = 1e-5
Transcript
Page 1: History of IGM

History of IGM

•last phase of cosmic evolution to be tested

•bench-mark in cosmic structure formation indicating the first luminous structures

Epoch of Reionization (EoR)

C.Carilli (NRAO) Heidelberg 05

F(HI) = 0

F(HI) = 1

F(HI) = 1e-5

Page 2: History of IGM

z=5.80

z=5.82

z=5.99

z=6.28

The Gunn Peterson Effect

Fan et al 2003

End of reionization f(HI) > 0.001 at z = 6.3

=> opaque at _obs<0.9m

Page 3: History of IGM

Fan + 2005; White + 2005

Near-edge of reionization: GP Effect

Fairly Fast:• f(HI) > 1e-3 at z >= 6.3 (0.87Gyr)

• f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr)

Although cf. Songaila, Oh, Stern, Malhotra…

Page 4: History of IGM

Neutral IGM evolution (Gnedin 2004): ‘Cosmic Phase transition’ at z=6 to 7

Normalization: GP absorption, LCDM + z=4 LBGs, T_IGM

8 Mpc (comoving)

Page 5: History of IGM

CMB Temperature fluctuations imprinted by primordial density fluctuations at last scattering (z=1000)

Large scale polarization: Thompson scattering at EoR

e = 0.17 =>

F(HI) < 0.5 at z=17

WMAP Large scale polarization of CMB (Kogut et al.)

20deg

Page 6: History of IGM

GP + CMB => ‘complex’ reionization extending from z=20 to 6?

Limitations of current measurements:

CMB polarization: -- _e = Ln_ee = integral measure through universe=> allows many reionization scenarios

Gunn-Peterson effect: -- _Lya >>1 for f(HI)>0.001-- High z universe is opaque at (observed) optical wavelengths

Reionization occurs in ‘twilight zone’, observable at near-IR through radio wavelengths

Page 7: History of IGM

Radio astronomical probes of the Epoch of Reionization and the 1st luminous objects

1. CMB: large scale polarization + secondary anisotropies

2. Objects within EoR – Molecular gas, dust, star formation, process of reionization

3. Neutral IGM – HI 21cm emission and absorption

Collaborators

USA – Carilli, Walter, Fan, Strauss, Owen, Gnedin, Lo

Euro – Bertoldi, Cox, Menten, Omont, Beelen

SKA Key Program science team– Briggs, Carilli, Furlanetto, Rawlings

Science with the Square Kilometer Array (NAR, Carilli & Rawlings) http://www.skatelescope.org/pages/page_astronom.htm

Page 8: History of IGM

IRAM 30m + MAMBO: sub-mJy sens at 250 GHz + wide fields dust

IRAM PdBI: sub-mJy sens at 90 and 230 GHz + arcsec resol. mol. gas

VLA: uJy sens at 1.4 GHz star formation

VLA: < 0.1 mJy sens at 20-50 GHz + 0.2” resol. mol. gas (low order)

Page 9: History of IGM

Magic of (sub)mm: distance independent method of studying objects in universe for z=0.8 to 8

L_FIR = 4e12 x S_250(mJy) L_sun

SFR = 1e3 x S_250 M_sun/yrRadio-FIR (Yun+ 02)

FIR = 1.6e12 L_sun

Page 10: History of IGM

• z>4: 950 known • z>5: 52 • z>6: 8• 30 at z~6 expected in

the whole survey

M_B < -26 =>

L_bol > 1e14 L_sun

M_BH > 1e9 M_sun

High Redshift QSOs: SDSS, DPSS (Fan 2005)

Page 11: History of IGM

QSO host galaxies – M_BH – relation

• Most (all?) low z spheroidal galaxies have SMBH: M_BH=0.002M_bulge

‘Causal connection between SMBH and spheroidal galaxy formation’ (Gebhardt et al. 2002)?

Luminous high z QSOs have massive host galaxies (1e12 M_sun)

Page 12: History of IGM

• 30% of luminous QSOs have S_250 > 2 mJy, independent of redshift from z=1.5 to 6.4

• L_FIR =1e13 L_sun = 0.1 x L_bol: Dust heating by starburst or AGN?

MAMBO surveys of z>2 DPSS+SDSS QSOs

1148+52 z=6.4

1048+46 z=6.2

1e13L_sun

Arp220

Page 13: History of IGM

L_FIR vs L’(CO)

M(H_2) = X * L’(CO), X=4 (Milkyway), X=0.8 (ULIRGs)

Telescope time: t(dust) = 1hr, t(CO) = 10hr

Index=1.7

Index=1

1e11 M_sun

1e3 M_sun/yr

High-z sources

Page 14: History of IGM

VLA detections of HCN 1-0 emission

n(H_2) > 1e5 cm^-3 (vs. CO: n(H_2) > 1e3 cm^-3)

z=2.58

Solomon et al

index=1

70 uJy

Page 15: History of IGM

•highest redshift quasar known•L_bol = 1e14 L_sun•central black hole: 1-5 x 109 Msun (Willot etal.)•clear Gunn Peterson trough (Fan etal.)

Objects within EoR: QSO 1148+52 at z=6.4

Page 16: History of IGM

Cosmic (proper) time

T_univ = 0.87Gyr

Page 17: History of IGM

1148+52 z=6.42: Dust and Gas detection

Off channelsRms=60uJy

46.6149 GHzCO 3-2

• Dust formation: 1.4e9yr (AGB winds) > t_univ (8.7e8yr) => dust formed in high mass stars? => silicate grains?

• C, O production (3e7 M_sun): few e8 yr => Star formation started early (z = 10)?

L_FIR = 1.2e13 L_sun, M_dust =7e8M_sunM(H_2) = 2e10 M_sun

S_250 = 5.0 +/- 0.6 mJy

Page 18: History of IGM

IRAM Plateau de Bure

• FWHM = 305 km/s• z = 6.419 +/- 0.001

(3-2)

(7-6)

(6-5)

• Tkin=100K, nH2=105cm-3

Typical of starburst nuclei (eg. NGC253, Arp220)

Page 19: History of IGM

VLA imaging of CO3-2 at 0.4” and 0.15” resolution

Separation = 0.3” = 1.7 kpc

T_B = 20K Typical of starburst nuclei

Merging galaxies?

rms=50uJy at 47GHz

CO extended to NW by 1” (=5.5 kpc) tidal(?) feature

Page 20: History of IGM

1148+5251: radio-FIR SED

Star forming galaxy characteristics: radio-FIR SED, Gas/Dust, CO excitation and T_B => Coeval starburst/AGN? SFR = 1e3 M_sun/yr

Stellar spheroid formation in few e7 yrs = e-folding time for SMBH

=> Coeval formation of galaxy/SMBH at z = 6.4 ?

S_1.4= 55 +/- 12 uJy

1048+46

Beelen et al.

T_D = 50 K

Page 21: History of IGM

•M(dust) = 7e8 M_sun

•M(H_2) = 2e10 M_sun

•M_dyn (r=2.5kpc) = 5e10 M_sun

•M_BH = 3e9 M_sun => M_bulge = 1.5e12 M_sun

• Gas/dust = 30, typical of starburst

• Dynamical vs. gas mass => baryon dominated?

• Dynamical vs. ‘bulge’ mass => M –breaks-down at high z? [SMBH forms first?]

1148+52: Masses

Page 22: History of IGM

Cosmic Stromgren Sphere

• Accurate redshift from CO: z=6.419+/0.001Ly a, high ioniz Lines: inaccurate redshifts (z > 0.03)

• Proximity effect: photons leaking from 6.32<z<6.419

z=6.32

•‘time bounded’ Stromgren sphere: R = 4.7 Mpc

t_qso= 1e5 R^3 f(HI)= 1e7yrs

White et al. 2003

Page 23: History of IGM

Loeb & Rybicki 2000

Page 24: History of IGM

z>6 QSOs with MgII and/or CO redshifts (Wyithe et al. 05)

<z> = 0.08 => <R> = 4.4 Mpc

Page 25: History of IGM

Constraints on neutral fraction at z=6.4 ? GP => f(HI) > 0.001

If f(HI) = 0.001, then t_qso = 1e4 yrs – implausibly short given QSO fiducial lifetimes (1e7 years)?

Probability arguments suggest: f(HI) > 0.1

Wyithe et al. 2005

t_qso/1e7 yrs

90% probability x(HI) > curve

P(>x_HI)

10%

Page 26: History of IGM

Near-edge of reionization: GP + Cosmic Stromgren Spheres

Very Fast?• f(HI) > 1e-1 at z > 6.4 (0.87Gyr)

• f(HI) < 1e-4 at z < 5.7 (1.0 Gyr)

See also Cosmic Stromgren Surfaces (Mesinger & Haiman 2004 but cf. Oh & Furnaletto 2005)

Page 27: History of IGM

Molecular Gas and dust during the EoR

• FIR luminous galaxy at z=6.42: 1e13 Lsun observe dust, gas, star formation, AGN

• Sub-kpc imaging: Merging galaxy: M_gas= 2x1010 M_sun, M_dyn=6e10 M_sun

• Early enrichment of heavy elements and dust produced => star formation 0.4 Gyr after the big bang

• High z: Coeval formation of SMBH + stars and break-down of M- at high z?

• Cosmic Stromgren sphere = 4.7 Mpc => ‘witnessing process of reionization’ t_qso = 1e7 * f(HI) yrs ‘fast’ reionization: f(HI)>0.1 at z=6.4?

Page 28: History of IGM

Continuum sensitivity of future arrays: Arp 220 vs z (FIR = 1.6e12 L_sun)

cm: Star formation, AGN

(sub)mm: Dust, molecular gas

Near-IR: Stars, ionized gas, AGN

Page 29: History of IGM

Studying the pristine IGM beyond the EOR: redshifted HI

21cm observations (100 – 200 MHz) with the Square Kilometer Array. ‘Pathfinders’: LOFAR, MWA, PAST, VLA-VHF,…

SKA goal: Jy at 200 MHz Large scale structure: density, f(HI), T_spin

Page 30: History of IGM

Low frequency background – hot, confused sky

Eberg 408 MHz Image (Haslam + 1982)

Coldest regions: T = 100z)^-2.6 K

Highly ‘confused’: 3 sources/arcmin^2 with S_0.2 > 0.1 mJy

Page 31: History of IGM

Interference

100 MHz z=13

200 MHz z=6

Ionospheric phase errors

TIDs – ‘fuzz-out’ sources

‘Isoplanatic patch’ = few deg = few km

Phase variation proportional to wavelength^2

74MHz Lane 03

Page 32: History of IGM

Global reionization signature in low frequency HI spectra

(Gnedin & Shaver 2003)

double

fast21cm ‘deviations’ at

1e-4 wrt foreground

Spectral index deviations of 0.001

Page 33: History of IGM

HI 21cm Tomography of IGM Zaldarriaga + 2003

z=12 9 7.6

T_B(2’) = 10’s mK

SKA rms(100hr) = 4mK

LOFAR rms (1000hr) = 80mK

Page 34: History of IGM

Power spectrum analysis

Zaldarriaga + 2003

LOFAR

SKA

Z=10

129 MHz

2deg 1arcmin

Page 35: History of IGM

N(HI) = 1e13 -- 1e15 cm^-2, f(HI/HII) = 1e-5 -- 1e-6

=> Before reionization N(HI) =1e18 – 1e21 cm^-2

Cosmic Web after reionization = Ly alpha forest ( <= 10) 1422+23 z=3.62 Womble 1996

• radio G-P (=1%)

• 21 Forest (10%)

• mini-halos (10%)

• primordial disks (100%)

• expect 0.05 to 0.5 deg^-2 at z> 6 with S_151 > 6 mJy (Carlli,Jarvis,Haiman)

z=12 z=8

Cosmic web before reionization: HI 21Forest

20mJy

130MHz

Page 36: History of IGM

‘Pathfinders’: PAST, LOFAR, MWA, VLA-VHF, …

MWA prototype (MIT/ANU)

LOFAR (NL)

PAST (CMU/China) VLA-VHF (CfA/NRAO)

Page 37: History of IGM

VLA-VHF: 180 – 200 MHz Prime focus X-dipole Greenhill, Blundell (SAO Rx lab); Carilli, Perley (NRAO)

Leverage: existing telescopes, IF, correlator, operations

$110K D+D/construction (CfA)

First light: Feb 16, 05

Four element interferometry: May 05

First limits: Dec 05

Page 38: History of IGM

Main Experiment: Cosmic Stromgren spheres around z=6 to 6.5 SDSS QSOs (Wyithe & Loeb 2004)

VLA-VHF 190MHz 250hrs

15’

20 f(HI) mK

0.50+/-0.12 mJy

VLA spectral/spatial resolution well matched to expected signal: 7’, 1000 km/s

Set first hard limits on f(HI) at end of cosmic reionization (f(HI) < 0.3)

Easily rule-out cold IGM (T_s < T_cmb): signal = 360 mK

Page 39: History of IGM

Other Experiments: power spectrum analysis, ‘HI 21cm forest’

2deg

Page 40: History of IGM

First sidelobe = 14% (goal < 5%)

Efficiency = 28% (goal: 50%)

Xpol = 20% (goal: 5%)

T_sys = 50 (Rx) + 150 (sky) K

FoV = 12 deg^2

rms/chan= 0.12mJy in 250 hrs (goal)

Correlator: 0.8MHz/chan, 16 chan, 2 pol.

System characteristics

4deg

3C313 --first image

Page 41: History of IGM

Main hurdle: Interference!

Digital TV: 186 to 192MHz, 200 W from ABQ

KNMD Ch 9 Digital TV

Page 42: History of IGM

Radio astronomy – Probing the EoR

•‘Twilight zone’:physics of 1st luminous sources (limited to near-IR to radio wavelengths)

•Currently limited to pathological systems (‘HLIRGs’)

•EVLA, ALMA 10-100x sensitivity is critical to study normal galaxies

•Low freq pathfinders: HI 21cm signatures of neutral IGM

•SKA imaging of IGM

z

Page 43: History of IGM

PKS 2322+1944 z=4.12: [CI] (492 GHz rest freq; Pety et al.)

=> Solar Metalicity

PdBI

VLA CO2-1

Page 44: History of IGM

GMRT 228 MHz – HI 21cm abs toward highest z radio galaxy, 0924-220 z=5.2

rms/(40km/s chan) = 5 mJy

z(CO)

230Mhz

point source = 0.55 Jy;

8GHz

1”

Van Breugel et al.

RFI = 20 kiloJy !

Page 45: History of IGM

Richards et al. 2002SDSS QSOs1000km/s => z = 0.03

Page 46: History of IGM

J1048+4637: A second FIR-luminous QSO source at z=6.2

S_250 = 3.0 +/- 0.4 mJy=> L_FIR=7.5e12 L_sun

z(MgII)GBT/EVLA/ALMA/LMT correlator: 8–32 GHz, 16000 channels

z(opt)

VLA CO(3-2)

Page 47: History of IGM

Gunn-Peterson effect

Barkana and Loeb 2001

Page 48: History of IGM

Complex reionization example: Double reionization? (Cen 2002; cf. Furlanetto, Gnedin,…)

Pop III stars in ‘mini-halos’ (<1e7 M_sun)

‘normal’ galaxies (>1e8M_sun)

Recombination time < hubble time at z > 8

Stellar fusion produces 7e6eV/H atom, reionization requires 13.6eV/H atom =>Need to process only 1e-5 of baryons through stars to reionize the universe


Recommended