+ All Categories
Home > Documents > Hogy Számol a Külföldi Extrudert

Hogy Számol a Külföldi Extrudert

Date post: 21-Feb-2018
Category:
Upload: hardi-i
View: 214 times
Download: 0 times
Share this document with a friend

of 71

Transcript
  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    1/71

    1

    Extrusion and Injection Molding -Analysis

    ver. 1

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    2/71

    2

    Overview

    Extrusion and Injection molding Flow in screw

    Flow in cavity or die

    Injection molding Clamp force

    Cooling time

    Ejection force

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    3/71

    3

    Extrusion schematic

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    4/71

    4

    Injection molding schematic

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    5/71

    5

    Schematic

    hopper

    heaters

    barrel

    screw

    nozzleclamp

    mold

    cavity

    pellets

    motor /

    drive

    throat

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    6/71

    6

    Flow in screw -

    Extrusion and Injection molding

    Understood through simple fluid

    analysis

    Unroll barrel from screw

    rectangular trough and lid

    w/cosqH

    vx vz

    v=pDN

    q

    w is like normal pitch

    w/cosqis like axial pitch

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    7/71

    7

    Flow analysis

    Barrel slides across channel at the helixangle

    vz= pumping

    vx= stirring

    w/cosqH

    vx vz

    v=pDN

    q

    w is like normal pitch

    w/cosqis like axial pitch

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    8/71

    8

    Flow rate

    vzshows viscous traction work against

    exit pressure

    flow rate = f(exit pressure, vbarrel, m, d, w, l)

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    9/71

    9

    Flow analysis

    Simplify by using Newtonian fluid

    Separate into drag and pressure flows

    Add solutions (superposition)

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    10/71

    10

    Drag flow in rectangular channel (QD)

    Simple viscous flow between parallelplates, end effects negligible

    vo

    y H

    H

    yvv0

    wHvAvQD 2

    10

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    11/71

    11

    Pressure flow in rectangular channel

    Assumptions

    no slip at walls

    melt is incompressible

    steady, laminar flow

    end and side wall effects are negligible

    p p + dp

    dz

    y

    z

    2y

    t

    t

    hopper exit

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    12/71

    12

    Pressure flow in rectangular channel

    Equilibrium

    p p + dp

    dz

    y

    z

    2y

    t

    t

    hopper exit

    022 dzydppp t

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    13/71

    13

    Pressure flow in rectangular channel

    022 dzydppp t

    dz

    dpy t

    dydv mm

    Newtonian fluid

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    14/71

    14

    Pressure flow in rectangular channel

    Eliminating t

    Integrating and noting

    @ y = +/- H/2, v= 0

    dyy

    dz

    dpdv

    m

    1

    28

    1 22 yH

    dz

    dpv

    m

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    15/71

    15

    Total pressure flow (Qp)

    dz

    dpwH

    dyvwQ

    H

    Hp

    2

    2

    3

    12m

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    16/71

    16

    Total flow (Q)

    dp/dz set by

    back pressure on reciprocating screw (injection

    molding)

    die resistance (extrusion)

    dz

    dpHHvwQQQ zpD

    m122

    3

    f(screw speed) f(pressure drop)

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    17/71

    17

    Nomenclature

    dz = helical length = axial length/sinq

    vz= helix velocity = vbarrel*cosq

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    18/71

    18

    Flow rate

    flowrate

    output pressure

    w

    2w

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    19/71

    19

    Schematics

    Injection molding

    Extrusion

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    20/71

    20

    Flow in round die or runner

    dr

    dz

    r

    z

    t+ dt

    t

    pp + dp

    dzrddrrdprdrr tttpp 2][ 22

    Equilibrium

    Same assumptions as above

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    21/71

    21

    Flow in round die or runner

    Neglecting HOT

    dzdrdrdpdrr ttpp 22

    dzrddrrdprdrr tttpp 2][ 22

    drrrd

    drrdrdr

    dzdp

    ttt

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    22/71

    22

    Flow in round die or runner

    drCrrd t

    drr

    rd

    L

    p

    dz

    dp

    tC

    drCrrdt

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    23/71

    23

    Flow in round die or runner

    r

    L

    pr

    C

    22

    t

    2

    2rCrt

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    24/71

    24

    Flow in round die or runner

    At center, t= 0

    At edge of tube (R), t= max

    L

    Rp

    2max

    t

    dr

    dumt

    Newtonian fluid

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    25/71

    25

    Flow in round die or runner

    m

    L

    rp

    dr

    du

    2

    finally

    22

    4 RrL

    p

    u

    m

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    26/71

    26

    Flow in round die or runner

    L

    pRdrurQ

    R

    p

    0

    4

    8

    2

    m

    pp

    224

    RrL

    pu

    m

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    27/71

    27

    Flow in rectangular die or runner

    as above

    L

    pwHQp

    m12

    3

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    28/71

    28

    Extrusion

    Pressure generated by screw rotation

    flow rate through screw =

    flow rate through die

    Q(extruder) = Q(die)

    pressure rise in screw = pressure drop in

    die

    dp(extruder) = p(die)

    ME 6222: Manufacturing Processes and SystemsProf. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    29/71

    29

    Extrusion - Ex. 1-1

    Extrude a polymer through a die with

    dimensions diameter 5 mm, length 40

    mm at rate 10 cm/s

    Screw is fixed, barrel rotates

    More data on next page

    Calculate barrel RPM

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    30/71

    30

    polymer density (r= 980 kg/m3

    polymer viscosity (m) = 103N-s/m2

    barrel diameter (D) = 28 mm channel width (w) = 21 mm

    channel height (H) = 4 mm

    helix angle (q) = 15 degrees length of screw (L) = 1.25 m

    Extrusion - Ex. 1-2

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    31/71

    31

    Extrusion - Ex. 1-3

    First, calculate flow rate

    smAvQproduct /1096.1

    4

    005.01.0 36

    2

    p

    dz

    dpHHvwQ zscrew

    m122

    3

    L

    pRQdie

    m

    p

    8

    4

    pdp

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    32/71

    32

    Extrusion - Ex. 1-4

    Substituting, equating, solving

    dieproduct QQ

    04.0108

    2

    005.0

    1096.13

    4

    6 p

    p

    MPap 1.5

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    33/71

    33

    Extrusion - Ex. 1-5

    Substituting, equating using p, solving

    screwproduct QQ

    ml

    dz 83.4

    15sin

    25.1

    sin

    q

    83.4

    101.5

    1012

    004.0

    2

    004.0021.01096.1

    6

    3

    36 zv

    smmvz /5.49

    solving

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    34/71

    34

    Extrusion - Ex. 1-6

    Solving for RPM

    smmv

    v zbarrel /2.51

    15cos

    5.49

    cos

    q

    RPMD

    vN barrel 35

    28

    2.516060

    pp

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    35/71

    35

    Injection molding cycle

    1. To make a shot: use screw (extruder)

    equation for flow rate (Q) to produce a

    shot volume (vol = Q*t).

    back pressure gives dp term

    time (t) bounded by cycle time (upper)

    and degradation of material (lower)

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    36/71

    36

    2. To inject the plastic: use pressure flow

    equations and injection pressure (p)

    or injection time (t) and volume to be

    filled (shot volume) to determine flow

    rate (Q) and hence time (t) or injection

    pressure (p) required to fill mold

    injection time (t) will be limited by freezingof plastic and degradation of material

    Injection molding cycle

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    37/71

    37

    Injection Molding - Ex. 2-1

    Injection mold a polymer in a steel tool Model the sprue, runner and part as a

    cylinder of diameter 10 mm, length 150

    mm Determine the screw RPM to make a

    shot in less than 3 seconds (screwrotates)

    Determine the injection pressure tomake the part in 2 seconds

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    38/71

    38

    polymer density (r= 980 kg/m3

    polymer viscosity (m) = 103N-s/m2

    barrel diameter (D) = 28 mm channel width (w) = 21 mm

    channel height (H) = 4 mm

    helix angle (q) = 15 degrees length of screw (L) = 1.25 m

    Injection Molding - Ex. 2-2

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    39/71

    39

    Injection Molding - Ex. 2-3

    Screw RPM calculation

    Back pressure = 15 MPa

    Assume 3 seconds to make shot

    Calculate Q

    smmtime

    lr

    time

    volQ /927,33

    1505 322

    pp

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    40/71

    40

    Injection Molding - Ex. 2-4

    Screw RPM calculation

    dz

    dpHHvwQ zscrew

    m122

    3

    qcosscrewz vv

    60DNvscrew p

    qsin

    ldz

    heightchanneldiameterbarrelD

    mmD

    2

    204228

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    41/71

    41

    Injection Molding - Ex. 2-5

    Substituting values, solving

    15sin

    250,11015

    10124

    2415cos602021927,3

    6

    3

    3

    N

    p

    N = 101 RPM

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    42/71

    42

    Injection Molding - Ex. 2-6

    Injection pressure calculation

    Part injection is pressure driven

    LpRQmold

    mp8

    4

    smm

    time

    volQ /891,5

    2

    1505 32

    p

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    43/71

    43

    Injection Molding - Ex. 2-7

    Substituting, equating, solving

    150108

    5

    891,5 3

    4p

    p

    psiMPap 5226.3

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    44/71

    44

    Power law viscosity

    k, n are consistency and

    power law index

    1 nk m log mo

    n-11

    log

    log

    m

    n

    k mt

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    45/71

    45

    Non-Newtonian, pressure driven flow

    in rectangular channel

    NB: drag flow analysis is similar to the following

    n

    n

    H

    y

    vv

    1

    0

    2

    1

    dyH

    y

    wvQ

    H

    n

    n

    2

    0

    1

    0

    2

    12

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    46/71

    46

    Non-Newtonian, pressure driven flow

    in rectangular channel

    n

    n

    n H

    n

    n

    Lk

    pwQ

    121

    212

    2

    n

    n

    nave

    H

    n

    n

    Lk

    p

    wH

    Qv

    11

    212

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    47/71

    47

    Non-Newtonian, pressure driven flow in

    round channel

    nn

    nn

    n

    R

    rR

    Lk

    p

    n

    nu

    111

    121

    n

    nnR

    Lk

    p

    n

    nQ

    131

    213

    p

    n

    nn

    ave RLk

    p

    n

    n

    R

    Qv

    11

    2 213

    p

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    48/71

    48

    Example3-1

    Compare Newtonian and Non-Newtonian, pressure driven fluid flow ina rectangular channel

    Given

    H = 2 mm, w = 15 mm, L = 50 mm

    Q = 60 cm3/s= 6 x 10-5m3/s

    m= 100 Pa-s @ d/dt = 3000/s (Newtonian

    viscosity) k = 12198, n = 0.4

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    49/71

    49

    Example3-2

    s

    m

    wH

    Qvave 2

    002.0015.0

    106 5

    MPa

    wH

    LQp 30

    002.0015.0

    10605.010012123

    5

    3

    m

    First, determine the Newtonian flow properties

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    50/71

    50

    Example3-3

    28

    1 22 yH

    L

    pv

    m

    s

    m

    L

    Hpvvy

    305.01008

    002.01030

    8

    262

    0max

    m

    (max at y=0 because this gives the greatest value)

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    51/71

    51

    Example3-4

    For non-Newtonian flow, determine thep needed for Q = 6 x 10-5m3/s and vave= 2 m/s.

    n

    n

    nave

    Hnn

    Lkp

    wHQv

    11

    212

    4.0

    14.0

    4.0

    1

    2002.0

    14.024.0

    05.0121982

    p

    sm

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    52/71

    52

    Example3-5

    solving

    MPap 3.23

    and

    78.030

    3.23

    Newtonian

    Newtoniannon

    p

    p

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    53/71

    53

    Example3-6

    For non-Newtonian flow, determine Q

    for p = 30 MPa.

    s

    m

    vave 77.32

    002.0

    14.02

    4.0

    05.012198

    1030 4.014.0

    4.0

    16

    s

    mHwvQ ave

    35103.11002.0015.077.3

    88.1106

    103.115

    5

    Newtonian

    Newtoniannon

    Q

    Q

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    54/71

    54

    Example3-7

    One can see the effect of shear-thinning

    reduction in pressure needed to maintain a

    flow increase in flow with a constant pressure

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    55/71

    55

    Clamp force

    Typically 50 tons/oz of injected material Can be approximated by

    injection pressure x projected area of part

    at parting line

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    56/71

    56

    Cooling in a mold

    Assume 1-D heat conduction

    Assume mold conducts much better thanplastic (Biot > 1)

    Center temperature important

    2

    2

    x

    T

    t

    T

    T = temperature

    t = time

    = thermal diffusivity=k/rc

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    57/71

    57

    Cooling in a mold

    2x

    tFo

    k

    hxBi

    WM

    WE

    TTTT

    Fo

    2

    2

    TE= ejection temp

    TM= injection temp

    TW= mold wall temp

    2l = thickness of part

    l

    x

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    58/71

    58

    Cooling in a mold

    Solution

    must be approximated or solved numerically

    oddn

    nFo

    n

    nFo

    ,

    2

    2sin

    2exp

    14,

    pp

    p

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    59/71

    59

    Minimum cooling time - tc

    Approximation for time taken (tc) forcenter of flat sheet (thickness, 2l) to

    reach ejection temperature (TE)

    WE

    WMc

    TT

    TTlt

    pp

    4ln

    42

    2

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    60/71

    60

    Minimum cooling time - Ex. 4-1

    = thermal diffusivity ~ 10-7m2/s

    2l= plate thickness ~ 3 x 10-3m

    TW= mold wall temperature ~ 50oC

    TM= melt temperature ~ 250oC TE= ejection temperature ~ 100

    oC

    Minimum cooling time for the center line toreach TE

    tc~ 15 sec.

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    61/71

    61

    Minimum cooling time - tc

    Approximation for cylinder (radius = r), solvedsimilarly to the plate

    WE

    WMc

    TT

    TTrt 7.1ln

    7.12

    2

    p

    2r

    tFo

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    62/71

    62

    Non-isothermal flow

    Flow rate characteristic time constant:

    t= 1/t ~ V/Lx

    Heat transfer rate characteristic time constant:

    t= 1/t ~ /Lz2

    Small numbers give short shots

    thick runners needed

    ratio should be greater than one for filling

    x

    zz

    x

    z

    L

    LLV

    L

    LV

    ratetransferHeat

    rateFlow

    2

    ~

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    63/71

    63

    25.21.0

    0015.0

    /10

    0015.0/01.0~

    27

    m

    m

    sm

    msm

    ratetransferHeat

    rateFlow

    Non-isothermal flow

    So, the mold should fill.

    1 cm/s10 cm

    3 mmXY

    Z

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    64/71

    64

    Limits on ejection temperature

    Plastic must be cool enough to

    withstand ejection force from ejection

    pins without breaking Plastic must be cool enough so that

    upon further cooling will not warp

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    65/71

    65

    Ejection force

    Ejection pins force the part out of the

    mold after the part has cooled and

    solidified enough.

    The part will shrink onto any cores,

    leading to an interference fit.

    Model as a thin walled cylinder with

    closed ends (plastic part) on a rigid core

    (metal mold).

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    66/71

    66

    Thin-walled cylinder with closed ends

    12

    t

    pdt

    24

    t

    pda

    30 r

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    67/71

    67

    Biaxial strain

    tE

    pd

    tE

    pd

    EE 42

    211

    t

    d

    t

    d

    E

    p

    421

    T1

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    68/71

    68

    Ejection force

    t

    d

    t

    d

    TEp

    42

    ApFejection m

    m

    td

    td

    TAEFejection

    42

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    69/71

    69

    Nomenclature

    A = area

    d = core diameter

    E = Youngs

    modulus

    p = pressure

    t = part thickness

    = thermal

    expansion

    coefficient

    T = temperaturedifferential

    = Poissons ratio

    m= frictioncoefficient

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    70/71

    70

    Summary

    Extrusion and Injection molding Flow in screw

    Flow in cavity or die

    Injection molding Clamp force

    Cooling time

    Ejection force

    ME 6222: Manufacturing Processes and Systems

    Prof. J.S. Colton GIT 2011

  • 7/24/2019 Hogy Szmol a Klfldi Extrudert

    71/71


Recommended