+ All Categories
Home > Documents > Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography...

Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography...

Date post: 06-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
31
Holographic Tomography Holographic Tomography 2.710 Project Presentation - Spring 2009 Aditya Bhakta Danny Codd Dept. of Mechanical Engineering, MIT
Transcript
Page 1: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Holographic TomographyHolographic Tomography2.710 Project Presentation ­ Spring 2009

Aditya Bhakta

Danny Codd

Dept. of Mechanical Engineering, MIT

Page 2: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Outline

� Tomography overview

� Radon transforms

� Reconstruction

� Diffraction effects

� Experiments

� Applications

2

Page 3: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

What is tomography? 

Cross sectional imaging from transmission or reflection data Reconstruction from projections

Courtesy of A. C. Kak and Malcolm Slaney. Used with permission.

Kak and Slaney (2001)

3

Page 4: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Radon Transform

Θ x

y

f(x,y)

t

t PΘ(t)

xcosΘ + ysinΘ = t

4

Page 5: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Fourier Slice Theorem

Θ

x

y

t

t

projection

object

Θ

u

v

Fourier Transform

Spatial domain Frequency domain

5

Page 6: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Backprojection Filters

Filter types

u

v

N scans

ω

|H| ramp

Shepp­Logan

cosine

Hamming

Frequency domain

ideal collected filtered

Courtesy of A. C. Kak and Malcolm Slaney. Used with permission.

Kak and Slaney (2001)

6

Page 7: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Example…

FFT Image Transmission Image

= 0 τblack

= 1 τwhite

7

Page 8: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Frequency domain

1

23

Fourier Transform

Scan 1 2

3

Projection Mapping

8

Page 9: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Projection Mapping

Completescanning

9

Page 10: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Number of Projections

Ramp backprojection filter

N = 10 N = 20 N = 36 N = 180

Cosine backprojection filter

10

Page 11: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Noise in Projections

σ = 0 σ = 0.05 σ = 0.10 σ = 0.50

11

Page 12: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

How many objects?

Scan 2

1 2

1 2

Scan 1

Object Radon Transform12

Page 13: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

“Standard” Object

2 31

Shepp­Logan Head Phantom

13

Page 14: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Projections vs. Accuracy

Shepp­Logan Phantom

14

Page 15: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Diffraction Tomography

� Light does not travel along straight rays and a different approach is required

Diffracted field

to model theprojections y

f(x,y)

x

15

Page 16: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Diffraction Tomography… � Fourier Diffraction Theorem:

An object o(x,y) when illuminated by a plane wave, the fourier transform of the projected field measured on the line (TT’) gives the values of the 2D transform of the object along a semicircular arc in the frequency domain (instead of a straight line in non­diffracting case).

Courtesy of A. C. Kak and Malcolm Slaney. Used with permission. Kak and Slaney (2001) 16

Page 17: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

� Short Wavelength limit:

semicircular arc of radius k

(the wave number)

Radius = k0

Diffraction Tomography…

Courtesy of A. C. Kak and Malcolm Slaney. Used with permission. Kak and Slaney (2001) 17

Page 18: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Diffraction Tomography…� Single plane wave provides

exact information up to afrequency of (√2 k0)

� Changing orientation andfrequency of incident planewaves change the frequencydomain arcs to a newposition.

� Low pass version of originalobject – object defined upto amaximum angular frequencyof √2 k0

Courtesy of A. C. Kak and Malcolm Slaney. Used with permission. 18

Page 19: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

3D Experiment

17 projections

Shadow tomography

QuickTime™ and aMotion JPEG OpenDML decompressor

are needed to see this picture.

(0 ≤ Θ < 360º)

19

Page 20: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

3D Experiment

Shadow tomography

100 “slices” 20

Page 21: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

3D Experiment

21

Page 22: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

22

Experiment: Transmission Tomography

Page 23: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Reconstruction Experiment

Transmission tomography

36 projections (0 ≤ Θ < 180º)

23

Page 24: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

24

Reconstruction Experiment

Images spaced over 5 deg

Page 25: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Holographic Reconstruction

25

128 “slices”

Page 26: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Holographic Reconstruction

“Gummi tomography”

26

Page 27: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

27

Tomography Applications

Medical/Biological

Page 28: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Tomography Applications

Also:

� Geology

� Oceanography Images removed due to copyright restrictions. Please see Fig. 4 and 8c,d in

� Astrophysics Midgley, Paul A., and Rafal E.Dunin-Borkowski. "Electron Tomography and Holography in Materials Science." Nature Materials 8 (April 2009): 271-280.

� Non­destructive testing

� Flow fields

Nanomaterials (Midgley & Dunin­Borkowski, 2009) 28

Page 29: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Diffraction effects

Images removed due to copyright restrictions. Please see:

Fig. 12 and 13 in Jonas, P., and A. K. Louis. "Phase Contrast Tomography Using Holographic Measurements." Inverse Problems 20 (2004): 75-102.Fig. 2 and 3 in Watanabe, Norio, and Sadao Aoki. "Three-dimensional Tomography Using a Soft X-rayHolographic Microscope and CCD Camera." Journal of Synchrotron Radiation 5 (1998): 1088-1089.

(Jonas & Louis, 2004) (Watanabe & Aoki, 1998) 29

Page 30: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

Have a good day!

30

Page 31: Holographic Tomography - MIT OpenCourseWare · 3D Experiment 17 projections Shadow tomography QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture. (0

MIT OpenCourseWarehttp://ocw.mit.edu

2.71 / 2.710 Optics Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


Recommended