+ All Categories
Home > Documents > HOLOMORPHIC INTERPOLATION: FROM DYNAMICS TO ANALYSISbcc.impan.pl/15Simons-I/uploads/Prause.pdf ·...

HOLOMORPHIC INTERPOLATION: FROM DYNAMICS TO ANALYSISbcc.impan.pl/15Simons-I/uploads/Prause.pdf ·...

Date post: 04-Feb-2021
Category:
Upload: others
View: 15 times
Download: 0 times
Share this document with a friend
32
HOLOMORPHIC INTERPOLATION: FROM DYNAMICS TO ANALYSIS Warsaw - September 2015 István Prause
Transcript
  • HOLOMORPHIC INTERPOLATION:FROM DYNAMICS

    TO ANALYSIS

    Warsaw - September 2015

    István Prause

  • TOPICS

    variation of dimension of Julia sets

    quasiconvexity and Burkholder’s functional

    rotational estimates for bilipschitz maps

    dimension of quasicircles

  • TOPICS

    variation of dimension of Julia sets

    quasiconvexity and Burkholder’s functional

    rotational estimates for bilipschitz maps

    dimension of quasicircles

    holomorphic interpolation

  • VARIATION OF DIM OF JULIA SETSRansford

    ( ) , ∈ analytic family of rational maps, �

    Corollary:

    D simply connected, hyperbolic

    /dim( )−

    /dim( )−� exp ( , )

    /dim = inf∈H

    ( )Theorem:harmonic functions

    H a collection of

    Pf: − �Harnack

    dim � ,( )−

    ( )−� exp ( , )

    Example:= +

    ∈ Ddim � + | |

  • THERMODYNAMICSvariational principle (Ruelle, Bowen)

    dim( ) = sup∈M

    ( )´

    log | � |

    : →

    = ◦ ◦ −

    dim= inf

    ∈M

    ´

    log | � ◦ |

    ( )

    holomorphic motion

    Mañé-Sad-Sullivan

    harmonic

  • variation of dimension Riesz-Thorin

    holomorphic motions holomorphic exponent

    dimension norm

    variational principle duality

    apriori bounds endpoint estimates

    Harnack’s inequality Hadamard’s three lines theorem

    HOLOMORPHIC INTERPOLATION

  • U

    10

    !! !!

    non-vanishing ( ) �=

    analytic family,

    < , � ∞, ∈ ( , )

    ∈ = { > }( )

    � � �

    � � � �− ·

    �=

    �−+

    INTERPOLATION LEMMA

    � � �

    Astala-Iwaniec-Prause-Saksman

  • Hadamard Harnack

    change p freeze p

    subharmonic harmonic

    duality log-convexity

    !

    !

    !

    � � � · +

    cf. RIESZ-THORIN

  • Burkholder

    MARTINGALE INEQUALITY

    subordinated martingales

    ⇒ �!"�# � (#− !) �$"�#.

    !"(#,$) =�

    |#| − ("− !) |$|�

    ·�

    |#| + |$|�"−!

    E !"(#$, %$) � E !"(#$−!, %$−!) � . . . � "

    !" ≺ #"

    | | − ( − ) | | � ( , )

    | −−

    | ≤ | −−

    | a.s.

  • Morrey

    ! ∈ "+ #∞! (",R$)

    �!

    E(!") �

    �!

    E(#) = E(#)|!|!"#$ ! = %

    E : R!×!

    → R

    ! � ! Šverák

    ! = !

    ? Faraco-Székelyhidi: “localization”

    local

    cal

    global

    !" (#) =� "

    !det # + ("−

    "

    !)�

    �#�

    !�

    · |#|"−!

    Burkholder: rank-one concave!"(#$) = !"($%, $%̄)

    �→ E( + )

    (lower semicontinuity)(ellipticity of Euler-Lagrange)

    Rank-one convexity vs Quasiconvexity

  • Quasiconvexity result

    Theorem:

    ! � !!"(#,$) =�

    |#| − ("− !) |$|�

    ·�

    |#| + |$|�"−!

    !"(#$) = !"($%, $%̄)

    !(") ∈ "+ #∞! ("), $%(&!) � !, " ∈ "�( ) �

    �( ) = | |

    full quasiconvexity� � (C) = −

    Astala-Iwaniec-Prause-Saksman

    ( ) = −��C

    ( )

    ( − )( )

  • STRETCHING vs ROTATION

    stretching rotation

    quasiconformal bilipschitz

    Grötzsch problem John’s problem

    Hölder exponent rate of spiralling

    log J(z,f) ∈ BMO arg f ∈ BMO

    higher integrability exponential integrability

    multifractal spifractal spectrum

    z

    harmonic dependence “conjugate harmonic”

  • MULTIFRACTAL SPECTRA

    dim { ∈ C : ( ) = } ≤ + −| − |

    1/K K1 L-1/L-(L-1/L) 0

    dim { : ( ) = } ≤ −−

    | |

    0

    2

    K-quasiconformal L-bilipschitz

    ( ) = lim| − |= →

    log | ( )− ( )|

    log | − |( ) = lim

    ( ( + )− ( ))

    log | ( + )− ( )|

    : C → C

    Astala-Iwaniec-Prause-Saksman

  • scaling:

    Courtesy of D. Marshall

    multifractal spectrum:

    What about conformal maps?

    (−, +, ) ≤

    − ( + )(

    ++

    )

    −+

    − +

    ?

    multifractality of ω

    ( ) = dimF

    F ( , ) ≈

    Makarov: dim =

  • + | |

    DIMENSION OF QUASICIRCLES

    Example:

    dim ( ) = +log

    | |�

    + · · ·Ruelle:

    = +

    Smirnov:

    =+

    + ¯

    � +

    | |�

    + . . .

    dim (S ) � +

    k-quasiconformal,: C → C � �∞ �

    ( ) = −

    � �

    �,¯

    =

    · −

  • SHARPNESS ?

    1-k²

    1+k1-k

    existence of quasicircle with dim=1+k²

    compressing/expanding

    compr

    conformal map

    lower bound formultifractal spectrum

    ( ) � −

    : D → D

    ( , ) = −( , )

    λµ

    ηµ̄

    (·, ) = ( , ·) =

    dim =

    ∂�∂�̄ (�, �̄)|�= = ⇒ (�, ) =

  • BLASCHKE PRODUCTS

    =

    Blaschke products of degree dwith an attracting fixed point

    D

    Example: ∼= D∈ D

    Julia set = S¹

    quasisymmetrically conjugate to each other

    ( ) =+

    + ¯

  • MATING

    d=2

    F rational map

    Jordan curve

    Example: =+

    + ¯

    cf. Bers’ simultaneous uniformization

    ¯

    | + ∼=

    |−

    ∼=¯

    = [ , ]

  • WEIL-PETERSSON METRICMcMullen

    =

    =

    = [ , ]

    : D∗

    → C

    conformal conjugacy

    ( ) =

    ,= Lebesgue m.

    = =−�

    =

    dim(,)

    =

    dim( ( )) ( �)

  • ASYMPTOTIC VARIANCE

    ( ) = lim sup→ | log( − )|

    �| |=

    | |

    ∈ B

    � � �B

    Example: ( ) =

    ∞�

    =

    =log

    � �B = sup∈D

    ( − | | )| �( )| < ∞

  • Ruelle

    WP METRIC at zd

    ∈ D

    ( ) = ( ) + ( ) ( ) =

    ( ) = −

    ∞�

    =

    −( − )

    , | | > .

    ∈ D∗

    ( ) =

    ∞�

    =

    ( ), + ( ) =−

    ( )

    = +

    = ˙

    ( ) = ( ) +−

    ( ), ( ) = − −

  • WP METRIC at zd

    �( ) =( − )

    ·�

    −( − ) + , ∈ B ∗

    ( �) =( − )

    log

    ( ) is a quasicircle ( has |t|-qc extension)

    quadratic terms in dimension expansion for k-quasicircles

    ( ) = + ( �)| | +O(| | )

    = . . . . . . . .

    = . . . . . . . .

    = . . . . . . . .

    = . . . . . . . .

  • C ( ) =

    �C

    ( )

    ( )

    Find

    pull-back

    Lemma:

    ∗( ) =�

    ( )∗ )�

    ( ) = ( )¯ −

    Proof: ∂̄take and → ∞

    EXPLICIT REPRESENTATION

    , ⊂ D, = C � �∞

    C

    ( )∗�

    ( ) =�

    −�

    C ( )− C ( )�

    , ∈ C

    Astala-Ivrii-Perälä-Prause

  • Building block: ( ) :=�

    /| |�−

    ( , )

    C ( ) =−

    − − −�

    −, | | >

    C =

    + :=∗, C + ( ) =

    −( ) = + ( )

    optimize over r

    :=

    ∞�

    =

    , C =

    optimize over d (d=20)

    −−

    =

    /( −)

    =

    disjoint spt

    EXPLICIT REPRESENTATION

    ( ) = . . . .

  • ∈ D= +

    : D∗ → C conformal conjugacy

    λ-lemma: |t|-qc extension

    Thm: qc extension

    Corollary: 1+0.879 k²

    QUASICONFORMAL EXTENSION

    /( − )

    | |+O(| | )

    ( ) is a k-quasicircle with dimension >

    for k small (d=20)

    Astala-Ivrii-Perälä-Prause

  • ∈ D= +

    : D∗ → C conformal conjugacy

    λ-lemma: |t|-qc extension

    Thm: qc extension

    Corollary: 1+0.879 k²

    QUASICONFORMAL EXTENSION

    /( − )

    | |+O(| | )

    ( ) is a k-quasicircle with dimension >

    for k small (d=20)

    Astala-Ivrii-Perälä-Prause

    Oleg Ivrii’s talk:No k-quasicircles with

    dimension 1+ k²


Recommended