+ All Categories
Home > Documents > Home Page Recollements Hochschild Theory

Home Page Recollements Hochschild Theory

Date post: 03-Feb-2022
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
36
Home Page Title Page Contents Page 1 of 36 Go Back Full Screen Close Quit Recollements & Hochschild Theory Yang Han KLMM, ISS, AMSS, Chinese Academy of Sciences October 2 - 7, 2011, Shanghai.
Transcript

Home Page

Title Page

Contents

JJ II

J I

Page 1 of 36

Go Back

Full Screen

Close

Quit

Recollements & Hochschild Theory

Yang Han

KLMM, ISS, AMSS, Chinese Academy of Sciences

October 2 - 7, 2011, Shanghai.

Home Page

Title Page

Contents

JJ II

J I

Page 2 of 36

Go Back

Full Screen

Close

Quit

Plan of my talk :

1. (Perfect) recollements

2. Constructions of (perfect) recollements

3. Recollements and Hochschild dimensions

4. Recollements and derived functors

5. Recollements and Hochschild homology [Keller 1998]

6. Recollements and Hochschild cohomology

1 (Perfect) recollements

1.1. Recollements

Home Page

Title Page

Contents

JJ II

J I

Page 3 of 36

Go Back

Full Screen

Close

Quit

Definition 1. [Beilinson-Bernstein-Deligne 1982]

Let T1, T and T2 be triangulated categories. A recollement of T relative

to T1 and T2 is given by

T1 T T2

i∗�

j!

-

i∗ = i!-

j! = j∗

i!�

j∗

and denoted by 9-tuple (T1, T , T2, i∗, i∗ = i!, i

!, j!, j! = j∗, j∗) such that

(R1) (i∗, i∗), (i!, i!), (j!, j

!) and (j∗, j∗) are adjoint pairs of triangulated

functors;

(R2) i∗, j! and j∗ are full embeddings;

(R3) j!i∗ = 0 (and thus also i!j∗ = 0 and i∗j! = 0);

(R4) for each X ∈ T , there are triangles

j!j!X → X → i∗i

∗X →i!i

!X → X → j∗j∗X → .

Home Page

Title Page

Contents

JJ II

J I

Page 4 of 36

Go Back

Full Screen

Close

Quit

Viewpoint: Recollement ≈ Short exact sequence of 4-categories

Why recollements of triangulated categories?

1. Algebraic geometry : [Beilinsion-Bernstein-Deligne 1982] ...

2. Representation theory : [Cline-Parshall-Scott 1988] ...

Focus : recollements of derived categories of algebras.

Why recollements of derived categories of algebras?

1. Tilting theory : [Konig 1991] ...

2. Localization theory : [Miyachi 1991], [Krause 2008] ...

3. Homological invariants : global dimension [Wiedemann 1991] +

[Konig 1991] + [Angeleri Hugel-Konig-Liu-Yang 2012]; finitistic di-

mension [Happel 1993]; Hochschild homology + cyclic homology

[Keller 1998]; ...

Home Page

Title Page

Contents

JJ II

J I

Page 5 of 36

Go Back

Full Screen

Close

Quit

Notations & Terminologies :

k : a field

A : a k-algebra

ProjA (resp. projA) : the category of projective (resp. finitely gener-

ated projective) A-modules.

D(A) : the unbounded derived category of complexes of A-modules.

Kb(ProjA) (resp. K−(ProjA)) : the homotopy category of bounded

(resp. right bounded) complexes of projective A-modules.

Kb(projA) : the homotopy category of bounded complexes of finitely

generated projective A-modules.

Home Page

Title Page

Contents

JJ II

J I

Page 6 of 36

Go Back

Full Screen

Close

Quit

X : an object in D(A).

X⊥ = {Y ∈ D(A)|HomD(A)(X, Y [n]) = 0,∀ n ∈ Z}

TriaX : the smallest full triangulated subcategory of D(A) which con-

tains X and is closed under small coproducts.

X is exceptional if HomD(A)(X,X [n]) = 0 for all n ∈ Z\{0}.

X is compact if the functor HomD(A)(X,−) preserves small coproduct,

equivalently, X is perfect, i.e., isomorphic to an object in Kb(projA).

X is self-compact if HomD(A)(X,−) preserves small coproducts in

TriaX .

Home Page

Title Page

Contents

JJ II

J I

Page 7 of 36

Go Back

Full Screen

Close

Quit

An existness criterion of recollements:

Theorem 1. [Konig 1991]+[Jørgensen 2006]+ [Nicolas-Saorin 2009]

LetA1, A andA2 be algebras. ThenD(A) admits a recollement relative

toD(A1) andD(A2) if and only if there are objectsX1 andX2 inD(A)

such that

(1) EndD(A)(Xi) ∼= Ai as algebras for i = 1, 2;

(2) X2 (resp. X1) is exceptional and compact (resp. self-compact);

(3) X1 ∈ X⊥2 ;

(4) X⊥1 ∩X⊥

2 = {0}.

Remark 1. X1 = i∗A1 and X2 = j!A2.

Home Page

Title Page

Contents

JJ II

J I

Page 8 of 36

Go Back

Full Screen

Close

Quit

Example 1. Stratifying ideals. [Cline-Parshall-Scott 1996]

Let A be an algebra, e an idempotent of A, and AeA a stratifying ideal

ofA, i.e., the multiplication inA induces an isomorphismAe⊗eAeeA ∼=AeA and ToreAen (Ae, eA) = 0 for all n ≥ 1. Then there is a recollement

(D(A/AeA), D(A), D(eAe), i∗, i∗ = i!, i!, j!, j

! = j∗, j∗) where

i∗ = −⊗LA A/AeA, j! = −⊗L

eAe eA,

i∗ = i! = −⊗LA/AeA A/AeA, j! = j∗ = −⊗L

A Ae,

i! = RHomA(A/AeA,−), j∗ = RHomeAe(Ae,−).

Home Page

Title Page

Contents

JJ II

J I

Page 9 of 36

Go Back

Full Screen

Close

Quit

1.2. Perfect recollements

Definition 2. Let A1, A and A2 be algebras. A recollement (D(A1),

D(A), D(A2), i∗, i∗ = i!, i

!, j!, j! = j∗, j∗) is said to be perfect if i∗A1 is

perfect.

An existness criterion of perfect recollements:

Theorem 2. LetA1, A andA2 be algebras. ThenD(A) admits a perfect

recollement relative toD(A1) andD(A2) if and only if there are objects

Xi, i = 1, 2, in D(A) such that

(1) EndD(A)(Xi) ∼= Ai as algebras, ∀i = 1, 2;

(2) Xi is exceptional and perfect, ∀i = 1, 2;

(3) X1 ∈ X⊥2 ;

(4) X⊥1 ∩X⊥

2 = {0}.

Home Page

Title Page

Contents

JJ II

J I

Page 10 of 36

Go Back

Full Screen

Close

Quit

Examples.

(1) Derived equivalences. If the algebras A and B are derived equiva-

lent then D(A) admits a perfect recollement relative to 0 and D(B), or

to D(B) and 0.

(2) Triangular matrix algebras. Let A1 and A2 be algebras, M an A2-

A1-bimodule, and A =

[A1 0

M A2

]. Then X1 :=

[1A1

0

0 0

]A and

X2 :=

[0 0

0 1A2

]A satisfy all conditions in Criterion. Thus there is a

perfect recollement of D(A) relative to D(A1) and D(A2).

(3) Perfect stratifying ideals. Let A be an algebra, e an idempotent

of A, and AeA a perfect stratifying ideal of A, i.e., a stratifying ideal

which is perfect in D(A). Then there is a perfect recollement of D(A)

relative to D(A/AeA) and D(eAe).

Home Page

Title Page

Contents

JJ II

J I

Page 11 of 36

Go Back

Full Screen

Close

Quit

(4) Imperfect recollement. [Konig 1991, Example 9] Let A be the

infinite Kronecker algebra

[k 0

V k

], where V is an infinite-

dimensional k-vector space. Choose X2 to be the simple projective

A-module and X1 the other simple A-module. Then X1 and X2 satisfy

all conditions in Criterion. Thus D(A) admits a recollement relative to

D(k) and D(k), which is imperfect since X1 is isomorphic to an object

in Kb(ProjA) but not in Kb(projA).

Relations between examples :

Triangular matrix algebra Derived equivalence

⇓ ⇓Perfect stratifying ideal ⇒ Perfect recollement

⇓ ⇓Stratifying ideal ⇒ Recollement

Home Page

Title Page

Contents

JJ II

J I

Page 12 of 36

Go Back

Full Screen

Close

Quit

2 Constructions of (perfect) recollements

2.1. Tensor product algebras

Theorem 3. Let A1, A and A2 be algebras, and D(A) admit a (perfect)

recollement relative to D(A1) and D(A2). Then, for each algebra B,

D(B ⊗ A) admits a (perfect) recollement relative to D(B ⊗ A1) and

D(B ⊗ A2).

Proof.

• Criterion ⇒ ∃Xi ∈ D(A), i = 1, 2,3 · · ·

• Zi := B ⊗Xi, i = 1, 2.

• Criterion

Home Page

Title Page

Contents

JJ II

J I

Page 13 of 36

Go Back

Full Screen

Close

Quit

2.2. Opposite algebras

Theorem 4. Let A1, A and A2 be algebras, and D(A) admit a perfect

recollement relative to D(A1) and D(A2). Then D(Aop) admits a per-

fect recollement relative to D(Aop2 ) and D(Aop

1 ).

Proof.

• Criterion ⇒ ∃Xi ∈ D(A), i = 1, 2,3 · · ·

• Zi := RHomA(Xi, A), i = 1, 2.

• Criterion

Home Page

Title Page

Contents

JJ II

J I

Page 14 of 36

Go Back

Full Screen

Close

Quit

3 Recollements & Hochschild dimensions

3.1. Recollements & Global dimensions

Theorem 5. [Konig 1991] Let A1, A and A2 be algebras, and D(A)

admit a perfect recollement relative to D(A1) and D(A2). Then A is of

finite global dimension if and only if so are A1 and A2.

Proof.

• D−(A) : the derived category of complexes of A-modules with

right bounded cohomologies.

• ∃ a restricted recollement of D−(A) relative to D−(A1) and

D−(A2). [Konig 1991] or [Nicolas-Saorin 2011]

• [Konig 1991]

Home Page

Title Page

Contents

JJ II

J I

Page 15 of 36

Go Back

Full Screen

Close

Quit

Theorem 6. [Angeleri Hugel-Konig-Liu-Yang ≥2011] Let A1, A and

A2 be algebras, and (D(A1), D(A), D(A2), i∗, i∗ = i!, i

!, j!, j! = j∗, j∗)

a recollement. Then A is of finite global dimension if and only if so are

A1 and A2.

Proof.

• If gl.dimA <∞ or gl.dimA2 <∞ then i∗A1 is isomorphic inD(A)

to a complex in Kb(ProjA).

• ∃ a restricted recollement of D−(A) relative to D−(A1) and

D−(A2). [Konig 1991] or [Nicolas-Saorin 2011]

• [Konig 1991]

Home Page

Title Page

Contents

JJ II

J I

Page 16 of 36

Go Back

Full Screen

Close

Quit

3.2. Recollements & Hochschild dimensions

A : an algebra

The enveloping algebra of A : Ae := Aop ⊗ A

The Hochschild dimension of A : h.dimA := pdAeA :

h.dimA = 0 ⇐⇒ Ae is semisimpleA f.g.⇐⇒ A is separable [Cartan-Eilenberg 1956]

h.dimA ≤ 1def⇐⇒ A is quasi-free [Cuntz-Quillen 1995], or

formally smooth [Kontsevich-Rosenberg 2000].

h.dimA <∞ def⇐⇒ A is smooth [Van den Bergh 2002]

[Cartan-Eilenberg 1956]+[Eilenberg-Rosenberg-Zelinsky 1957] ⇒A is smooth if and only if gl.dimAe <∞.

Home Page

Title Page

Contents

JJ II

J I

Page 17 of 36

Go Back

Full Screen

Close

Quit

Theorem 7. Let A1, A and A2 be algebras, and D(A) admit a perfect

recollement relative toD(A1) andD(A2). ThenA is smooth if and only

if so are A1 and A2.

Proof.

• ∃ a perfect recollement of D(Aop⊗A) relative to D(Aop⊗A1) and

D(Aop ⊗ A2).

• gl.dimAe <∞ iff gl.dimAop ⊗ Ai <∞,∀i = 1, 2.

• ∃ a perfect recollement of D(Aop ⊗ Aj) relative to D(Aop2 ⊗ Aj)

and D(Aop1 ⊗ Aj).

• gl.dimAop ⊗ Ai <∞ iff gl.dimAopi ⊗ Aj <∞,∀i, j = 1, 2.

• [Eilenberg-Rosenberg-Zelinsky 1957] ⇒ gl.dimAopi ⊗ Aj <∞ iff

gl.dimAei <∞,∀i = 1, 2.

Home Page

Title Page

Contents

JJ II

J I

Page 18 of 36

Go Back

Full Screen

Close

Quit

Corollary 1. Let A1 and A2 be algebras, M an A2-A1-bimodule, and

A =

[A1 0

M A2

]. Then A is smooth if and only if so are A1 and A2.

Question 1. Does “the middle algebra is smooth if and only if so are the

algebras on both sides” hold for any recollement of derived categories

of algebras?

Home Page

Title Page

Contents

JJ II

J I

Page 19 of 36

Go Back

Full Screen

Close

Quit

Theorem 8. Let A1, A and A2 be both left and right Noetherian al-

gebras, and D(A) admit a recollement relative to D(A1) and D(A2).

Then A is smooth if and only if so are A1 and A2.

Proof. ⇒ :

• h.dimA <∞⇒ gl.dimA <∞⇒ gl.dimAi <∞, i = 1, 2

• A1 and A2 are both left and right Noetherian ⇒ gl.dimAopi =

gl.dimAi <∞. [Auslander 1955]

• gl.dimAopi <∞ + h.dimA <∞⇒ gl.dimAop

i ⊗ A <∞, i = 1, 2

• ∃ a recollement (D(Aopi ⊗ A1), D(Aop

i ⊗ A), D(Aopi ⊗ A2), · · · ).

• gl.dimAopi ⊗ A <∞⇒ gl.dimAop

i ⊗ Aj <∞, i, j = 1, 2.

• [Eilenberg-Rosenberg-Zelinsky 1957] ⇒ gl.dimAei <∞, i = 1, 2.

Home Page

Title Page

Contents

JJ II

J I

Page 20 of 36

Go Back

Full Screen

Close

Quit

4 Recollements & Derived functors

Lemma 1. Let A1, A and A2 be algebras, and D(A) admit a recolle-

ment relative to D(A1) and D(A2). Then

(1) ∃ recollement (D(A1), D(A), D(A2), i∗, i∗ = i!, i

!, j!, j! = j∗, j∗), 3

j! = −⊗LA2Y2,

i∗ = i! = −⊗LA1Y1, j! = j∗ = RHomA(Y2,−),

i! = RHomA(Y1,−), j∗ = RHomA2(RHomA(Y2, A),−),

and

(2) ∀ algebra B, ∃ recollement (D(B ⊗ A1), D(B ⊗ A), D(B ⊗ A2),

I∗, I∗ = I!, I!, J!, J

! = J∗, J∗), 3

J! = −⊗LA2Y2,

I∗ = I! = −⊗LA1Y1, J ! = J∗ = RHomA(Y2,−),

I ! = RHomA(Y1,−), J∗ = RHomA2(RHomA(Y2, A),−),

where Yi ∈ D(Aopi ⊗ A), i = 1, 2.

Home Page

Title Page

Contents

JJ II

J I

Page 21 of 36

Go Back

Full Screen

Close

Quit

Proof. (1)

• Criterion ⇒ ∃ homotopically projective Xi ∈ D(A), i = 1, 2,3· · ·

• Xi exceptional ⇒ ∃Yi ∈ D(Aopi ⊗ A),3 the fully faithful functor

−⊗LAiYi : D(Ai) → D(A) sends Ai to Xi. [Keller 1998, 1994]

• X2 perfect ⇒ ∃ recollement (X⊥2 , D(A), D(A2), i

′∗, i′∗ = i′!, i′!,

j!, j! = j∗, j∗). [Miyachi 2003]

• X1 self-compact ⇒ the essential image of − ⊗LA1Y1 : D(A1) →

D(A) is TriaX1.

• X1 ∈ X⊥2 and X⊥

1 ∩X⊥2 = {0} ⇒ TriaX1 = X⊥

2 .

Home Page

Title Page

Contents

JJ II

J I

Page 22 of 36

Go Back

Full Screen

Close

Quit

Proof. (2)

• Repeat the proof above, mutatis mutandis, ∃ recollement (D(B ⊗A1), D(B ⊗ A), D(B ⊗ A2), I

∗, I∗ = I!, I!, J!, J

! = J∗, J∗), 3

J! = −⊗LB⊗A2

(B ⊗ Y2),

I∗ = I! = −⊗LB⊗A1

(B ⊗ Y1), J! = J∗ = RHomB⊗A(B ⊗ Y2,−),

I ! = RHomB⊗A(B ⊗ Y1,−), J∗ = RHomB⊗A2(RHomB⊗A(B ⊗ Y2, B ⊗ A),−).

• All conditions on B ⊗Xi needed here have been checked already

in the proof of Construction.

• Cancel B in all derived functors:

I∗ = −⊗LB⊗A1

(B ⊗ Y1) ∼= −⊗LA1Y1

Home Page

Title Page

Contents

JJ II

J I

Page 23 of 36

Go Back

Full Screen

Close

Quit

Theorem 9. Let A1, A and A2 be algebras, and D(A) admit a recolle-

ment relative to D(A1) and D(A2). Then

(1) ∃ recollement (D(A1), D(A), D(A2), i∗, i∗ = i!, i

!, j!, j! = j∗, j∗), 3

i∗ = −⊗LA Y, j! = −⊗L

A2Y2,

i∗ = i! = −⊗LA1Y1, j! = j∗ = RHomA(Y2,−),

i! = RHomA(Y1,−), j∗ = RHomA2(RHomA(Y2, A),−),

and

(2) ∀ algebra B, ∃ recollement (D(B ⊗ A1), D(B ⊗ A), D(B ⊗ A2),

I∗, I∗ = I!, I!, J!, J

! = J∗, J∗), 3

I∗ = −⊗LA Y, J! = −⊗L

A2Y2,

I∗ = I! = −⊗LA1Y1, J ! = J∗ = RHomA(Y2,−),

I ! = RHomA(Y1,−), J∗ = RHomA2(RHomA(Y2, A),−),

where Y ∈ D(Aop ⊗ A1) and Yi ∈ D(Aopi ⊗ A), i = 1, 2.

Home Page

Title Page

Contents

JJ II

J I

Page 24 of 36

Go Back

Full Screen

Close

Quit

Proof. (1)

• Five Ok

• ∃ a recollement (D(Aop⊗A1), D(Aop⊗A), D(Aop⊗A2), I∗, I∗ =

I!, I!, J!, J

! = J∗, J∗), 3 Five = Five.

• Y := I∗A ∈ D(Aop ⊗ A1)

• i∗ ∼= −⊗LA Y !

(2) Repeat the proof above, mutatis mutandis, ...

Definition 3. Let A1, A and A2 be algebras. A recollement (D(A1),

D(A), D(A2), i∗, i∗ = i!, i

!, j!, j! = j∗, j∗) is said to be standard and

given by Y ∈ D(Aop ⊗A1) and Y2 ∈ D(Aop2 ⊗A) if i∗ ∼= −⊗L

A Y and

j! ∼= −⊗LA2Y2.

Home Page

Title Page

Contents

JJ II

J I

Page 25 of 36

Go Back

Full Screen

Close

Quit

Theorem 10. Let A1, A and A2 be algebras, and (D(A1), D(A),

D(A2), i∗, i∗ = i!, i

!, j!, j! = j∗, j∗) a standard recollement given by

Y ∈ D(Aop ⊗ A1) and Y2 ∈ D(Aop2 ⊗ A). Then

(1)

i∗ ∼= −⊗LA Y , j! ∼= −⊗L

A2Y2,

i∗ = i! ∼= RHomA1(Y ,−), j! = j∗ ∼= RHomA(Y2,−),

i! ∼= RHomA(RHomA1(Y ,A1),−), j∗ ∼= RHomA2

(RHomA(Y2, A),−),

and

(2) ∀ algebra B, ∃ a recollement (D(B ⊗ A1), D(B ⊗ A), D(B ⊗A2), I

∗, I∗ = I!, I!, J!, J

! = J∗, J∗), 3

I∗ ∼= −⊗LA Y , J!

∼= −⊗LA2Y2,

I∗ = I! ∼= RHomA1(Y ,−), J ! = J∗ ∼= RHomA(Y2,−),

I ! ∼= RHomA(RHomA1(Y ,A1),−), J∗ ∼= RHomA2

(RHomA(Y2, A),−).

Home Page

Title Page

Contents

JJ II

J I

Page 26 of 36

Go Back

Full Screen

Close

Quit

5 Recollements & Hochschild homology

The n-th Hochschild homology of an algebra A is HHn(A) :=

TorAe

n (A,A) ∼= H−n(A⊗LAe A).

Theorem 11. [Keller 1998] Let A,A1 and A2 be algebras, and D(A)

admit a recollement relative to D(A1) and D(A2). Then there is a

triangle in D(k):

A2 ⊗LAe

2A2 → A⊗L

Ae A→ A1 ⊗LAe

1A1 → .

Home Page

Title Page

Contents

JJ II

J I

Page 27 of 36

Go Back

Full Screen

Close

Quit

Proof.

• Realization of derived functors ⇒ ∃ a triangle in D(Ae):

RHomA(Y2, A)⊗LA2Y2 → A→ Y ⊗L

A1Y1 → .

• Triangulated functor −⊗LAe A⇒ ∃ a triangle in D(k):

(RHomA(Y2, A)⊗LA2Y2)⊗L

Ae A → A⊗LAe A→ (Y ⊗L

A1Y1)⊗L

Ae A →↓∼= ↓∼=

(Y2 ⊗LA RHomA(Y2, A))⊗L

Ae2A2 (Y1 ⊗L

A Y )⊗LAe

1A1

↓∼= ↓∼=A2 ⊗L

Ae2A2 A1 ⊗L

Ae1A1

Home Page

Title Page

Contents

JJ II

J I

Page 28 of 36

Go Back

Full Screen

Close

Quit

Theorem 12. [Keller 1998] Let A,A1 and A2 be algebras, and D(A)

admit a perfect recollement relative toD(A1) andD(A2). Then inD(k)

A⊗LAe A ∼= (A1 ⊗L

Ae1A1)⊕ (A2 ⊗L

Ae2A2).

Proof.

• Perfect recollements ≈ “derived triangular matrix algebras”!

• Denote by pX the homotopically projective resolution of X .

• A ∼ EndA(pj!j!A⊕pi∗i∗A) ∼

[EndA(pj!j!A) HomA(pi∗i∗A,pj!j!A)

0 EndA(pi∗i∗A)

]• A1 ∼ EndA1

(pi∗A) ∼ EndA(pi∗i∗A).

• A2 ∼ EndA2(pj!A) ∼ EndA(pj!j!A).

• Kadison’s method [Kadison 1989].

Home Page

Title Page

Contents

JJ II

J I

Page 29 of 36

Go Back

Full Screen

Close

Quit

6 Recollements & Hochschild cohomology

The n-th Hochschild cohomology of an algebra A is HHn(A) :=

ExtnAe(A,A) ∼= Hn(RHomAe(A,A)).

Lemma 2. Let A be an algebra and Xu→ Y

v→ Z → a triangle

in D(A) such that RHomA(X,Z) = 0 in D(k). Then there are three

triangles in D(k):

(1) RHomA(Y,X) → RHomA(Y, Y )φ→ RHomA(Z,Z) →

(2) RHomA(Z, Y ) → RHomA(Y, Y )ψ→ RHomA(X,X) →

(3) RHomA(Z,X) → RHomA(Y, Y )ϕ→ RHomA(X,X)⊕ RHomA(Z,Z) → .

Moreover, φ (resp. ψ, ϕ) induces a homomorphism of graded rings φ

(resp. ψ, ϕ) between cohomology rings.

Home Page

Title Page

Contents

JJ II

J I

Page 30 of 36

Go Back

Full Screen

Close

Quit

Proof. Triangles (1) and (2) :

• The bifunctor (−,−) := RHomA(−,−) ⇒ commutative diagram:

(X [1], Z[−1]) → (X [1], X) → (X [1], Y ) → (X [1], Z)

↓ ↓ ↓ ↓(Z,Z[−1]) → (Z,X) → (Z, Y ) → (Z,Z)

↓ ↓ ↓ ↓(Y, Z[−1]) → (Y,X) → (Y, Y ) → (Y, Z)

↓ ↓ ↓ ↓(X,Z[−1]) → (X,X) → (X,Y ) → (X,Z)

• RHomA(X,Z) = 0 in D(k) ⇒ four corners are zero.

Home Page

Title Page

Contents

JJ II

J I

Page 31 of 36

Go Back

Full Screen

Close

Quit

Proof. Triangle (3) :

• Octahedral axiom ⇒ commutative diagram:

(Z,Z[−1]) = (Z,Z[−1])

↓ ↓(Z,X) → (Y,X) → (X,X) → (Z[−1], X)

‖ ↓ ↓ ‖(Z,X) → (Y, Y ) → (X,X)⊕ (Z,Z) → (Z[−1], X)

↓ ↓(Z,Z) = (Z,Z)

Home Page

Title Page

Contents

JJ II

J I

Page 32 of 36

Go Back

Full Screen

Close

Quit

Theorem 13. Let A1, A and A2 be algebras, and (D(A1), D(A),

D(A2), i∗, i∗ = i!, i

!, j!, j! = j∗, j∗) a standard recollement given by

Y and Y2. Then there are three triangles in D(k):

(1) RHomAe(A,RHomA(Y2, A)⊗LA2Y2)

→ RHomAe(A,A)φ→ RHomAe

1(A1, A1) →

(2) RHomAe(RHomA1(Y, Y ), A)

→ RHomAe(A,A)ψ→ RHomAe

2(A2, A2) →

(3) RHomAe(RHomA1(Y, Y ),RHomA(Y2, A)⊗L

A2Y2)

→ RHomAe(A,A)ϕ→ RHomAe

1(A1, A1)⊕ RHomAe

2(A2, A2) → .

Moreover, φ (resp. ψ, ϕ) induces a homomorphism of graded rings φ

(resp. ψ, ϕ) between Hochschild cohomology rings.

Home Page

Title Page

Contents

JJ II

J I

Page 33 of 36

Go Back

Full Screen

Close

Quit

Proof.

• ∃ recollement (D(Aop ⊗ A1), D(Aop ⊗ A), D(Aop ⊗ A2), I∗, I∗ =

I!, I!, J!, J

! = J∗, J∗), 3

I∗ ∼= −⊗LA Y, J!

∼= −⊗LA2Y2,

I∗ = I! ∼= RHomA1(Y,−), J ! = J∗ ∼= RHomA(Y2,−),

I ! ∼= RHomA(RHomA1(Y,A1),−), J∗ ∼= RHomA2

(RHomA(Y2, A),−).

• ∃ a triangle J!J!A→ A→ I∗I

∗A→ in D(Aop ⊗ A).

• ∃ three triangles in D(k):

(1) RHomAe(A, J!J!A) → RHomAe(A,A) → RHomAe(I∗I

∗A, I∗I∗A) →

(2) RHomAe(I∗I∗A,A) → RHomAe(A,A) → RHomAe(J!J

!A, J!J!A) →

(3) RHomAe(I∗I∗A, J!J

!A) → RHomAe(A,A)

→ RHomAe(J!J!A, J!J

!A)⊕ RHomAe(I∗I∗A, I∗I

∗A) → .

• RHomAe(I∗I∗A, I∗I

∗A) ∼= RHomAe1(A1, A1) !

• RHomAe(J!J!A, J!J

!A) ∼= RHomAe2(A2, A2) !

Home Page

Title Page

Contents

JJ II

J I

Page 34 of 36

Go Back

Full Screen

Close

Quit

Corollary 2. LetA1, A andA2 be algebras, and (D(A1), D(A), D(A2),

i∗, i∗ = i!, i!, j!, j

! = j∗, j∗) a standard recollement given by Y and Y2.

Then there are three long exact sequences:

(1) · · · → ExtnAe(A,RHomA(Y2, A)⊗LA2Y2)

→ HHn(A)φn→ HHn(A1) → · · ·

(2) · · · → ExtnAe(RHomA1(Y, Y ), A)

→ HHn(A)ψn→ HHn(A2) → · · ·

(3) · · · → ExtnAe(RHomA1(Y, Y ),RHomA(Y2, A)⊗L

A2Y2)

→ HHn(A)ϕn→ HHn(A1)⊕HHn(A2) → · · · .

Moreover, ⊕n∈Nφn (resp. ⊕n∈Nψn, ⊕n∈Nϕn) is a homomorphism of

graded rings between Hochschild cohomology rings.

Home Page

Title Page

Contents

JJ II

J I

Page 35 of 36

Go Back

Full Screen

Close

Quit

Remark 2. Some of these long exact sequences had been studied:

• One-point extensions : [Happel 1989]

• Triangular matrix algebras : [Cibils 2000] + [Michelena-Platzeck

2000] + [Green-Solberg 2002] + [Cibils-Marcos-Redondo-Solotar

2003] + · · ·

• Stratified ideals : [Konig-Nagase 2009]

• Homological epimorphisms : [de la Pena-Xi 2006] + [Suarez-

Alvarez 2007]

Home Page

Title Page

Contents

JJ II

J I

Page 36 of 36

Go Back

Full Screen

Close

Quit

Thanks!


Recommended