+ All Categories
Home > Documents > Homogenization of the Eddy Current Problem in 2D

Homogenization of the Eddy Current Problem in 2D

Date post: 16-Oct-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
34
Homogenization of the Eddy Current Problem in 2D Karl Hollaus and Joachim Sch¨ oberl Vienna University of Technology Institute for Analysis and Scientific Computing September 20, 2010
Transcript

Homogenization of the

Eddy Current Problem in 2D

Karl Hollaus and Joachim Schoberl

Vienna University of Technology

Institute for Analysis and Scientific Computing

September 20, 2010

Laplace Problem

Motivation:

Fig.: FE-Model with 100laminations.

Fig.: FE-Model with 100 laminations(Detail, lower right corner).

Finite element models of laminated media lead to large equation systems.

Homogenization overcomes this problem!

Contents

Motivation

Electrostatic problemI Boundary value problem

I Weak form

I Multiscal ansatz

I Homogenization

I Numerical example

Eddy current problemI Boundary value problem

I Weak form

I Multiscal ansatz

I Homogenization

I Numerical example

Contents

Motivation

Electrostatic problemI Boundary value problem

I Weak form

I Multiscal ansatz

I Homogenization

I Numerical example

Eddy current problemI Boundary value problem

I Weak form

I Multiscal ansatz

I Homogenization

I Numerical example

Contents

Motivation

Electrostatic problemI Boundary value problem

I Weak form

I Multiscal ansatz

I Homogenization

I Numerical example

Eddy current problemI Boundary value problem

I Weak form

I Multiscal ansatz

I Homogenization

I Numerical example

Contents

Motivation

Electrostatic problemI Boundary value problem

I Weak form

I Multiscal ansatz

I Homogenization

I Numerical example

Eddy current problemI Boundary value problem

I Weak form

I Multiscal ansatz

I Homogenization

I Numerical example

Electrostatic ProblemLaminated medium:

Fig.: Problem model.

λi ... Material parametern ... No. laminationsd = d1 + d2

ff ... Fill factorff = d1

d1+d2

For example:Electrostatics

λ=ε ... Electric permittivityu=V ... Electric scalar potential

Electrostatic Problem

Boundary value problem:

Fig.: Boundary value problem.

Ω ... Domain

Ω = Ω0 ∪ Ωm

Γ ... Boundary

Γ = ΓD ∪ ΓN

−∇(λ(x , y)∇u(x , y)) = 0 in Ω (1)

u = uD on ΓD (2)

λ∂u

∂n· n = α on ΓN (3)

Electrostatic Problem

Weak Form:

Multiplication of (1) by a test function v and integration over Ω yields

−∫

Ω

∇(λ∇(u))v dΩ = 0

and integration by parts leads to∫Ω

λ∇u · ∇v dΩ−∫S

λ∂u

∂nv · ds = 0.

Considering boundary conditions (2, 3) and v = 0 on ΓD yields the weakform ∫

Ω

λ∇u · ∇v dΩ = 0. (4)

Electrostatic Problem

Reference solution:

Fig.: Reference solution u of one halfe of the domain.

Reference solution: Laminations are modeled individually!

Electrostatic Problem

Reference solution:

Fig.: Reference solution.

Fig.: Solution u, mean value u0 andenvelope u1 along x at y = 0.

Fig.: Periodic micro shapefunction φ(x), one periode isshown.

Electrostatic Problem

Two scale ansatz:

Thus, the following ansatz can be made:

u(x , y) = u0(x , y) + φ

(x

p

)u1(x , y) (5)

u0 ... mean valueu1 ... envelope of the staggered partφ ... periodic micro shape function

Inserting (5) into the bilinear form (4) and caring out simplemanipulations leads to∫

Ω

λ(∇u0 +∇φu1 + φ∇u1) · (∇v0 +∇φv1 + φ∇v1) dΩ = 0. (6)

Electrostatic Problem

Homogenization of the weak form:

The finite element matrix would be calculated by

∫ΩFE

∂u0

∂x∂u0

∂y

u1∂u1

∂x∂u1

∂y

T

λ 0 λφx λφ 00 λ 0 0 λφλφx 0 λφ2

x λφφx 0λφ 0 λφφx λφ2 00 λφ 0 0 λφ2

∂v0

∂x∂v0

∂y

v1∂v1

∂x∂v1

∂y

dΩ.

With φx = ∇φ.

The micro shape function φ is a highly oscillating function.

To homogenize the weak form, the coefficients λ, λ∇φ, λφ, etc. areaveraged over the periode d :

λ =1

d

∫ d

0

λ

(x

p

)dx =

λ1d1 + λ2d2

d

Electrostatic Problem

Homogenization of the weak form:

λφx =1

d

∫ d

0

λ

(x

p

)φx

(x

p

)dx = 2

λ1 − λ2

d

λφ =1

d

∫ d

0

λ

(x

p

(x

p

)dx = 0

λφ2x =

1

d

∫ d

0

λ

(x

p

)φx

(x

p

)φx

(x

p

)dx =

4

d(λ1

d1+λ2

d2)

λφxφ =1

d

∫ d

0

λ

(x

p

)φx

(x

p

(x

p

)dx = 0

λφ2 =1

d

∫ d

0

λ

(x

p

(x

p

(x

p

)dx =

λ1d1 + λ2d2

3d

Electrostatic Problem

Homogenization of the weak form:

Homogenized finite element matrix:

∫ΩFE

∂u0

∂x∂u0

∂y

u1∂u1

∂x∂u1

∂y

T

λ 0 λφx 0 00 λ 0 0 0

λφx 0 λφ2x 0 0

0 0 0 λφ2 0

0 0 0 0 λφ2

∂v0

∂x∂v0

∂y

v1∂v1

∂x∂v1

∂y

dΩ.

The homogenized medium can be modeled like a bulk by a coarse finiteelement mesh!

Choice for the ansatz: u0 ∈ H1(Ω), u1 ∈ L2(Ωm)

Electrostatic Problem in 2D

Numerical Example:

Fig.: Numerical model.

ff ... Fill factorff = d1

d1+d2

ff = 0.9

λ0 = 1

λ1 = 1000

λ2 = 1

ub − ua = 2

No.laminations = 10

Electrostatic Problem

Comparison of the results:

Fig.: Reference solution. Fig.: Homogenized solution.

Electrostatic Problem

Comparison of the results: flux density, x-component

Fig.: Reference solution. Fig.: Homogenized solution.

Electrostatic Problem

Comparison of the results: flux density, y-component

Fig.: Reference solution. Fig.: Homogenized solution.

”Energy” stored in the media:

Wlam = 0.586 and Whom = 0.608

Eddy Current Problem in 2D

Boundary value problem:

Fig.: Boundary value problem.

Ω ... DomainΩ = Ω0 ∪ Ωm

Γ ... Boundary

Γ = ΓH ∪ ΓB

µ ... Magnetic permeability

σ ... Electric conductivity

J 0 ... Impressed current density in a coil

B ... Magnetic flux density

Assumptions:- Linear material properties

- Time harmonic case

- Steady state

Eddy Current Problem

Maxwell’s equations for the eddy current problem:

curlH = J in Ωm (7)

curlE = −jωB (8)

divB = 0 (9)

J = σE (10)

B = µH (11)

curlH = J 0 in Ω0 (12)

divB = 0 (13)

B = µH (14)

H × n = K on ΓH (15)

B · n = b on ΓB (16)

Eddy Current Problem

Boundary value problem:

Magnetic vector potential:

B = curlA (17)

Faraday’s law:

E = −jωA. (18)

Ampere’s law:

curl(µ−1curlA)− jωσA = J 0 in Ω (19)

Boundary conditions:

µ−1curlA× n = K on ΓH (20)

A× n = α on ΓB . (21)

Eddy Current Problem

Weak form:

∫Ω

(curl(µ−1curlA) + jωσA)v dΩ =

∫Ω0

J 0v dΩ. (22)

(23)

Integration by parts yields

∫Ω

µ−1curlAcurlv dΩ +

∫Γ

µ−1curlA× v dΓ +

∫Ω

jωσAv dΩ =

∫Ω0

J 0v dΩ

Weak form with homogeneous boundary condition on ΓH :∫Ω

µ−1curlAcurlv dΩ + jω

∫Ω

σAv dΩ =

∫Ω0

J 0v dΩ. (24)

Eddy Current Problem

Multiscale ansatz:

Fig.: Eddy currents in laminations, 2D problem.

A = A0 + φ

(0

A1

)+

∇(φw)φ∇w

(25)

A0 represents the mean value of the solution

A1 considers J y and

w models J x at the end of the laminates

Eddy Current Problem

Modified weak form:

Inserting the approaches (27) into the weak form (26) yields:∫Ω

µ−1curl(A0 + φ(0,A1)T +∇(φw)

)curl

(v0 + φ(0, v1)T +∇(φq)

)dΩ

+jω

∫Ω

σ(A0 + φ(0,A1)T +∇(φw)

) (v0 + φ(0, v1)T +∇(φq)

)dΩ =

∫Ω0

J 0v dΩ

(26)∫Ω

µ−1curl(A0 + φ(0,A1)T + φ∇w

)curl

(v0 + φ(0, v1)T + φ∇q

)dΩ

+jω

∫Ω

σ(A0 + φ(0,A1)T + φ∇w

) (v0 + φ(0, v1)T + φ∇q

)dΩ =

∫Ω0

J 0v dΩ

(27)

Eddy Current Problem

Finite element matrix: ”Stiffness”

Multiscale ansatz:

A = A0 + φ(0,A1)T +∇(φw)

Bilinearform: ∫Ω

µ−1curlAcurlv dΩ

Homogenized finite element matrix:∫ΩFE

(curlA0

A1

)T (ν νφxνφx νφ2

x

)(curlv0

v1

)dΩ,

with ν = µ−1.

Eddy Current Problem

Finite element matrix: ”Mass”

Multiscale ansatz:

A = A0 + φ(0,A1)T +∇(φw)

Bilinearform:

∫Ω

σAv dΩ

Homogenized finite element matrix:

∫ΩFE

(A0)x(A0)y

A1

w∂w∂x∂w∂y

T

σ 0 0 σφx σφ 00 σ σφ 0 0 σφ

0 σφ σφ2 0 0 σφ2

σφx 0 0 σφ2x σφxφ 0

σφ 0 0 σφxφ σφ2 0

0 σφ σφ2 0 0 σφ2

(v0)x(v0)y

v1

q∂q∂x∂q∂y

Eddy Current Problem

Finite element matrix: ”Stiffness”

Multiscale ansatz:

A = A0 + φ(0,A1)T + φ∇w

Bilinearform: ∫Ω

µ−1curlAcurlv dΩ

Homogenized finite element matrix:

∫ΩFE

curlA0

A1∂w∂y

T ν νφx νφxνφx νφ2

x νφ2x

νφx νφ2x νφ2

x

curlv0

v1∂q∂y

dΩ,

with ν = µ−1.

Eddy Current Problem

Finite element matrix: ”Mass”

Multiscale ansatz:

A = A0 + φ(0,A1)T + φ∇w

Bilinearform:

∫Ω

σAv dΩ

Homogenized finite element matrix:

∫ΩFE

(A0)x(A0)y

A1∂w∂x∂w∂y

T

σ 0 0 σφ 00 σ σφ 0 σφ

0 σφ σφ2 0 σφ2

σφ 0 0 σφ2 0

0 σφ σφ2 0 σφ2

(v0)x(v0)y

v1∂q∂x∂q∂y

Eddy Current Problem

Multiscale ansatz:

A = A0 + φ

(0

A1

)+

∇(φw)φ∇w

We propose the following choice:

A0, v0 ∈ H(curl ,Ω)

A1, v1 ∈ L2(Ωm)

w , q ∈ H1(Ωm)

φ ∈ Hper (Ωm)

Again, a coarse finite element mesh suffices for the homogenized medium!

Eddy Current Problem in 2D

Numerical example:

Fig.: Numerical example,dimensions in mm.

α = 1.0Vs/mff = 0.9

µ0 = 4π10−7Vs/Am

µ = µrµ0

µr1 = 1000

σ1 = 2 · 106S/m

f = 50Hz

δ ... Penetration depth

δ = 1.6mm

Eddy Current Problem

Comparison of the results: Eddy current density J

Fig.: Reference solution. Fig.: Homogenized solution.

... solution in the upper left corner.

d1 = 1.8mm

10 laminations

Eddy Current Problem

Comparison of the results: Losses and computational costs

Table: Eddy current losses

Losses in W/md in mm Laminations Ansatz ∇(φw) Ansatz φ∇(w)

0.5 11.59 11.58 11.481.0 45.70 45.46 44.742.0 177.2 174.16 169.4

Table: Computational costs for d=0.5mm and 40 laminations

Model FE NDOFLaminated 104 452 783 555

Homogenized 1 286 11 117

FE ... No. finite elementsNDOF ... No. degrees of freedom

Thank you for your attention!


Recommended