+ All Categories
Home > Documents > HowTo Design Eurocode 2

HowTo Design Eurocode 2

Date post: 05-Jul-2018
Category:
Upload: wenderade-beshada
View: 234 times
Download: 4 times
Share this document with a friend
116
8/16/2019 HowTo Design Eurocode 2 http://slidepdf.com/reader/full/howto-design-eurocode-2 1/116 A J Bond O Brooker A S Fraser A J Harris T Harrison A E K Jones R M Moss  R S Narayanan  R Webster   cement  concrete 
Transcript
Page 1: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 1/116

A J Bond

O Brooker

A S Fraser

A J Harris

T Harrison

A E K Jones

R M Moss 

R S Narayanan 

R Webster  

cement  concrete 

Page 2: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 2/116

Foreword

 

Acknowledgements

 

Published by The Concrete Centre Tel:  Fax:  www.concretecentre.com

Tel:  email: 

www.concrete bookshop.com

Page 3: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 3/116

1. Introduction to Eurocodes 

2. Getting started 

3. Slabs 

4. Beams 

5. Columns 

6. Foundations 

7. Flat slabs

8. Deflection calculations

9. Retaining walls 

10. Detailing 

11. BS 8500 for building structures

12. Structural fire design

Page 4: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 4/116

Page 5: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 5/116

 

   

     

 

   

 

 

 

 

 

 

 

Page 6: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 6/116

2

     

     

 

 

                     

 

 

 

 

 

         

  

  

  

 

  

  

 

 

 

 

2

Page 7: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 7/116

3

   

      

 

 

  

   

     

     

   

   

   

   

 

 

 

 

 

   

 

 

   

                                                                       

                                

            

 

 

 

 

 

 

 

     

 

3

Page 8: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 8/116

4

                         

                           

                           

 

 

   

     

   

       

    

     

    

           

             

               

                    

 

 

 

             

4

Page 9: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 9/116

5

 

 

   

 

   

   

 

 

 

 

 

 

 

 

 

 

5

Page 10: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 10/116

6

 

 

 

 

      

 

 

 

   

  

   

   

 

   

 

 

   

 

 

 

6

 

 

 

Page 11: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 11/116

7

  

                

 

 

 

7

        g    g  

Page 12: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 12/116

8

   

   

     

 

         

     

     

     

 

   

     

   

     

   

     

     

   

     

   

   

     

     

     

   

8

  1   

  2 

  3     

  4   

  5    6 

  7   

  8 

  9   

  10 

  11   

  12 

  13    

  14 

  15 

  16 

  17   

  18   

  19   

  20 

  21     

  22   

  23   

  24   

  25 

Page 13: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 13/116

The design process

        

          

     

       

       

        

  1      

  

              

               

   2            

          3  

          

     

         

Design life                 

   4        

       

          

Actions on structures              5      

         

                 

                                           6    

    

             

     3

               

     

 

O Brooker    

Page 14: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 14/116

10

         

   

        

                    

Load arrangements        

         

       

          

               

Load set 1. Alternate or adjacent spans loaded      

         

         

 g  

          

         

  g  

Load set 2. All or alternate spans loaded      

         

        

          

g  

            

      

                  

Load set 3. Simplified arrangements for slabs             

       

   

             2

          

       

          

  

      

2

Figure 2Adjacent spans loaded

Figure 3All spans loaded

Figure 1Alternate spans loaded

Table 1Indicative design working life (from UK National Annex to Eurocode)

Design life (years) Examples

   

 

 

    

      

Table 2Selected bulk density of materials (from Eurocode 1, Part 1–1)

Material Bulk density (kN/m3)

 

   

    

10

Page 15: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 15/116

11

Combination of actions          

        

        

                  

 

      

      

         

Material propertiesConcrete         

       

             

    7       

       

    

       

       

          

  

Reinforcing steel      

        

           

                    

       8               

  

     

         

      

         

       9

Table 4Selected concrete properties based on Table 3.1 of Eurocode 2, Part 1–1

Table 3Selected imposed loads for buildings (from draft UK National Annex to Eurocode 1, Part 1–1)

For members supporting one variable action the ULS combination

1.25 Gk + 1.5 Qk (derived from Exp. (6.10b), Eurocode)

can be used provided the permanent actions are not greater than

4.5 times the variable actions (except for storage loads).

Symbol Description Properties

         

      

            

          

 

       Key

a          

b                         

Category Example use   qk (kN/m2)   Qk (kN)

      

   

         

        

        

      

            

     

    

        

        

Reinforcing steel      

        

           

                    

        8     

            

     

         

      

         

       9

11

Page 16: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 16/116

12

Structural analysis         

         

       

         

        

      

        

     

         

    

   

                    

         

         

    

          

          

          

            

 

                  

       

               

             

    

             

      

   

Minimum concrete cover       

         

     

   

   

D           

                    

         D   

Table 6Bending moment and shear co-efficients for beams

Table 7Exposure classes

Class Description

No risk of corrosion or attack 

                 

Corrosion induced by carbonation

    

     

       

Corrosion induced by chlorides other than from seawater 

 

         

Corrosion induced by chlorides from seawater 

         

    

       

Freeze/thaw with or without de-icing agents

      

      

       

         

Chemical attack (ACEC classes)

     

Table 5Characteristic tensile properties of reinforcement

Moment Shear  

            

     

                    

       

                  

Keya             

Notes1            2             3        4               

 

    D  

Class (BS 4449) and designation (BS 8666) A B C

              

                        

     e               

Notes1               2              

  3                   

             

12

  

       

  

     

 

  

  

  

Page 17: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 17/116

13

Minimum cover for bond        

          

  

Minimum cover for durability        

  12       

     

           

     

           

         

       

         

           

       13

Design for fire resistance            14  

       

         

           

          

          

           

         

   

 ≥    f   f  

        

R     

E     I  

       

        

           

           

       

     

Table 9Minimum column dimensions and axis distances for columns withrectangular or circular section – method A

Standard fire Minimum dimensions (mm)resistance Column width ( bmin)/axis distance (a) of the main bars

Column exposed on more Exposed on one sidethan one side (m f i = 0.7) (m f i = 0.7)

 

 

     

Notes

1            

2 m                      m        

*    

†         m       

 

Standard Minimum dimensions (mm)fire One-way Two-way spanning slab Flat slab Ribs in a two-way spanning ribbed slabresistance spanning slab   l y/ lx ≤ 1.5 1.5 < l y/lx ≤2 (bmin is the width of the rib)

                              

                               

                           

 

Notes

1           2         3          

Figure 4Sections through structural members, showing nominal axis distance, a

Table 10Minimum dimensions and axis distances for reinforced concrete slabs

13

 

Page 18: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 18/116

14

Table 8Selected recommendations for normal-weight reinforced concrete quality for combined exposure classes and cover to reinforcement for at least a 50- year intended working life and 20 mm maximum aggregate size

Exposure conditions Cement/combinationdesignationsb

Nominal cover to reinforcementdTypical example Primary Secondary

15 + D cdev 20 +D cdev 25 +D cdev 30 +D cdev 35 +D cdev 40 +D cdev 45 +D cdev 50 +D cdev

Strength classc, maximum w/c ratio, minimum cement or combinationcontent (kg/m3), and equivalent designated concrete (where applicable)

        

 

 

  

   

        

       

          

  

  

X0    

XC1

XC2

XC3XC4

XD1 

XD3 

XS1 

  

AC-1

  

XF1

XF3

  

  

XF2

XF4

XF4

XF3 or XF4

XF1

XF3

 

   

 

 

   

 

   

  

   

 

   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

 

 

  

  

  

  

  

  

  

  

 

 

 

    

 

  

  

  

  

  

  

  

  

 

 

 

    

    

         

Key

a                    

     b            

c        

d D       

e             

f         

g       

h      

 j              

-

14

Cement/combinationdesignationsb

Page 19: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 19/116

15

a) Bracing system b) Floor diaphragm c) Roof diaphragm

Figure 5Examples of the effect of geometric imperfections

Stability and imperfections    

          

         

    y 

y     a   a

a   R            

a    0.5

        

        

     

           

          

        y    

        y    

       y  

        

           

           

         

      15

Steelstress(s s)MPa

OR OR

Table 11Maximum bar size or spacing to limit crack width

w max = 0.4 mm   w max = 0.3 mm

Maximum Maximum Maximum Maximumbar bar bar bar size (mm) spacing (mm) size (mm) spacing (mm)

Note

          

s           

g      d

           

g           

       

       

         

       

d        

Crack control      

       

                  

        

          

    

             

         

          

       

Figure 6Determination of steel stress for crack width control

To determine stress in the reinforcement (s s), calculate the ratio Gk /Qk ,read up the graph to the appropriate curve and read across to determine s su.

s s can be calculated from the expression: s s = s su As,req

 As,prov

1d( () )

15

   A  p  p  r  o  x   i  m  a   t  e  s   t  e  e   l  s   t  r  e  s  s  a   t   S   L   S   f  o  r    A

  s ,  r  e  q ,

     s  s  u

Page 20: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 20/116

Page 21: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 21/116

            1  

      2      

            

          

           

                    

      3  

         

      4       

             

         

           

          

              

          

        

         

            

    5

     6      

          

           

        

          

  

           

             

              

       

       

Page 22: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 22/116

18

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

                             

                                    

        

               

              

                        

                 

             

      

     

 

                                         

                    

                       

                   

         

               

                            

         

                 

         

       

              

                          

              

                

                    

                     

               

                

                         

                     

                     

             

            

             

                 

  

18

Page 23: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 23/116

19

 

 

 

         

             

              

   

  

   

                                       

 f   f     f  f  

          

d K 

K z/d  

K z/d  

 

      

 

  d  d

 

 

    

     

       

      f   f  

            

          

        

           

       

             

           

   

 

      

            

     

                      

 z/d

                    

19

Page 24: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 24/116

20

          

         

          

           

7

         

         

        

         

         

         

           

         

            

            

            

s     s 

s   s   s  

 

d

     

 

s  

s  

     

  

 

    

 

20

 ,     s  s  u

    A

   A  p  p  r  o  x   i  m  a   t  e  s   t  e  e   l  s   t  r  e  s  s  a   t   S   L   S   f  o  r    A

  s ,  r  e  q ,

     s  s  u

Page 25: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 25/116

21

              

         

            

             

            

8

            

         

           

        

           

9     

     

  b    2

  b    2

 b    b             

           

         

3

v  

r  d  

 A bd 

 

 

 

 

 

 

 

 

 k   

        r I       

     R     r I       

                 r I        

 f   

   

                  

                               

    r      

       

 r    r 

 

 r    r 

  r 

  

 

  

r     

   r   r 

  

 

  

  

21

Page 26: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 26/116

22

           

              

           

            

            

          4

            

          

             

           

          

            

                     

        

      

l l  

l  l

  

  

  

 

  

  

  

 

  

  

  

 

  

  

  

 

   

     

 

    

      

   

   

  d  d d 

   

        

              

     

    

    

           

      

   

         

   

22

Page 27: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 27/116

23

                                     

              

             

      

         

         

       

          

         

          

   

      

   

           

 

            

            

            

    

            

            

        

             

                       

  5

l

           

        

        

         

         

      

        

       

      

     

        

            a   g 

          

                       

    

     

   

                

   

            

        

      

          

      

               

              d     d 

     

a               

         

          

         

d           

  

g            g 

   g 

r         R  

r            

        

     

r         

        

      

23

Page 28: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 28/116

Page 29: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 29/116

   

 • • • • • • •            1

        2

 

 

3

 

  •••  

Fire resistance    

 

R Moss  O Brooker  

Page 30: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 30/116

26

ecnadiugr ehtr uFksaTpetS

dr adnatSChapter in this publication

     

       

     

     

    

     

    

  

 

  

     

Note

 

Table 1Beam design procedure

                      

                  

 

  

 

 

 

 

ε 

ε 

ε 

    

   

    

 

 

            a  a

        

   a   b    a        b  

     

    •••••••••••••••••••••   ••••••••••••••••••• •••••••••••••••••••••• • • ••••••••••••••••••••••    

     

     

         

             

                                   

                              

                                      

        

                

              

                          

                 

                                 

                       

 

 a              

26

Page 31: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 31/116

27

Outside scope of thispublication

               

           

   

       

   

                   

           d  d  

 d 

  

      

  

      

       

    

   

 

              

        

        

  

      f   f          

          

  

            

         

           

           

Table 4Values for  K ’

% redistribution d (redistribution ratio)   K ’

Key

a    

K z/d  

K z/d  

Key

a        

for singly reinforced rectangular sections

Table 6Minimum percentage of required reinforcement

 f ck   f ctm Minimum percentage (0.26 f ctm / f  yka)

Key

a          

Table 5 z/d 

         

     

   

      

      

               

      

      

         

     

   

  

         

   

         

  

             

          

            

               

           

             

       

                           

27

 

     

  

     

  

 

 

 

Page 32: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 32/116

28

               

Determine v Ed wherev Ed = design shear stress v Ed = V Ed/(bw z ) = V Ed/(0 .9 bwd )][

Yes (cot y = 2.5)

No No

START

Determine the concrete strut capacity v Rd,max cot y = 2.5from Table 7

Redesign

section

Determine y from:

Calculate area of shear reinforcement:

Check maximum spacing for vertical shear reinforcement: s l,max = 0.75 d 

= s

 Asw

y = 0.5 sin-10.20 f ck (1 –  f ck /250)

v Ed

 f  ywd cot y 

v Ed bw

Isv Ed < v Rd,max cot

y = 2.5?

Isv Ed < v Rd,max coty = 1.0?

(see Table 7)

Yes

           

 f    v   y    v   y 

    

   

 

   

   

        

         

         

         

           

       

           

           

             

   

           

                 

            

         

             

              

           

            

           y     y  

        

        2

                

  y    y           

 

Deflection

Flanged beams

28

Page 33: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 33/116

29

12

14

16

18

20

22

24

26

28

30

32

34

36

   S  p  a  n   t  o   d  e  p   t   h  r  a   t   i  o    (

Percentage of tension reinforcement ( As,req’d/bd )

    l   /    d                   )

0.40% 0.60% 0.80% 1.00% 1.20% 1.40% 1.60% 1.80% 2.00%

 f ck 

ck 

ck 

ck 

ck 

ck 

ck 

ck 

ck 

 = 50

 f   = 45

 f   = 40

 f   = 35

 f   = 32

 f   = 30

 f   = 28 f   = 25

 f   = 20

 f ck 

ck 

ck 

ck 

ck 

ck 

ck 

ck 

ck 

 = 50

 f   = 45

 f   = 40

 f   = 35

 f   = 32

 f   = 30

 f   = 28 f   = 25

 f   = 20

Figure 7Basic span-to-effective-depth ratios

Notes

1              

2   r 

3  

r   r 

r   r 

  r 

  

 

   r 

  r   r 

  

 

  

         

                 

 

      s 

 s             s            

        

         

  

           

         

             

             

           

                                 

       

      s                    s 

s        s   s  

 

d

   

                                                                                                   s        

     

c    g   

c    g   

c    g   

c    g   

c    g   

c    g   

c    g   

29

For flanged sections

Where the beam span exceeds 7 m and it supports

To determine stress in the provided reinforcement (s s), calculate the ratio

Percentage of tension reinforcement (As,req /bd )

   A  p  p  r  o  x   i  m  a   t  e  s   t  e  e   l  s   t  r  e  s  s  a   t   S   L   S   f  o  r    A  s

 ,  r  e  q ,     s  s  u

Page 34: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 34/116

30

              

    l       

     

            

   

 

   

 

   

  

     

 

 

     

      

               

      

     

   

 

        

        

                   

       

    

          

       

   d  d   d 

        

         

    

   

       

                  

         

  

  

      

           

      

    

           

 

   

   

         

   

           

          

 

 

 

 

  

 

  

 

      D

 

     

D

D  

y  

      

 

 

   

 

 

30

 f  yd (d – 0.5 hf )  f  ydz z 

Page 35: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 35/116

31

Figure 14Procedure for determining longitudinal shear capacity of flanged beams

Yes

No No

No

Calculate the longitudinal shear stressfrom: v Ed = D F d/( hf D x )

(see Figure 13)

Determine the concrete strut capacityfromTable 8 or from:

v Rd = 0.160  f ck (1 –  f ck /250)

Calculate area of transverse reinforcement from:

Yes (cot y f = 2.0) Yes (cot y f = 1.25)

Is v RD > v Ed? Is v RD > v Ed?

Is length of 

flange under considerationin tension?

Determine y f from:

Determine the concrete

strut capacity from Table 8or from:v Rd = 0.195  f ck (1 –  f ck /250)

= s

 Asf 

y f =0.5sin-10.2 f ck (1 – f ck /250)

v Ed

 f  yd cot y f 

v Ed  hf 

Table 8Concrete strut capacity for longitudinal shear in flanged beams

 f ck   v Rd,max

Flange in compression Flange in tension

Minimum area of shear reinforcement  

 

 4 r 

 

Longitudinal shear 

Rules for spacing andquantity of reinforcementMinimum area of longitudinal reinforcement                

   

Maximum area of longitudinal reinforcement

    

Minimum spacing of reinforcement

Table 9Values for r w,min

 f ck 20 25 28 30 32 35 40 45 50

31

Page 36: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 36/116

32

References1    

2      

3    

4      

5    

7      

6    

r    

   

     

   

 

   

 

              d     d 

   

a    

d  

g    g  g 

r    R  

r        

   

   

   

       

   

 

 

 

   

   

     a   g     

    

           

S eulaVnoitinif eDlobm y Sy eulaVnoitinif eDlobm

Selected symbols

32

6   

Page 37: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 37/116

Designing to Eurocode 2

  

Design procedure

Fire resistance  

 

R Moss  O Brooker  

Page 38: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 38/116

34

Table 1Column design procedure

Step Task Further guidance

Chapter in the publication Standard

   

   

 

  

  

   

  

 

Note 

Table 2 Minimum column dimensions and axis distances for fire resistance

Standard fireresistance

Minimum dimensions (mm)

Column width  bmin/axis distance,  a, of the mainbars

Column exposed on more thanone side

Columnexposed on

one side( µfi = 0.7) µfi = 0.5   µfi = 0.7

 

Note

1     

2   

4       

Key

b    

Table 3 Minimum reinforced concrete wall dimensions and axis distances forload-bearing for fire resistance

Standardfireresistance

Minimum dimensions (mm)

Wall thickness/axis distance,  a, of the main bars

Wall exposed on one side( µfi = 0.7)

Wall exposed on twosides ( µfi = 0.7)

Notes

Key

Figure 1 Section through structural member, showing nominal axis distance  a

 h ≥ b

a

b

Page 39: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 39/116

Page 40: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 40/116

Page 41: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 41/116

37

Table 4Effective length factor, F, for braced columns

 k 2   k 1

0.10 0.20 0.30 0.40 0.50 0.70 1.00 2.00 5.00 9.00 Pinned

0.10 0.59 0.62 0.64 0.66 0.67 0.69 0.71 0.73 0.75 0.76 0.77

0.20 0.62 0.65 0.68 0.69 0.71 0.73 0.74 0.77 0.79 0.80 0.81

0.30 0.64 0.68 0.70 0.72 0.73 0.75 0.77 0.80 0.82 0.83 0.84

0.40 0.66 0.69 0.72 0.74 0.75 0.77 0.79 0.82 0.84 0.85 0.86

0.50 0.67 0.71 0.73 0.75 0.76 0.78 0.80 0.83 0.86 0.86 0.87

0.70 0.69 0.73 0.75 0.77 0.78 0.80 0.82 0.85 0.88 0.89 0.90

1.00 0.71 0.74 0.77 0.79 0.80 0.82 0.84 0.88 0.90 0.91 0.92

2.00 0.73 0.77 0.80 0.82 0.83 0.85 0.88 0.91 0.93 0.94 0.95

5.00 0.75 0.79 0.82 0.84 0.86 0.88 0.90 0.93 0.96 0.97 0.98

9.00 0.76 0.80 0.83 0.85 0.86 0.89 0.91 0.94 0.97 0.98 0.99

Pinned 0.77 0.81 0.84 0.86 0.87 0.90 0.92 0.95 0.98 0.99 1.00

105 kNm

105 kNm 105 kNm

105 kNm 105 kNm

r m = 1.0 r m = -1.0r m = 0

a) C = 1.7 - 1 = 0.7 b) C = 1.7 - 0 = 1.7 c) C = 1.7 + 1.0 = 2.7

0

Figure 6Calculating factor C

Slenderness

l l

l     

l lim  =

20 ABC  ≤ 

15.4C 

  n  n

   h   h      

  ω  

 

           

        

  

 

   

  

      

l  l  

  

  

  

  

Column design resistance

 

outside 

within 

0.00175

h x 

 x   x 

hingepoint

hingepoint

0.00175 / ( /2) x x – h

h d 

h/ 2

0.0035 max 0.0035 max

0.00175 min

d) General relationshipc) When  x  < hb) When  x  > ha) Pure compression

0.00175

e  x e  x 

Figure 8Strain diagrams for columns

a) Strain diagram b) Stress diagram

h

d c

s sce cu2

e sc

e  yd2

s st

n. axis

d 2

 x 

 f cd

 As2

 As

Figure 7Stress block diagram for columns

Page 42: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 42/116

38

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0   0.05   0.10   0.15 0.20 0.25 0.30 0.35   0.40 0.45

0

0.1

0.2

0.30.4

0.5

0.6

0.7

0.8

0.9

1.0

 A f bhf s yk ck/

M/bh f 2

ck

      N 

      b       h      f  

           /

      c 

        k

K r

 = 0.2

d h2/ = 0.05

Figure 9a

Column design chart for rectangular columns d 2 / h = 0.05

          σ   σ 

   

   

    

 

σ  σ 

   

   l   

  l 

      

              σ σ 

   

Creep

h   

Biaxial bending

  MEdz 

a+   MEdy 

a≤ 1.0  MRdz  MRdy

   

   

   

               

Page 43: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 43/116

39

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.30.4

0.5

0.7

0.9

1.0

d h2/ = 0.15

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0   0.05   0.10 0.15 0.20 0.25   0.30   0.35   0.40

 A f bhf s yk ck/

      N 

      b       h      f  

           /

      c         k

M bh f /  2

ck

K r  =1

0.6

0.8

Figure 9c

Column design chart for rectangular columns d 2 / h = 0.15

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

00 0.05   0.10 0.15 0.20   0.25   0.30   0.35   0.40   0.45

M bh f /  2

ck

d h2/ = 0.10

K r  =1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

      N 

      b       h      f  

           /

      c         k

 A f bhf s yk/ ck

Figure 9bColumn design chart for rectangular columns d 2 / h = 0.10

Page 44: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 44/116

40

 A f bhf s yk ck/

d h2/ = 0.25

M/bh f 2

ck

      N 

      b       h      f  

           /

      c         k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.05 0.10 0.15   0.20   0.25   0.30

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

K r  = 1

Figure 9e

Column design chart for rectangular columns d 2 / h = 0.25

0 0.05   0.10   0.15 0.20 0.25 0.30   0.350

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.1

1.30.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 A f    bhf s yk ck/

d h2/ = 0.20

M/bh   f 2

ck

      N 

      b       h      f  

           /

      c         k

K r  = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 9dColumn design chart for rectangular columns d 2 / h = 0.20

Page 45: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 45/116

41

Table 5 Value of  a  for rectangular sections

NEd /NRd 0.1 0.7 1.0

 

Note

Unbraced columns

  

Walls

 

 

 

 

Rules for spacing andquantity of reinforcementMaximum areas of reinforcement

Minimum reinforcement requirements

          

Symbol Definition Value

     ε   

     h  

 

      h   

    

    

 

 

     

 

     

   

  

      α   γ 

     

   

    

 h   

    

     

           

    

     

   

     ω 

   

    

   

   

α    

β         λ

ε       

γ     γ    γ 

l   

l   

    

h    h  ∞  

h  

 ∞    

ω           

 

   

Selected symbols

Page 46: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 46/116

42

References  1 

  2      3 

  4 

  5  

  6   

  7   

  8 

  9   

 10 

 11 

Spacing requirements for columns

 

 

 

Particular requirements for walls

    

Page 47: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 47/116

Eurocode 7: Geotechnical designScope

 

   

Limit states

EQU 

STR 

GEO  UPL 

HYD 

Geotechnical Categories

R Webster   O Brooker  

Page 48: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 48/116

Page 49: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 49/116

45

Geotechnical design report

Spread foundations

 

 

 

Table 4Design values of actions derived for UK design, EQU ultimate limitstate – persistent and transient design situations

CombinationExpressionreference

Permanent actions Leadingvariableaction

Accompanying variableactions

Unfavourable Favourable Main(if any)

Others

     c   

Key 

a      

b  g   

c  c  

Table 5Presumed allowable bearing values under static loading (from BS 8004)

Category Type of soil Presumed allowable bearing value (kN/m2) Remarks

Note

Page 50: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 50/116

46

Reinforced concrete pads

 

 

 

   

  

     

  

   

 

 

 

Figure 1Procedures for depth of spread foundations

Design foundation (structural design) using the worst ofCombinations 1 and 2 (ULS) for actions and geotechnical

material properties.

START

Design usingdirect method?

Obtain soil parameters from Ground Investigation report

Size foundation(geotechnical design) usingthe worst of Combinations

1 or 2 (ULS) for actionsand geotechnical materialproperties. Combination 2

will usually govern.

Use prescriptive method.Size foundation

(geotechnical design)

using SLS for actionsand presumed

bearing resistance

Is there anoverturning moment?

Check overturning using EQUlimit state for actions and

GEO Combination 2for material properties.

Yes No

Yes

No

MM M

P

PPe

eee = /M P

P

P

L

L

L

L1 +

e6

6e

1

2P

1.5 3L e

L = width of base

SLS pressure distributions ULS pressure distribution

or 

P

2L e

P P P

Figure 2Pressure distributions for pad foundations

Page 51: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 51/116

47

START

Determine value of factor β (β  =1.0 when applied moment is zero; refer to Expressions

(6.38) to (6.42) from BS EN 1992–1–1 for other cases)

Determine value of v Ed,max (design shear stress at face of column) from:

v Ed,max = β (V Ed – DVEd) (from Exp. (6.38))

  (u0d eff )

where u0 is perimeter of column(see Clause 6.4.5 for columns at base edges)

d eff  = (d  y + d z)/2 where d  y and d z are the effective depths in orthogonal directions

Determine value of v Rd,max (refer to Table 7)

Determine concrete punching shear capacity v Rd (withoutshear reinforcement) from 2dv Rd,c/a (Refer to Table 6 for v Rd,c)

Yes

Either increase mainsteel, or providepunching shear

reinforcement required.(Not recommended

for foundations.)

No

No shear reinforcement required. Check complete.

Figure 4Procedure for determining punching shear capacity for pad foundations

Yes

Redesign foundationIs v Ed,max < v Rd,max?No

Determine value of v Ed, (design shear stress) from:v Ed = (V Ed – DV Ed)

  (u1d eff )where u1 is length of control perimeter (refer to Figure 5). For

eccentrically loaded bases, refer to Exp. (6.51).

The control perimeter will have to be found through iteration;it will usually be between d  and 2d 

Is v Ed < v Rd atcritical perimeter?

Design for punching shear 

    

Table 6v Rd,c resistance of members without shear reinforcement, MPa

 r l Effective depth, d (mm)

300 400 500 600 700 800 900 1000a

0.25% 0.47 0.43 0.40 0.38 0.36 0.35 0.35 0.34

0.50% 0.54 0.51 0.48 0.47 0.45 0.44 0.44 0.43

0.75% 0.62 0.58 0.55 0.53 0.52 0.51 0.50 0.49

1.00% 0.68 0.64 0.61 0.59 0.57 0.56 0.55 0.54

1.25% 0.73 0.69 0.66 0.63 0.62 0.60 0.59 0.58

1.50% 0.78 0.73 0.70 0.67 0.65 0.64 0.63 0.62

1.75% 0.82 0.77 0.73 0.71 0.69 0.67 0.66 0.65

≥2.00% 0.85 0.80 0.77 0.74 0.72 0.70 0.69 0.68

   k  1.816 1.707 1.632 1.577 1.535 1.500 1.471 1.447

Key

a    

Notes1      r         

     √  r    √ r  r  r      r     

2      r  

 f  25 28 32 35 40 45 50

Factor  

Beam shear faces

2d 

 h

Bends mayberequired

Punching shear perimeters,(load within deducted from V )Ed

Figure 3Shear checks for pad foundations

b z 

2d 2d 

b y

u1

u1

Figure 5Typical basic control perimeters around loaded areas

Page 52: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 52/116

48

 

y  

y  

Raft foundations

Piled foundations

Table 7Values for v Rd, max

 f ck   v Rd,max

a a

bF

 hF

Figure 8Dimensions for plain foundations

Stress zone

45o

 As contributing to shear capacity

Figure 7Shear reinforcement for pilecaps

Punching shear 5 2d from column face

f /5

f /5

Beam shear 5 d from column face

Figure 6Critical shear perimeters for piles

Page 53: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 53/116

49

Table 8Minimum percentage of reinforcement required

 f ck   f ctm Minimum % (0.26 f ctm / f  yka )

Key

a      

Plain concrete foundations

  a

 

 

s  

   

  

Rules for spacing and

quantity of reinforcementCrack control  

Minimum area of principal reinforcement           

  

Maximum area of reinforcement

    

Minimum spacing of reinforcement

 

 

 

Deep elements

Symbol Definition Value

  

  

   

   

  

         

    a    g 

   

            

 

 

  

 

 

 

  

  

  

  

  

        

    d     d   

b  

g  

r     

r       

c   c  

c  

Selected symbols

Page 54: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 54/116

50

References  1 

  2 

  3 

  4 

  5

  6 

  7 

  8 

  9   

Page 55: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 55/116

Designing to Eurocode 2

 

Analysis

 

 

 

 

Design procedure

 

 

R Moss  O Brooker  

Page 56: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 56/116

52

Table 1Flat slab design procedure

Step Task Further guidance

Chapter in this publication Standard

   

   

 

   

   

  

   

   

Note

Table 2Minimum dimensions and axis distances for reinforced concrete slabs

Standard fire resistance Minimum dimensions (mm)

Slab thickness,  hs Axis distance,  a 

Notes

   

  Key

Fire resistance

    f   f 

Flexure

Page 57: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 57/116

53

Table 4Values for K ’

% redistribution d (redistribution ratio)   K ’

Keya   

Table 5 z/d for singly reinforced rectangular sections

K    z/d K z/d 

Keya       

Table 6Minimum percentage of reinforcement required

 f ck   f ctm Minimum % (0.26  f ctm / f  yka )

Keya       

Figure 1Procedure for determining flexural reinforcement

Table 3Bending moment coefficients for flat slabs

End support/slab connection Firstinteriorsupport

Interiorspans

Interiorsupports

Pinned Continuous

Endsupport

Endspan

Endsupport

Endspan

         

Notes 

1     

2       3 

Carry out analysis of slab to determine design moments(M) (Where appropriate use coefficients from Table 3).

No compression reinforcement required

Check maximum reinforcement requirements. As,max = 0.04  Ac  for tension or compression

reinforcement outside lap locations

Determine K ’ from Table 4 orK ’ = 0.60d – 0.18d2 – 0.21 where d ≤ 1.0

START

Yes

Yes

Outside scope ofthis publication

Concrete class≤C50/60?

No

Compressionreinforcementrequired – not

recommended fortypical slabs

Is K  ≤ K ’ ?No

Determine K  from: K  =Determine K  from: K  =bd 2 f ck 

M

Obtain lever arm  z  from Table 5 or 

1 +   ≤ 0.95d  z  =2d 

1 – 3.53 K[ ]

Calculate tension reinforcement required from

 As = f  yd  z 

M

Check minimum reinforcement requirements (see Table 6)

 As,min = where  f  yk  ≥ 25 f  yk 

0.26  f ctm bt d

Page 58: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 58/116

54

Deflection

 

 

 

Punching shear   

 

b  b  

Figure 2Simplified rectangular stress block for concrete up to class C50/60from Eurocode 2

Figure 4Basic span-to-effective-depth ratios for flat slabs

Figure 3Procedure for assessing deflection

Is basic l/d  x F1 x F2 x F3 ≥ Actual l/d  ?

Increase As,prov

Determine Factor 3 (F3)F3 = 310/s s

Where s s = Stress in reinforcement at serviceabilitylimit state (see Figure 5)

s s may be assumed to be 310 MPa (i.e. F3 = 1.0)

Note: As,prov ≤ 1.5  As,req’d (UK National Annex)

Determine basic l/d  from Figure 4

Check complete

Determine Factor 1 (F1)For ribbed or waffle slabs

F1 = 1 – 0.1 ((bf /bw) – 1) ≥ 0.8† (bf  is flange breadth and bw is rib breadth)

Otherwise F1 = 1.0

Determine Factor 2 (F2)Where the slab span exceeds 8.5 m and it supports

brittle partitions, F2 = 8.5/leff 

Otherwise F2 = 1.0

No

Yes

START

† The Eurocode is ambiguous regarding linear interpolation. It is understood that thiswas the intention of the drafting committee and is in line with current UK practice.

Notes

1    

2  r 

  r   r   

 

r   r    

r r     r 

    

[ ]

  

    r      r 

r [ ( ) ]

 f ck  = 50

 f ck  = 45

 f ck  = 40

 f ck 

= 35

 f ck  = 32

 f ck  = 30

 f ck  = 28

 f ck  = 25

 f ck  = 20

Percentage of tension reinforcement ( As,req/bd )

39

37

35

33

31

29

27

25

23

21

19

17

150.40% 0.60% 0.80% 1.20% 1.80%

Span-to-effective-depth

ratio

(       l /

       d )

1.00% 1.40% 1.60% 2.00%

Page 59: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 59/116

55

 

 

 

 

 

Figure 5Determination of steel stress

Figure 6Procedure for determining punching shear capacity

START

Determine value of factor β (refer to Figure 7 or Expressions (6.38) to (6.46)

of the Eurocode)

Determine value of v Ed (design shear stress at face of column) from:

  v Ed  = β  V Ed /(ui d eff )where ui is perimeter of column

d eff   = (d  y + d z)/2 (d  y and d z are the effective depths in orthogonal directions)

Determine value of v Rd,max from Table 7

Determine value of v Ed, (design shear stress) from:

v Ed = β  V Ed /(ui d eff )where u1 is length of control perimeter (see Figure 8)

Yes

Redesign slabIs v Ed, v Rd?No

Determine concrete punching shear capacity(without shear reinforcement),v RD,c from Table 8

where r l = (r ly r lz)0.5

(r ly, r lz are the reinforcement ratios in two orthogonaldirections for fully bonded tension steel, taken over a

width equal to column width plus 3d  each side.)

Is v Ed > v Rd,c?

Yes

Punching shearreinforcement not

required

No

Determine area of punching shear reinforcement per perimeterfrom:

 Asw = (v Ed – 0.75v Rd,c) sr  u1/(1.5 f  ywd,ef )where

 sr  is the radial spacing of shear reinforcement (see Figure 9) f  ywd,ef  = 250 + 0.25 d eff  ≤  f  ywd (see Table 9)

Determine the length of the outer perimeter where shearreinforcement not required from:

uout,ef  = b  V Ed/(v Rd,c d )

Determine layout of punching shear reinforcement(see ‘Spacing of punching shear reinforcement’

Section and Figure 9).

To determine stress in the provided reinforcement (s s), calculate the ratioGk /Qk , read up the graph to the appropriate curve and read across todetermine s su.

s s can be calculated from the expression: s s = s su As,req

 As,prov

1

d( ) )

Ratio Gk /Qk 

   A  p  p  r  o  x   i  m  a   t  e  s   t  e  e   l  s   t  r  e  s  s  a   t

   S   L   S   f  o  r   A

  s ,  r  e  q

180

200

220

240

260

280

300

320

1.0 2.0 3.0 4.0

c 2 

= 0.8, g G

= 1.35

c 2 = 0.6, g G = 1.35

c 2 = 0.3, g G = 1.35

c 2 = 0.2, g G = 1.35

c 2 = 0.6, g 

G = 1.25

c 2 = 0.3, g G = 1.25

c 2 = 0.2, g G = 1.25

(c 

2 is the factor for quasi-permanent value of a variable action. For furtherexplanation refer to How to design concrete structures using Eurocode 2:Introduction to Eurocodes3.

   A  p  p  r  o  m  x   i  m  a   t  e  s   t  e  e   l  s   t  r  e  s  s  a   t   S   L   S   f  o  r    A

  s ,  r  e  q ,     s  s  u

Page 60: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 60/116

56

Rules for spacing andquantity of reinforcement

Minimum area of reinforcement

              

       

    

      

  

  

  

Maximum area of reinforcement

    

Minimum spacing of reinforcement

 

 

 

Maximum spacing of main reinforcement

   

   

b = 1.5

b = 1.4 b = 1.15

Internal column

Corner column

Edge column

Figure 7Recommended standard values for b

Table 8v Rd,c resistance of members without shear reinforcement, MPa

r I  Effective depth, d  (mm)

≤200 225 250 275 300 350 400 450 500 600 750

0.25%  

0.50%  

0.75%  

1.00%  

1.25%  

1.50%  

1.75%  

≥ 2.00%  

 k   

Notes

1      r I        

 

  R  r I  Rr   r  r     r    

2       r 

 f  25 28 32 35 40 45 50

Factor  

Figure 8Typical basic control perimeters around loaded areas

b z 

2d 2d 

b y

u1

u1

Table 7Values for v Rd,max

Table 9Values for  f  ywd,ef 

 f ck   v Rd, max   d eff    f  ywd,ef 

Page 61: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 61/116

57

Table 10Factor, F , for determining  Asw, min

 f ck Factor, F 

Note

    

   

   

 

 

Spacing of punching shear reinforcement

    

 

  

     

 

    

    

  

    

 

 

Symbol Definition Value

  

  

  

   

   

 

  

  

    a    g 

   

            

 

  

  

  

 

        

    d     d 

  

g   g  g 

r   R  

r      

r     

Selected symbols

Figure 9Punching shear layout

sr 

Outer controlperimeter 

s 0.75r  ≤ d 

≤ 0.5 d 

kd 

Section A - A

st

Outer perimeter of shear reinforcement

Outer controlperimeter uout

0.5 d 

≤ 0.75d 

≤1.5

(2 if > 2from column)

d d 

A A≤1.5d 

Page 62: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 62/116

58

References  1 

  2  

  3      4  

  5  

  6  

  7   

  8  

  9  

Page 63: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 63/116

Methods for checking deflection  

 

 

 

 

 

Overview

 

 

What affects deflection?There are numerous factors

that affect deflection. These

factors are also often time-

related and interdependent,

which makes the prediction

of deflection difficult.

The main factors are:

  Concrete tensile strength

  Creep

 Elastic modulus

Other factors include:

  Degree of restraint

  Magnitude of loading

 Time of loading

  Duration of loading

  Cracking of the concrete

  Shrinkage

 Ambient conditions

 Secondary load-paths

  Stiffening by other elements

R Webster   O Brooker  

Page 64: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 64/116

60

 

 

 

Factors affecting deflection

Tensile strength

   

          

   

   

      

  

Creep

Elastic modulus

 

Figure 1Typical floor layouts

a) Favourable layout of restraining walls (low restraint)

b) Unfavourable layout of restraining walls (high restraint)

Page 65: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 65/116

61

Cracking

K f W ctm= 0.5^   h

  

   

     h 

    

h   h  

 

Loading sequence

 

Figure 2Loading history for a slab – an example

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

Duration (days)

   L   o   a   d    (   k   N   /   m    ) a

c

de

gh

Loading sequence

a Slab struck 

b 1st slab above cast

c 2nd slab above cast

d 3rd slab above cast

e Floor finishes applied

g Quasi-permanent variable actions

h Frequent variable actions

Partitions erected

Page 66: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 66/116

62

z  

Shrinkage curvature

Methods forcalculating deflections

Rigorous method

Panel 1Determining long term elastic modulus of elasticity

  

E E 

eff,1

1

eff, 2

2

eff, 3

3

eff, 4

4

eff, 5

5LT   = + + + +R W  c m

     h   

h  

Figure 3Outline of rigorous method for calculating deflection

Collate input data 

         

                   

 

Determine the curvature of the slab

Assess whether the element has flexural cracking 

    h          a  a    

             

          

 

z   z         z    

     z    

    

 

 

] g11r E I

M

fl e c   E Ie u

QPMQP–= +g g 

    

         

 

 

   R  e  p  e  a   t

  a   t   1   /   2   0  p  o   i  n   t  s   f  o  r  a   l   l   t   h  r  e  e   l  o  a   d   i  n   g  s   t  a

   g  e  s

Page 67: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 67/116

63

Table 1Concrete properties

 f ck MPa 320 325 328 330 332 335 340 350

                       

                          

                          

                      

                     

e    

e    

e    

e    

e    

e    

e ∞              

Key

a   

Panel 2Useful Expressions for a rectangular section

2 1 x 

bh A d d  Ase s2 2

2

u =

+ - +a] ]g1bh A Ae s s2- +a] ]g g

g+

bh+ + + x - 1I 12bh

2h

 A   d    x x d u

3

u u

2

s   Ae 2u s2=   - - -aa   ] ] ]k   g g 22 g6 @

1 2 A b A d d bs 2s2 x A s2 As2 Ac e

2

s e

0.5= + +- +a   As eaea a] 1-ea]^ ^ ^g 1- - +ea]h   g h   g h7 A# -

g g g3 1Ibx 

 A d x cc3

e s   As2   d 22 2

c   x c= + - - -+a ea^ ^ ^1r    I

S

cscs e

u

u= + -1g    g f a cs ef a^   h

  I

S

c

c

  

  

 

  

  

 

                

                

100 300 500 700 900 1100 1300

ho (mm)h ?( , )t 0

C20/25C25/30

C30/37C35/45

C40/50C45/55

C50/60

100 500 900 1300h0 (mm)h 

100 100

N NR RS S

t 0 t 0

1 1

2 2

3 35 5

10 10

20 20

50 50

30 30

7.0 7.06.0 6.05.0 5.04.0 4.03.0 3.02.0 2.01.0 1.00 0( ,?   t )0

A

E B

D

C

a) Inside conditions - RH = 50% b) Outside conditions - RH = 80%

1100700300

Notes1

2

3 Intersection point between lines D & E can also be above point A4 For t 0 > 100 it is sufficiently accurate to assume t = 100

t 0 = age of concrete at time of loading

h0 = 2 Ac/u 

KeyHow to use Nonogram

Figure 4Method for determining creep coefficient h (∞,t0)

 

 

Page 68: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 68/116

64

8

Loading Bending moment diagram

M   M

M

M

al W 

l

0.125

M Wa a l= (1- )

0.0625

al   alW /2   W /2

0.104

0.102

M =Wal

2

q

ql

q

q

q

0.125

3 4a48 (1-a)

If   a = , K =

MA

MA

MC

MC

MC   MC

MB

MB

WalW al

al

al   al

a a(4 )

if = = 0.25a l , K  

K = 0.083 (1 )

b  =

1

80Wl 2

24  (3 4 )a

2

qa l2 2

2

K =  0. 104 ( 1 )

b  =M MA + B

2

15.6

ql  2

a6

112

12

2

2

End deflection(3 )a a6

load at end = 0.333K 

12

4

M + MA B

(5 4 )a

3 4a

2   2

=

10

Simplified method

Figure 5Simplified method for calculating deflection

Figure 6Values for K  for various bending moment diagrams

Calculate the moment, MQP, due to quasi-permanent actions atthe critical section (i.e. mid-span or at support for cantilever)

Calculate creep coefficient, h (∞,t 0), using either Figure 4or Annex B (in which case look-up  f cm in Table 1)

START

Calculate flexural curvature 1r E I

M1

n ef f c   E Ieff u

QP   MQP= + –g g ^   h

Obtain concrete properties, f ctm, and E c28 from Table 1

1  Calculate long term elastic modulus, E eff  from: E eff = E c28/[1+h  (∞,t 0)]2  Calculate effective modulus ratio, ae from ae = E s/E eff , where E s is

elastic modulus for reinforcement (200 GPa)3  Calculate depth to neutral axis for uncracked condition, x u4  Calculate second moment of area for uncracked condition, Iu

Calculate depth to neutral axis for crackedcondition, x c and calculate second moment of area

for cracked condition, Ic

Yes

FinishNo

Calculate the deflection that will occur at the time of application ofthe load due to partitions and/or cladding.

1  Calculate the creep coefficient h (t,t 0), where t is the age whenpartition/cladding loads are applied and t 0 is the age of striking.h (t,t 0) ≈ h (∞,t 0) b c(t,t 0). For b c(t,t 0) refer to Figure 7, alternativelyrefer to Annex B of Eurocode 2.

2  Calculate the moment due to self-weight, partitions/cladding and anyother loads which have been applied prior to the installation of thecladding/partition, Mpar  and use in place of MQP

3  Recalculate the section properties, curvature and hence deflection,dpar , using h (t,t 0) or equivalent instead of h (∞,t 0)

4  The approximate deflection affecting cladding and partitions isd = dQP – dpar 

Calculate cracking moment, Mcr  from:0.9

M h

 f Icr 

 x u

ctm u=

–(Note the factor 0.9 has been introduced into this method

because the loading sequence is not considered)

Yes No

Section is uncrackedz  = 0

Is Mcr  > MQP?

Section is crackedz  = 1 – 0.5(Mcr /MQP)2

Calculate total shrinkage strain ecs from ecs = ecd + eca  where:

ecd  = k h ecd,0 = Drying shrinkage straink h  = Coefficient based on notional size, see Table 2ecd,0  = Nominal unrestrained drying shrinkage, see Table 1eca  = b as(t ) e ca(∞) = e ca(∞) for long-term deflection, see Table 1

Calculate curvature due to shrinkage strain 1/r cs (see Panel 2)

Calculate total curvature = +1

r t, csnQP

1 1r r 

Calculate quasi-permanent deflection from 1

KLQP2=d r t,QP

where K  can be obtained from Figure 6 and L is the span.

Do you needto calculate deflectiondue to cladding and

partitions?

Page 69: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 69/116

65

100 300 500 700 9000.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Coefficient,

       b  c(

          t ,

          t 0)

h0 (mm)

 t = 90, t 0 = 7

t = 60, t 0 = 7

t = 28, t 0 = 7

 t = 90, t 0 = 3

t = 60, t 0 = 3

t = 28, t 0 = 3

Precamber 

Flat slabs

 

Accuracy

 

 

 

Figure 7Coefficient for development of creep with time after loading

Table 2Values for K h

 h0  k h

Notes

   

  

 

Notes

 

 

       

Figure 8Precambering of slabs

Deflection affecting partitions

Just before installationof partitionsPrecamber

Deflection due to

frequent combinationDeflection due toquasi-permanentcombination

Figure 9Recommended acceptance criteria for flat slabs

a

X

Notes

d   d

 

 

Page 70: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 70/116

66

References  1 

  2  

  3   

  4  

  5  

  6   

  7   

  8   

  9   

 10   

Cladding tolerances

 

 

Page 71: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 71/116

Introduction

 

   

Geotechnical Categories

Limit states

A J Bond  O Brooker   A J Harris 

Page 72: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 72/116

682

     

      

         

        

   

        

          

        

   

   

   

     

      

    

   

         g  c   

  g       

         

  c     c  c   c  

       

        g  

  g      

          

          h   h   h    h g h

Calculation models forstrength limit states      

    

   

       

       

        

 

               

      

       

    

          

 

           favourable 

   unfavourable   

        

     

    

     

         

 

        

    

    

   

   

     

        

    

Figure 1Ultimate limit states for reinforced concrete retaining walls

a) Overall stability

b) Sliding c) Toppling

d) Bearing e) Structural failure

Table 1Partial factors to be used for retaining wall design according todesign approach 1 (UK National Annex)

Combin-ation

Partial factors onactions

Partial factors on materialproperties of soil

g Ga g G,fav g Q g ϕ

b g c g cu g γ

   

     

Keya  g 

   

b  g h  h  

68

Page 73: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 73/116

693

        

 

      

Calculation model A       

        

      

          

           

 

         

       

        

  c = b   c  h              h     

            

Figure 2Calculation model A

h

a

Figure 3Calculation model B

h

      

    

         

c   c   h  h     

     

 

      

    

        

       

         

    

        

Calculation model B    

         

69

Page 74: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 74/116

704

inclined       

     y   d   

   

          

           

            

        

         

  y        

           

   

          

    

         

      d   

            h  

        

           

 

            

Figure 4Overall design procedure

Design procedure        

     

 

     

       

     

    both combinations.   

     

Overall stability of the site          

       

       

         

      

Initial sizing         

       8    

          

              

    

      

        

    

       

   

       

      

Figure 5Symbols for initial sizing

  

 

 

 

 

     

       

 

  

  

                       

                        

                                                                                      

                                       

    

          

   

70

Page 75: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 75/116

715

Material properties       

          

      

                   

   

   

      

        

       g    

h       

   

      

            

   

       

Figure 6Procedure for determining material properties, geometry and actions

From Figure 4

Determine characteristic material properties   g      h  

      g 

        h      

   g          

Determine initial geometry and actions (see Panel 1)1     

          (y 2  3   

              Σ 

      

    

    Σ  

   

  

    

Carry out separately for both Combinations 1 and 2

Determine design material properties and earthpressures (see Panel 2)1       

    g   g   g g  g   g γ        h    h   g φ     

  g 

2          

      h    b  

            

To Figure 4

Panel 1General expressions for geometry and actions

 

     g 

 

    g 

      

   

   

  

  

For calculation model A:

       

 b  

  

      g 

 

     & 

  

  

For calculation model B:

    

  

   &  g 

 

     

 

  

y   

 

  b 

 

 

W  b 

W  y 

    

  

  

Panel 2General expressions for material properties and earth pressures

For calculation model A:

  

   b R  h 

    b 

b  R  h  

   b  b 

g   

 

 

    g  g  

For calculation model B:

    h 

 b  

h  

   

h  

    h 

    h  

     b   h    y h  

 

     b  

 g 

     b b  y

 

  g   

g g 

   

 

g   

71

Page 76: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 76/116

Page 77: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 77/116

73

Figure 8Effects of shear key

0

Panel 4Expressions for bearing resistance

     

   

g   /         W      W  

  

Undrained bearing resistance:

    

 

 

 

 p

  

R  

 

W

   

Drained bearing resistance:

  

  

 

  

g   

  g 

 

g g

  

   

W

 g   /  

 

  W

g    

    g      

Figure 11Bearing capacity factors, N, from ground properties

Angle

gc

,

   B  e  a  r   i  n  g

  c  a  p  a  c   i   t  y

   f  a  c   t  o  r ,

      N

         

    

     

            

         

     

 

       

        

         

       

significant   

    

         

    

Design against bearing failure    

 

     

     

       

 

       

            

      

     

       

         

   

         

 

Figure 10Procedure for design against bearing failure

From Figure 4

    

  Ω

 

    

    

        

To Figure 4

                                                                                      

                                       

    

          

   

73

Page 78: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 78/116

748

       

        

         

   

                

    

Structural design          

       

    

  

     

  10   

 

        

Compaction earth pressures

         

   

     

         

 

     s         

     

  

      

            

       

       

         

        

 

Figure 12Effective base width, B’

   

           

            

            

             

At-rest earth pressures

     

     

      

      

        h  R  b  

     b    

Figure 13Design procedure for structural design

From Figure 4

          

                         11  

 

                 

To Figure 4

Figure 14Compaction earth pressures for structural design of cantileverretaining walls

 z J

 z K 

 z D

                          

                                                            

                                       

    

          

   

74

Page 79: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 79/116

759

Figure 15Pressure diagram for design of reinforced concrete base

Panel 5General expressions for designing walls for compaction pressures

Forces for stem design (see Figure 14)

 

  

   

  

    

  

   

  

 

  

 

  

 

  

  

   

  

   

 

  

  

   

 

    

 

     

Forces for heel design (see Figure 15b)

 &

   

  

   

 

   

 

  & 

  

   

 

   

 

Forces for toe design (see Figure 15a)

 

 

 

   

  

 

      g 

 

            

   R 

          

  R 

        

  s      g      

  s 

  

  s 

  

 g 

 

pg   

 

pg   

 g 

 

  p  

  

  

b R  h  

   b 

b  R 

 h    

 b  b 

   

   b  R  h 

    b 

b R  h  

   b  b 

           

        

        

             

     

         

           

 

            

    

         

            

Table 2Typical compaction equipment12

Description of compactionequipment

Mass (kg) Centrifugalvibratorforce (kN)

Designforce (kN)

   

   

 

  

 

       

    

      

Panel 6Expressions for the structural design of basement walls for ‘at-rest’pressures

  

     h 

R  b

s  

  g 

   

    

 

  s 

  

 s  

  

 

  

 

  s 

  

 s 

  

  s 

s  

   

Forces for stem design

 

  

   

  

   

 

 

       

    

  

 

   

    

 

 

  

   

 

   

   

   

     

      

       

75

 

 

 

Soil pressure abovetoe ignored

 

 

 

 

 

 

 

 

 

 

Page 80: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 80/116

7610

      

  

   

    

      

         

       s    

  s        

              

         

    

    

Detailing

Control of cracking            

      

     

  13   

     14  

      3

       

       

         

     

          

            

  

restraint      

          

Figure 16Earth and pore water pressures for structural design of retaining

walls subject to 'at-rest' conditions

 z 

W

 z D

W

     

       

 

loading      

 

     

       

   

        

        

          s

           

         

      

              

    

          

       

    

              

        

             1

               

     

        

Table 3Maximum bar size or spacing to lmit crack width (mm)

Steelstress(s s)MPa

Wmax = 0.3 Wmax = 0.2

Maximumbar size(mm)

Maximumbar spacing(mm)

Maximumbar size(mm)

Maximumbar spacing(mm)

 

 

 

 

 

Note

      

s     

  

  g   d

             

  g           

           

 

        

             

           

  d        

76

Page 81: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 81/116

7711

  s       

          

Large radius bends    

             

       f  

 

f    

f   

                 

               f 

  f    

         

15  

      

  

Rules for spacing and quantity ofreinforcement

Vertical reinforcement

        

           

        

         

            

  

     

    

Figure 17Typical drainage layout for a retaining wall

300 mm widegranular backfill

Weep hole

Drainage pipe

Large radius bendif required

      

      

                 

       f    

  f      

Horizontal reinforcement

          

        

        

    

      

Practical issuesDesign for movement      

         

        

       

    

         

   16 

       2 

       

       

           3     

           

         

     

       1

      

           

             

               

Drainage         

     

        

    

      

           

 

        

        

           

77

Page 82: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 82/116

7878

Construction    

            

          

          

   

      

      

          

         

    

      

          

     

    

             

          

         

                

   

 

        

    

     

   

    

 

References

  1          

  2         

  3        

  4        

  5      

  6       

  7     

   

  8          

  9         

 10            

 11        

 12         

 13      

 14         

 15         

 16       

Page 83: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 83/116

Introduction

     

 

 

 

 

 

 

Type and grade of reinforcement

O Brooker  

Page 84: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 84/116

80

Table 1

Notation for steel reinforcement

Type of steel reinforcement Notation

Note

Figure 1Description of bond conditions

a) 45º < a < 90º

 

Key

b)  h < 250 mm d)  h > 600 mm

c) h > 250 mm

a

 

Cover 

 

D

D

D

Anchorage and lap lengths a  a

Anchorage of bars and links

Table 2Anchorage and lap lengths for concrete class C25/30 (mm)

Bondcondition,(see Figure 1)

Reinforcement in tension, bar diameter, f  (mm) Reinforcementincompression8 10 12 16 20 25 32 40

  f 

  f 

Notes

1  a 

2  a  a  a  a 

3  s  s 

Concrete class C20/25 C28/35 C30/37 C32/40 C35/45 C40/50 C45/55 C50/60

Page 85: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 85/116

81

Bars in compression

f  

Figure 2Design anchorage length lbd, for any shape measured along thecentreline

f lbd

Figure 3Anchorage of links

a) Bend angle > 150º b) Bend angle  150º

f f 

Figure 4Percentage of lapped bars in one lapped section

Figure 5Arranging adjacent lapping bars

 

 

 

 

 

 

Arrangement of laps

1. 

f  

2.

3. 

f  

Transverse reinforcementBars in tension

  

   Σ    

f  

Page 86: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 86/116

82

BeamsCurtailment

     y  

  

  y  

   

 

Figure 6Transverse reinforcement for lapped splices

a) Bars in tension

b) Bars in compression

  

  

 

     

   

f    f 

Table 3Bar sizes for transverse reinforcement

Lap length(mm), fortransversebars at 150mm centresa

Numberof barsat eachlap

Bar size (mm)

20 25 32 40

 As = 314  As = 491  As = 804  As = 1260

   

   

 

 

 

Key

      

Figure 7Illustration of curtailment of longitudinal reinforcement

 

 

 

Figure 8Simplified detailing rules for beams

   

   

a) Continuous member, top reinforcement

   

l  a  l

l  a

   

b) Continuous member, bottom reinforcement

    

l  a

    

  l

    

c) Simple support, bottom reinforcement

l

Notes

1  

2  

3  

4   

5 6

7

8

Page 87: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 87/116

83

Reinforcement in end supports

 

        

 

   

 

Flanged beams

Minimum area of longitudinal reinforcement             

   

Maximum area of longitudinal reinforcement

    

Figure 9

Placing of tension reinforcement in flanged cross section

beff 

beff1   beff2

 As

bw

hf 

Minimum spacing of reinforcement

Shear reinforcement

 

     

  

  

r   r  

SlabsCurtailment

    

Reinforcement in end supports

 

Table 4

Minimum percentage of reinforcement required

 f ck  f ctm Minimim percentage(0.26  f ctm /  f  yka)

r w, min

 x 10-3

Keya      

Page 88: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 88/116

84

Minimum spacing requirements

  

  

Maximum spacing of reinforcement

 

   

   

   

   

s  s  

s  

Figure 10Simplified detailing rules for slabs

a) Continuous member, top reinforcement

   

l  l

l

   

b) Continuous member, bottom reinforcement

    

l

    

c) Simple support, bottom reinforcement

  l

   

Notes

1  

2  

3    

4

5 6

7

Minimum areas of reinforcement

Maximum area of longitudinal reinforcement

    

    

Edge reinforcement

Flat slabs

Figure 11Edge reinforcement for slab

≥ 2h

h

Table 5Values for r w,min

Steelstress

(e s) MPa

w max = 0.4 mm w max = 0.3 mm

Maximumbar size(mm)

OR

Maximumbar spacing(mm)

Maximumbar size(mm)

OR

Maximumbar spacing(mm)

Table 6Apportionment of bending moments in flat slabs – equivalent frame method

Location Negative moments Positive moments

Notes

Page 89: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 89/116

85

Figure 12Division of panels in flat slabs

lx > l y

l y/4   l y/4

l y

l y/4

l y/4

Middle strip = lx – l y /2

Middle strip = l y /2

Column strip = l y/2

 

  

Punching shear reinforcement

    

 

  

     

      

      

  

    

    

  

      √       

      

   

   

    

Figure 13

Effective width,  be of a flat slab

a) Edge column b) Corner columnNote   

                

      

       

 

 

 

    

 

Figure 14Punching shear layout

 

 s       d 

kd 

   

     u

 d 

  d 

d  

  

 

 

Page 90: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 90/116

86

Columns and wallsMaximum areas of reinforcement

Minimum reinforcement requirements

        

Particular requirements for walls

     

 

Table 7

Factor, F , for determining  Asw, min

 f ck  

Factor, F   

Note

    

Table 8Requirements for column reinforcement

Bar dia. (mm) 12 16 20 25 32 40

 

Keya 

Lapping fabric

     

  

 

  f  

  f  

  f  

f  

Tolerances

Table 9Minimum area of vertical reinforcement in walls (half in each face)

Wall thickness (mm) As,min/m length of wall (mm2)

Table 10Tolerance

Cutting and bending processes Tolerance (mm)

Bending:

 

 

 

Table 11Deductions to bar dimensions to allow for deviations between twoconcrete faces

Distance betweenconcrete faces (mm)

Type of bar Total deduction(mm)

 

 

 

Page 91: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 91/116

87

Figure 15Lapping of welded fabric

a) Intermeshed fabric (longitudinal section)

b) Layered fabric (longitudinal section)

 

 

 

 

Tying requirements

 

  

         

   

 

 

      

Minimum radii and endprojections

Table 12Minimum scheduling radii and bend allowances

r    P≥ 5d 

Nominalsize of bar,d  (mm)

Minimumradius forscheduling, r (mm)

Mimimum end projection, P

General (min 5d  straight), includinglinks where bend >150° (mm)

Links where bend< 150° (min 10d  straight) (mm)

Key

References  1  

  2  

  3   

  4

  5    

  6  

  7  

  8  

9  

10   

 11 

 12   

 13 

Page 92: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 92/116

Page 93: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 93/116

89

Bond condition(see Figure 1)

Reinforcement in tension, bar diameter, f  (mm) Reinforcementin compression

8 10 12 16 20 25 32 40

Concrete class C35/45

l

l

Concrete class C40/50

l

l

Concrete class C45/55

l

l

Concrete class C50/60

l

l

Notes

1  a 

2  a  a  a  a 

3  s  s 

5   

Page 94: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 94/116

9090

Table 14Sectional areas of groups of bars (mm2)

Bar size(mm)

Number of bars

1 2 3 4 5 6 7 8 9 10

Table 15Sectional areas per metre width for various spacings of bars (mm2)

Bar size(mm) Spacing of bars (mm)75 100 125 150 175 200 225 250 275 300

Table 16Mass of groups of bars (kg per metre run)

Bar size(mm)

Number of bars

1 2 3 4 5 6 7 8 9 10

Table 17Mass in kg per square metre for various spacings of bars (kg per m 2)

Bar size(mm)

Spacing of bars (mm)

75 100 125 150 175 200 225 250 275 300

Page 95: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 95/116

91

 

 

 

   

Page 96: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 96/116

92

 

 

 

 

 

 

 

 

   

 

 

 

92

Page 97: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 97/116

Page 98: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 98/116

94

  

   

  

 

 

   

 

 

     

 

 

 

 

   

 

94

Page 99: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 99/116

95

 

 

 

 

   

   

   

 

 

 

 

 

   

 

95

Page 100: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 100/116

96

 

 

 

 

 

      

96

Page 101: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 101/116

Page 102: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 102/116

98

 

 

 

 

 

 

      

   

   

 

 

   

 

   

   

98

Page 103: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 103/116

99

Introduction

 

 

A S Fraser   A E K Jones

 

 

Start

Finish

Can thetabular method conditions

be met?

Is the element abraced column?

Is the element aslab or beam?

Is there anacceptable solution?

Is there anacceptable solution?

Use simplified methods

Use tabular method

Use 500oc isotherm methodor zone method

Use Annex C of Part 1–2:Buckling of columns under fire

Use Annex E of Part 1–2:Simplified calculation method

for beams and slabs

NoNo

No

No

Yes

Yes

Yes

No

Yes

Yes

Page 104: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 104/116

100

Basic concepts

Fire types  

Level of protection

Material factors

g  

y  y 

Combinations of actions

n  n  

n     c   

 Coefficient k c(y   ( f ck) of concrete

1.0

0.8

0.6

0.4

0.2

00 200 400 600 800 1000 1200

Temperature, ( C)o

Coefficient,

                  (      

                  )      

       kc

        y 

Calcareousaggregates

Siliceousaggregates

 Coefficient k s(y   f ck)of tension and compression reinforcement (class N)

1. 0

0.8

0.6

0.4

0.2

00 200 400 600 800 1000 1200

Hot-rolled tensionreinforcement, 2%s,fi

Cold-worked tensionreinforcement,

Compression

reinforcement andtension reinforcement,where < 2%

Temperature, ( C)o

Coefficient,

                  (      

                  )      

       k      s 

        y 

2%s,fie 

s,fie

 Coefficient k p(y   (b  f pk

1.0

0.8

0.6

0.4

0.2

00 200 400 600 800 1000 1200

Quenched and temperedprestressing steel (bars)

Cold-worked prestressingsteel (wires and strands)Class A

Cold-workedprestressingsteel (wires andstrands) Class B

Temperature, ( C)o

Coefficient,

                  (      

                  )      

       k      p   

        y 

Page 105: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 105/116

101

c   c 

n     c     c  

n     c    

c  

 

c  

Explosive spalling

Concrete falling off the section

Tabular method

n  

m n   m 

  n fi 

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.200 0.5 1.0 1.5 2.0 2.5 3.0

Reductionfactor,

        f        i

1, 1 = 0.2

1, 1 = 0.9

1, 1 = 0.5

1, 1 = 0.7

Ratio,

c      n

  n fi 

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0 0.5 1.0 1.5 2.0 2.5 3.0

0, 1   = 0. 5 ;   1, 1  =  0. 2

0, 1  = 0.7   ;   1, 1  = 0.5

0, 1  =  0.7   ;   1, 1  =  0.7 

0, 1 =  1.0   ; 1,1  = 0.9c c 

c c 

c c 

c c 

Ratio,

Reductionfactor,

        f        i

     n

   a

a a

b

b

asd

 h b

Page 106: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 106/116

Page 107: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 107/116

103

Method B

l        

      

 

   

   

   

 

 

             

w  

Walls

   

 

Table 2

Standard fire resistance Mechanicalreinforcement ratio, w 

Minimum dimensions (mm). Column width  bmin  a

 n   n   n   n 

  a a a a

a a a a

a a a a

  a a a a

a a a a

a a a

  a a a a

a a a

a a a

  a a a

a a a

a a

    a a b

a a

a a b

  a a b

a a b

a b

Key

Page 108: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 108/116

104

Minimum wall thicknesses for walls

Standardfireresistance

Non-wallthickness(mm)

Minimum dimensions (mm)  a

mfi  mfi 

Number of sides of

Number of sides of

One Two One Two

b b b b b

b b b b b

  b b b

b

  b

b

Key

Standard fireresistance

Minimum dimensions (mm)

Simply supported beams Continuous beams

Possible combinations of  a and  bmin where  a is the  bmin is the width of beam

Webthickness  bw

Possible combinations of  a and  bmin where  a is the  bmin is the width of beam

Webthickness  bw

2   6   9  

   

a

a

a

a

    a

    110

    130

    150

    170

Key

Notes 

2 a  a  a   

  

         

     

    

   

 

    

  

 

Page 109: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 109/116

105

Tensile members

   

 

Slabs

Simply supported slabs

Continuous slabs

  

 

0.3 leff  0.3 leff 0.4 leff 

BM from Exp. (5.11)

BM in fire location

Design BMaccording toBS EN 1992–1–1

BM when

= 0t 

Two-way slabs

a

    

   

prestressed solid slabs

Standard fireresistance

Minimum dimensions (mm)

One-wayslab

a Flat slab

l y/l ≤  l y/l ≤ 2 d ≤ c d  c

   

  b b b b b

   

  b b b

   

    b

   

 

   

 

   

 

Key

c d 

Notes

        

2

 

b b b

bw

(a) Constant width (b) Variable width (c) -SectionI

Page 110: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 110/116

106

Table 6

supported ribbed slabs in reinforced or prestressed concrete

Standard fireresistance

Minimum dimensions (mm)

Possible combinations of width ofribs  bmin   a

Slab thickness hs  distance a inSimply supported  

restrained

       

  a a   a

       

  a a a   a

       

  a   a

       

     

       

     

       

     

Key

Notes 

2      

Simplified calculation method for beamsand slabs

   

     

   

  n  

  n  

 

    

Simply supported members

g   g  y     

Flat slabs

 

Ribbed slabs

Simplified calculationmethods

Page 111: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 111/116

107

  g  

g  

  y 

   

   

   

   

Continuous members

 

  g g       

  

   

    

Minimum width of cross-section as function of fire resistance

Fire resistance  

Minimum width ofcross-section (mm)

 Flow chart for simplified calculation method for beams and slabs

Finish

Is the element asimply supported?

Is MEd, fi. ≤ MRd, fi?

Are the support

moments exceeded?

Calculate the support designmoment of resistance,

MRd, fi, support

‘Fit’ the ‘free’ bending

moment so that MEd,fi = MRd,fi

Redesign section or usealternative methods

Start

Calculate MRd, fi

Calculate MEd, fi.

Determine k  s(y ) from Figure 12

Determiney 

, using temperature profiles in Annex A of Part 1-2.

Yes

No No

Yes

Yes

No

 

  

 

1.0

0.8

0.6

0.4

0.2

00 200 400 600 800 1000 12

Coefficient,

       k  s 

(        y   c 

      r)or

       k  p   

(        y   c 

      r)

Reinforcing steel

Prestressing steel (bars)

Prestressing steel(wires and strands)

Temperature, ( C)o

Page 112: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 112/116

108

 

  

  

 

  

  

 Reduced cross-section of reinforced concrete beam and column

c) Fire exposure on four sides (beam or column)

500 Co

500 Co500 Co

 h hfi

bfi

bfifi

b

bb

b

a) Fire exposure on three sideswith tension zone exposed

d d fi =d fi

b) Fire exposure on three sides withthe compression zone exposed

Compression Tension

Tension Compression

 

900

100

200

300

400

500

600

700

800

240

220

200

180

160

140

120

100

80

60

40

20

00 20 40 60 80 100 120 140

Distance from bottom left corner of element (mm)

Distancefrom

bottom

leftcornerofelement(mm)

  cross-section with compression reinforcement.

 As1

 As

 z ’ d 1

b1

 x 

Mu1z z’ 

F A f s )s1 scd,fi m

Mu2

 A f s1 sd,fi( )m

 f cd, 1(20)

 xb f n cd, 1(20) x l

l

y = (

  

  

  

  g     

  y 

y  

  y 

y  

Note:   y    y 

  

l n      

     y 

     y 

       

       

    

   

    

Page 113: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 113/116

109

   

 

Finish

Is MEd,fi ≤ MRd,fi?Redesign section or use

alternative methods

Start

Calculate MEd, fi (see simplified calculation method for beams and slabs)

Check the minimum dimensions exceed the values in Table 7

Determine reduced section size (bfi d fi) using Figure 13 andtemperature profiles in Annex A of Part 1–2

No

Yes

Determine y , using temperature profiles in Annex A of Part 1–2

Determine k s (y ), from Figure 3 or Figure 4

Calculate Mu, using stress distribution shown in Figure 15. Mu = Mu1 + Mu2

 

Finish

Does the sectionalso resist torsion?

Calculate the referencetemperature at points P alongthe line A–A − see Figure 20

Calculate the torsion resistanceand interaction with shear usingsection 6.3 of Eurocode 2, Part 1–1

Start

Determine the reduced cross-section using either 500°Cisotherm or zone methods

Calculate the compressive and tensile concrete strengths:

For isotherm method,  f cd,fi =  f cd,fi(20) =  f ck  and f ctd,fi = f ctd,fi(20) =  f ctk For zone method,  f cd,fi = k c(y m) f cd,fi(20) and f ctd,fi = k ct(y m) f ctd,fi(20),

where k c(y m) and k ct(y m) may be taken as k c(y ) and can be determined

from Figure 2

Determine position P, the point at which the reference temperature,

y p is calculated. P is located along section A–A, which isdetermined from hc,ef  (see Figure 19)

Yes

No

Determine y p using temperature profiles in Annex A of Part 1–2

Calculate the reduced design strength of the shear reinforcement, f sd,fi,from:  f sd,fi = k s(y )  f sd(20) = k s(y ) f  ywd

where k s(y ) can be determined from Figure 3 or Figure 4

Calculate the shear resistance using the methods given for ambienttemperature design, see Chapter 4 Beams11

 Coefficient  k c,t(y  f ck,t) of concrete at elevated temperatures

1.0

0.8

0.6

0.4

0.2

00 100 200 300 400 500 600

Temperature, ( C)o

       C      o      e 

       f       f       i     c        i     e 

     n      t 

  ,  

        (   

        )   

        k       c 

  ,          t 

       y

Calculation methods for shear and torsion

 y 

Page 114: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 114/116

110

Unbraced structures

References 

  2  

   

 

 

 

  6

 

 

  9

 

 

 

 

  temperature y p at point P

 A

AA

c,eff 

 c,ef  = MIN {2.5 ( ); (

 hd 

 x 

 hc,ef 

2 = 0

1

 The reference temperature y p  the calculation of torsion resistance

A

AA

A

A

AA

A

p in linksy 

Page 115: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 115/116

Members of the Steering Group 

Members of the Concrete Industry Eurocode 2 Group (CIEG) 

   

Page 116: HowTo Design Eurocode 2

8/16/2019 HowTo Design Eurocode 2

http://slidepdf.com/reader/full/howto-design-eurocode-2 116/116

How to Design Concrete Structures using Eurocode 2

Dr Andrew Bond 

Owen Brooker  

Dr Andrew Fraser  

Andrew Harris 

This publication brings together in one place “How to...”

guidance for the design, specification and detailing of a broad

range of concrete elements.


Recommended