+ All Categories
Home > Documents > HTS DC Cable Line for St.Petersburg...

HTS DC Cable Line for St.Petersburg...

Date post: 30-Apr-2018
Category:
Upload: vunhu
View: 220 times
Download: 3 times
Share this document with a friend
41
HTS DC Cable Line for St.Petersburg Project Victor Sytnikov R&D Center at Federal Grid Company United Energy System 11th EPRI Superconductivity Conference Houston, Texas October 28 30, 2013 ne
Transcript

HTS DC Cable Line for St.Petersburg Project

Victor Sytnikov R&D Center at Federal Grid Company United Energy System

11th EPRI Superconductivity Conference Houston, Texas October 28 – 30, 2013

ne

ne

CONTENT

Background

HTS DC Cable Line in St. Petersburg Grid

Cable and cable fittings

Cryogenics

Converter

Testing

Conclusion

Federal Grid Company of United Energy System

Substation quantities 806 Grid length, thousands km 122 Transformer power, GVA 312 Staff 23000

At the present time the company consolidate with distribution company . New company assets will increase in several times. 3

Actual problems of modern megalopolises

Characteristics of power systems in metropolitan areas:

rapid growth of energy consumption that, in general, exceeds

the increase of consumption throughout the country;

high density of energy consumption;

areas’ deficiency and branching of distribution networks of

large cities;

partition of the electrical grids to reduce short-circuit

currents.

Main problems of power grids in metropolitan areas:

• high levels of short-circuit currents that in some

cases exceed the breaking capacity;

• low levels of network controllability and steadiness;

•high level of power losses in distribution networks;

Many of this problems can be solved by combination of two technologies: Superconductivity and DC transmission.

4

HTS DC transmission advantages

Loss reduction at electric power transmission

Possibility of high power transmission at low voltage

Limitation of short-circuit current

Enhancement of electrical grid controllability

Cable line area reduction

Mutual redundancy of grid sections

1

2

3

4

5

6

5

The concept of perspective development of power systems of megalopolises using superconducting DC cable lines

6

Project development prospects

MEGACITY

Project cooperation

7

ne

CONTENT

Background

HTS DC Cable Line in St. Petersburg Grid

Cable and cable fittings

Cryogenics

Converter

Testing

Conclusion

St. Petersburg HTS DC CL project

Object 3-phase short-circuit current, kA 1-phase short-circuit current, kA

AC cable line HTS DC cable line AC cable line HTS DC cable

line

«Tsentralnaya» substation 39 18 43 21

RP-9 substation 40 26 44 27

Short-circuit current in the installation site

HTS DC cable line installation in the St. Petersburg’s electrical grid

9

HTS DC Line Specification

Transmission power – 50 MW;

Operating current 2.5 kA; Operating voltage 20 kV

Operating temperature 65 – 75К; Length – about 2500 m

ПС Центральная

110 кВ 330 кВ

РП-9

220 кВ 110 кВ

ПС Чесменская

220 кВ 110 кВ

ПС Южная

220 кВ 330 кВ

ТЭЦ-2

ЭС-1

1

2

SS RP-9 SS Tsentralnaya

SS Yuzhnaya SS Chesmenskaya

HTS CL

St. Petersburg HTS DC CL project

10

11

Comparison of different variants of execution of the links between 330 kV SS “Tsentralnaya” and SS 220 kV RP-9

Current loading of the power lines in areas SS “Tsentralnaya” and SS RP-9 in the post-emergency mode.

Iallowable, А I, А I/Ial, % δР, МW

Enter the cable line 110 kV SS “Tsentralnaya” and SS RP-9

OL 110 kV SS Chesmenskaya – ЭС-1 600 656 109 70

CL 110 kV SS “Tsentralnaya” - SS RP-9 1210 1248 103

Enter HTS DC line capacity of 200 MW

OL 110 kV SS Chesmenskaya – ЭС-1 600 592 98 0

Enter GIL 110 kV

OL 110 kV SS Chesmenskaya – ЭС-1 600 658 110 70

Short-circuit currents in different variants of connections between SS “Tsentralnaya” and SS RP-9

Calculation

points of short-

circuit current

Ibreaking,

кА

HTS DC

Cable line

AC Cable line AC Cable line

+ CLR

GIL

I3,kA I1, kA I3, кА I1, kA I3, кА I1, kA I3,кА I1,kA

Busbar 110 kV

SS“Tsentralaya”

40,0 18,4 20,9 39,2 43,1 21,9 24,6 40,0 43,9

Busbar 110 kV

SS RP-9

31,5 26,4 27,1 40,3 43,9 29,4 30,4 40,7 44,4

St. Petersburg HTS DC CL project

HTS cable

220 kV

Cryogenic system

Current lead Current lead Current lead Current lead DC line include:

-HTS cable with accessories,

-Cryogenic system,

- Two converter stations,

- Monitoring and control system.

HTS cable

AC/DC AC/DC

220 kV

SS-1 SS-2

330kV

Two DC lines in prospect

(2020) with transmission power

150-250MW

Specification Transmission power - 50 MW Pieces – 6 Length - about 2500 m Joints – 5 Operational current - 2.5 kA Twelve pulsed converters Operational voltage - 20 kV Power reverse Operating temperature 65-75 K

Main purposes of the project:

Making HTS DC link - 20kV, 50 MW for

St. Petersburg network.

Creation of scientific – production

cooperation for manufacturing HTS cables,

cable fittings, convertors and cryogenic

equipment.

Creation and demonstration replicated

HTS DC link.

During line operation to receive new

experience and define real operating costs.

12

Cable pass scheme

ПС Центральная РУ 110 кВ ПС РП-9 РУ 110 кВ

Cхема электропередачи постоянного тока ПС 330 кВ Центральная – ПС 220 кВ РП-9.

Основные элементы кабеля по порядку от центра (показано не все, только то что принципиально важно в данной схеме):1. Медный формер, выполняет больше механическую функцию2. Прямой ВТСП проводник под напряжением 20 кВ, течет ток 2,5 кА3. Бумажная изоляция 20 кВ, постоянное напряжение, толщина примерно 5 мм4. Обратный ВТСП проводник, лежит на нулевом потенциале, через него течет обратный ток 2,5 кА, заземлен с одной стороны5. Тонкий слой бумажной изоляции менее 1 мм, для изоляции возможного наведенного напряжения (напряжение измеряется десятками вольт,

требует уточнения) на незаземленном конце обратного ВТСП проводника от криостата6. Медный/стальной экран, не предназначен для протекания тока, выполняет механическую стабилизирующую функцию и выравнивает

электрическое поле возможного наведенного напряжения на незаземленном конце ВТСП обратного проводника, заземлен с обоих сторон7. Гибкий криостат, заземлен с обоих сторон

Заземление обратного ВТСП проводника с одной стороны, сопротивление заземления требует уточнения

SS RP-9, 220 kV SS Tsentralnaya, 330kV 110 kV 110 kV

HTS Cable

Specification

Transmission power – 50 MW

Power reverse

Operational current - 2.5 kA

Operational voltage - 20 kV

Length – about 2500 m

Pieces – 6

Joints – 5

Depth of occurrence – 15 - 18 m.

Two starting pit diameter of 9.8 m.

Two receiving pit with diameter of 8.5m.

13

Object selection

«R&D Center @ FGC UES», jsc Research, development, production and testing of equipment HTS CL

«FGC UES», jsc Building HTS DC Cable line 330 kV SS “Tsentralnaya” and SS 220 kV RP-9

2х430m HTS cable, cable fittings

2011 2012 2013 2014 2015 2016

Development and manufacture converting equipment

Prototypes HTS cable 2х30, cable fittings

Production HTS Cable line

Development and manufacture of cryogenic equipment

Project statement

Design and survey works ГГЭ

Going into operation

Working documentation

Building and assembly jobs

Project schedule

Testing

Testing

Testing

Testing

14

ne

CONTENT

Background

HTS DC Cable Line in St. Petersburg Grid

Cable and cable fittings

Cryogenics

Converter

Testing

Conclusion

Cable design

Cable prototype

Unipolar cable with the reverse conductor - former and stabilizing element; -superconducting forward conductor (22 tapes SEI with Ic=160A); -- high voltage insulation; -superconducting reverse conductor (19 tapes SEI with Ic-180A); - external stabilizer; - external (screening) insulation; - electric (non- superconducting) screen; - cryostat Nexans - protecting layer.

16

Technology development and manufacture of cable samples

Development of the technology was performed on “Irkutskcable” plant Direct conductor manufacturing

Former

Dir

ect

co

nd

uct

or

17

Technology development and manufacture of cable samples

Application of HV insulation Return conductor manufacturing

18

Technology development and manufacture of cable samples

30 meters samples Application of copper screen

19

Current Leads and Joints design

Current leads

Joints

Developer NRC “Kurchatov Institute”

20

Current Leads and Joints

Temperature distribution along the brass current lead and heat leakage into the cold zone

Material Brass rod

Length 0.45 meter

Diameter 48 mm

Heat input @ I=0 A 58.5 W

Heat input @ I=2.5 kA (only rod)

113.0 W

0

2x10-8

4x10-8

6x10-8

8x10-8

0 5 10 15 20 25

Ëåí òà LIX ñ ëàòóí üþ (AMSC)

Ëåí òà ÑÒ-Î Ð 22-80, Sumitomo

Äëèí à êî í òàêòà, ñì

Ñî

ïð

îòè

âë

åí

èå

êî

íòà

êòà

, Î

ì

Tape LIX (AMSC) Tape CT-OP (Sumitomo)

Joint length, cm

Join

t re

sist

ance

, Oh

m

Soldered joints resistance

21

ne

CONTENT

Background

HTS DC Cable Line in St. Petersburg Grid

Cable and cable fittings

Cryogenics

Converter

Testing

Conclusion

Temperature difference (left) and pressure drop (right) in corrugated direct flow cryostats 2,5 km of length.

5 km cryogenic loop

23

5 km cryogenic loop

Temperature difference (left) and pressure drop (right) over the 2.5 km return flow cryostat

Total temperature difference (left) and pressure drop (right) over the 2.5+2.5 km cryogenic loop 24

Cryostat scheme.

25

He

lium

Low pressure Turbo - Brayton system

Liquid nitrogen

Liquid nitrogen container

Helium

Hel

ium

Diagram of the cryogenic system.

Cooling capacity – 12 kW @ 70K Pressure LN – up to 1.4MPa Temperature 66– 80 K Mass flow - up to 45 L/min

26

ne

CONTENT

Background

HTS DC Cable Line in St. Petersburg Grid

Cable and cable fittings

Cryogenics

Converter

Testing

Conclusion

Circuit layout

Converter circuit Twelve-pulsed

Matching transformer 65 MVA; 110/8.27/8.27 kV

DC voltage 20 kV

Rated current 2500 А

Rated power 50 MW

Transmission reverse mode present

Specification of the rectifier – inverter circuit

SS Tsentralnaya SS RP-9

28

№ Harmonics

1 =150;=200;

Id=2500 A I12~0, I24=4 A

2 =150;=30;

Id=200 A I12~0, I24=2 A

3 =800;=10;

Id=250 A I12~0, I24=7 A

Lp/2= 3,2 mH Cф= 10,66 µF Lф= 6,6 mH Qpl = 120 kW

DC filter and current harmonics

Operating mode

29

Thyristor module

Module specification

Permissible current 2500 A

Voltage on the valve 6 kV

Frequency range 48.5 -50.5 Hz

Number of thyristors 6

Type of cooling Water cooling

Type of control Fiber optical

30

ne

CONTENT

Background

HTS DC Cable Line in St. Petersburg Grid

Cable and cable fittings

Cryogenics

Converter

Testing

Conclusion

Tape test after removing from the cable

The tapes with original critical current 180 A

Thus the developed technology ensures the high

current carrying ability of the superconducting tapes

32

Voltage breakdown verification test

Russian standard requirement - 50 kV application during 10 minutes

Sample № 1

Sample

number

Paper

thickness

Results

1 0.7 mm Breakdown at 52.7 kV

7 0.7 mm Breakdown at 46.6 kV

2 1.0 mm No breakdown

Energized 30 min. at 70 kV

3 1.0 mm No breakdown

Energized 30 min. at 70 kV

4 1.0 mm Breakdown at 70 kV after waiting

7 min

5 1.5 mm No breakdown

Energized 30 min. at 70 kV

Time, sec

Vo

ltag

e, k

V

33

Two by 30 meters HTS DC line test

34

Current leads resistance R=20 μΩ (I2r=125W)

I, A

input “+” (with cable) input “-” output “+” output “-”

Current leads U mV

U mV

I, A I, A

Joints connection”-” connection “+”

Joints: R+=0,65 μΩ; R-=0,26 μΩ (+I2r=4.1W; -I2r=1.6W) will be reduced.

Two by 30 meters HTS DC line test

35

Reverse conductors

Direct c0nductor

RESULTS Cable critical current equal to the sum of the tapes critical current. Cabling technology reliability was confirmed. Resistance of all joints is stable up to cable Ic. Design of the cable, joint and current leads was confirmed

Main purposes of this testing were: -Cable design verification Cabling technology verification Current leads and joint design verification Direct measure of the all joint resistance and V-I curve the line.

T=79.5 – 80.5 K

Two by 30 meters HTS DC line test

Results of this test allow us to start manufacturing of full-scale cable lengths

36

Experimental facility for superconducting devices testing at the R&D Center @ FGC UES

1 - HTS cable

2, 3, 6, 7, 17, 20

– Cryogenic system

4 – Current leads

5, 11, 12, 16, 18, 21, 22 – Facility power system

8, 9 – Facility control center

10 – DC current source

13, 14, 15 – Air compartment

19 - Load

37

Transformers up to 120 MVA with step like voltage regulation (6 kV, 10 kV, 16 kV, 20 kV,

66 kV, 110 kV, 154 kV) and with currents up to 4 000 А. Modern certified testing

laboratory. Highly experienced staff.

The test facility will be able to test of experimental, pilot and commercial samples of

superconducting power devices UNDER FULL LOAD.

Experimental facility for superconducting devices testing at the R&D Center @ FGC UES

38

Computer control of cryogenic system permits data recording in real time.

Cryocooler SPC4 Cryogenic system LPC4 FF

Gasifier

Flow distribution unit

Cryogenic system from Stirling Cryogenics Refrigeration BV and flow distribution units from Cryozone. - 2x3.4 kW at 77 K - Tmin– 66K; flow up to 100 liters/min; pressure up to 7 bar

Experimental facility for superconducting devices testing at the R&D Center @ FGC UES

39

Conclusions

Combination of two technologies: superconductivity and DC transmission bring a new quality to the megalopolises network. The HTS DC cable line installation improves the reliability of energy supply to the consumers by mutual redundancy grid sectors and enhancement of controllability of the link. Along with this, it does not increase short-circuit currents. St. Petersburg Project is carried out in accordance with the schedule. All units of equipment have been developed. Successful tests of 2 x 30 m. cable samples allowed to start manufacturing of full-scale cable length. The successful introduction of this HTS DC CL into the St. Petersburg electric power system will allow checking up the basic technical solutions for this technology and get an experience for the commercial application. It will be first step for the further building of circular DC electric power chain in megalopolises.

40


Recommended