+ All Categories
Home > Documents > Hunting down systematics in modern galaxy surveys · 2017. 1. 24. · Mohammadjavad Vakili/...

Hunting down systematics in modern galaxy surveys · 2017. 1. 24. · Mohammadjavad Vakili/...

Date post: 04-Feb-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
55
Hunting down systematics in modern galaxy surveys Mohammadjavad Vakili Center for Cosmology and Particle Physics New York University Berkeley / Cosmology Seminar 2017 January Mohammadjavad Vakili/ 2017-01-24
Transcript
  • Hunting down systematics in moderngalaxy surveys

    Mohammadjavad VakiliCenter for Cosmology and Particle Physics

    New York University

    Berkeley / Cosmology Seminar2017 January

    Mohammadjavad Vakili/ 2017-01-24

  • Outline

    I Large-scale structure mocks for estimation ofgalaxy clustering covariance matrices

    I Weak lensing systematicsI Point Spread FunctionI Photometric redshifts

    Mohammadjavad Vakili/ 2017-01-24

  • Accurate galaxy mocks for estimation ofgalaxy clustering covariance matrices

    I Based on works in collaboration with:Francisco-Shu Kitaura (IAC), Yu Feng(Berkeley), Gustavo Yepes (UAM), ChengZhao (Tsinzua), Chia-Hsun Chuang (Leibniz),ChangHoon Hahn (NYU)

    Mohammadjavad Vakili/ 2017-01-24

  • Future of spectroscopic galaxy surveys

    I Measurement of growth rate and expansionhistory with sub-percent precision

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    z

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    8

    6DFGS

    SDSS MGSSDSS LRG

    BOSS LOWZBOSS CMASS

    VIPERS

    WiggleZ

    0 0.5 1 1.5Redshift z

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Gro

    wth

    rate

    = d

    lnD

    / dl

    na

    DGP

    f(R) k=0.02CDM

    f(R) k=0.1

    Right: Planck Collaboration XIII (2015), Left:DESI Collaboration (2016)

    Mohammadjavad Vakili/ 2017-01-24

  • Future of spectroscopic galaxy surveys

    I Measurement of growth rate and expansionhistory with sub-percent precision

    DESI Collaboration (2016)

    Mohammadjavad Vakili/ 2017-01-24

  • We need mocks for both precision andaccuracy!

    I Estimation of uncertainties (covariancematrix)

    I Need a large number of mocks(Nmock >> Ndata)

    I Mocks need to be statistically consistent(1-point, 2-point, 3-point, ...) with the data!

    I We live in the era of systematic-limitedmeasurements

    I Need accurate end-to-end simulations ofgalaxy surveys to characterize sytematicuncertainties

    Mohammadjavad Vakili/ 2017-01-24

  • How do we efficiently generate mocks forgalaxy surveys?

    I Requirements:

    I Need to simulate large volumes to sample theBAO signal

    I Need to accurately model nonlinear clustering(current kmax ∼ 0.25 hMpc−1)

    I Need to resolve low mass halos that host faintgalaxies

    I Need to accurately describe two-point andhigher-order statistics

    I N -body simulations are expensive!

    Mohammadjavad Vakili/ 2017-01-24

  • How do we efficiently generate mocks forgalaxy surveys?

    I Approximate Methods:I Approximate (DM-only) structure formation

    model + Empirical sampling of galaxies/halosfrom the dark matter field

    Mohammadjavad Vakili/ 2017-01-24

  • State-of-the-Art: SDSS III-BOSS

    I QPM (White et al. 2014)

    I Low resolution N -bodyI Sample halos by matching the mass function

    and large scale bias

    I ALPT-PATCHY (Kitaura et al. 2016)

    I perturbation theoryI Sample halos by matching the n−point

    functions

    Mohammadjavad Vakili/ 2017-01-24

  • State-of-the-Art Approximate Methods:SDSS III-BOSS

    Two-point statistics:

    ξ0(s), ξ2(s)

    -150

    -100

    -50

    0

    50

    100

    150

    0 20 40 60 80 100 120

    s2ξ(s)

    [h−2M

    pc2]

    s[h−1Mpc]

    0.55 < z < 0.75

    QPMMD Patchy

    BOSS-CMASS DR12

    Mohammadjavad Vakili/ 2017-01-24

  • Percentage-level accuracy galaxy mocks

    I Precision large-scale structure cosmologyrequires mocks with percentage-level accuracy!

    I Main challenges:I Nonlinear ScalesI RSDI Higher order Statistics

    Mohammadjavad Vakili/ 2017-01-24

  • Goal: Percent-level accuracy

    I Main Challenges: (Quasi)Nonlinear Scales,RSD (Chuang et al. 2015):

    100

    200

    300

    400

    500

    600

    k1.

    5P

    0(k

    )

    BigMD.SO

    COLA+HOD

    EZmock

    HALOgen+HOD

    LogNormal

    PATCHY

    PINOCCHIO+HOD

    0.1 0.2 0.3 0.4 0.5

    k [h Mpc−1 ]

    0.80

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    rati

    o

    10

    100

    20

    30

    40

    50

    60708090

    200

    300

    k1.

    5P

    2(k

    )

    BigMD.SO

    COLA+HOD

    EZmock

    HALOgen+HOD

    PATCHY

    PINOCCHIO+HOD

    0.1 0.2 0.3 0.4 0.5

    k [h Mpc−1 ]

    0.80

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    rati

    o

    Mohammadjavad Vakili/ 2017-01-24

  • Goal: Percentage-level accuracyI Main Challenges: high-order statistics!

    I BAO detection (Slepian et al. 2015)I Breaking the degeneracy betweenf , σ8 (Gill-Maŕın et al. 2014)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    B(θ

    )

    1e8

    BigMD.SO

    COLA+HOD

    EZmock

    HALOgen+HOD

    LogNormal

    PATCHY

    PINOCCHIO+HOD

    0.0 0.2 0.4 0.6 0.8 1.0θ12/π

    0.8

    0.9

    1.0

    1.1

    1.2

    rati

    o

    Mohammadjavad Vakili/ 2017-01-24

  • PATCHY : Nonlinear Stochastic Biasing

    For a given dark matter density field ρm, halos/galaxies aregenerated from a nonlinear stochastic bias model: (1)Empirical nonlinear bias

    〈ρg〉(ρm) = fg θ(ρm − ρth

    )︸ ︷︷ ︸threshold bias

    × ραm︸︷︷︸nonlinear bias

    × exp(− (ρ/ρ�)�

    )︸ ︷︷ ︸exponential cutoff

    (2) stochastic bias (deviation from Poissoinity):

    ρg ∼ NB(〈ρg〉;β

    )

    Mohammadjavad Vakili/ 2017-01-24

  • How can we improve Patchy?

    I Limitations of PATCHY:

    I Brute-force estimation of bias parametersI Limited accuracy of ALPT as a gravity solver

    ALPT = LPT (on large Scales) + SC (onsmall scales)

    I Solution:I Automatic estimation of bias parameters with

    MCMCI Replacing the gravity solver with an

    approximate N -body solver that yields abetter 1-halo term clustering

    Mohammadjavad Vakili/ 2017-01-24

  • New gravity solver: FastPM

    I FastPM (Feng et al. 2016) : approximateparticle mesh N -body solver

    I Enforces large-scale linear growth

    I Scales well with resolution, time step, forceresolution, ...

    Mohammadjavad Vakili/ 2017-01-24

  • Strategy for generation of mocks

    I Generation of a DM field with low resolutionN -body

    I Constraining the patchy bias parameters byfitting P (k)

    I Generation of galaxy/halo mocks

    Method is currently being tested as part of theEuclid covariance project.

    Mohammadjavad Vakili/ 2017-01-24

  • Comparison with the BigMultiDarksimulation

    Can we reproduce the population of halos (andsubhalos) in the BigMultiDark N -body Simulation(N3p = 3840

    3) with a low-resolutionFastPM-PATCHY (N3p = 960

    3)?

    Mohammadjavad Vakili/ 2017-01-24

  • Dark matter density field

    1250 h−1Mpc

    From left to right: BigMD, FastPM, ALPT.

    Mohammadjavad Vakili/ 2017-01-24

  • Dark matter density ield

    625 h−1Mpc

    From left to right: BigMD, FastPM, ALPT.

    Mohammadjavad Vakili/ 2017-01-24

  • Dark matter density field

    312.5 h−1Mpc

    From left to right: BigMD, FastPM, ALPT.

    Mohammadjavad Vakili/ 2017-01-24

  • Bias parametersδth = 1. 07+0. 02−0. 05

    0.2

    0.4

    0.6

    0.8

    1.0

    α

    α = 0. 27+0. 03−0. 04

    0.2

    0.4

    0.6

    0.8

    1.0

    β

    β = 0. 73+0. 09−0. 07

    0.2

    0.4

    0.6

    0.8

    1.0

    ρ²

    ρ² = 0. 15+0. 07−0. 08

    0.8

    0.0

    0.8

    1.6

    δth

    0.8

    0.6

    0.4

    0.2

    0.0

    ²

    0.2

    0.4

    0.6

    0.8

    1.0

    α

    0.2

    0.4

    0.6

    0.8

    1.0

    β

    0.2

    0.4

    0.6

    0.8

    1.0

    ρ²

    0.8

    0.6

    0.4

    0.2

    0.0

    ²

    ² = −0. 24+0. 18−0. 24

    Mohammadjavad Vakili/ 2017-01-24

  • Comparison with the BigMultiDarkSimulation

    One-point PDF

    100 101

    100

    101

    102

    103

    104

    105

    106

    107

    Nce

    lls

    BigMD BDM halos

    FastPM-patchy halos

    ALPT-patchy halos

    100 101

    Nhalos

    0.5

    1.0

    1.5

    Nm

    ock

    cells/N

    Big

    MD

    cells

    Vakili et al. (2017)

    Mohammadjavad Vakili/ 2017-01-24

  • Comparison with BigMultiDark Simulation

    Real Space P(k)

    k [Mpc−1h]

    103

    104

    105

    P(k

    )[M

    pc3h−

    3]

    BigMD BDM halos

    FastPM-patchy halos

    ALPT-patchy halos

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    k [Mpc−1h]

    0.90

    0.95

    1.00

    1.05

    1.10

    Pm

    ock(k

    )/P

    ref(k)

    Vakili et al. (2017)

    Mohammadjavad Vakili/ 2017-01-24

  • Bispectrum Comparison

    0.5

    1.0

    1.5

    2.0

    B(α

    12)

    [Mpc6h−

    6]×

    109

    k1 =k2 =0.1 Mpc−1h

    BigMD BDM halos

    FastPM-patchy halos

    ALPT-patchy halos

    0.2 0.4 0.6 0.8 1.0

    α12/π

    0.8

    1.0

    1.2

    Bm

    ock(α

    12)/B

    Big

    MD(α

    12) 0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    B(α

    12)

    [Mpc6h−

    6]×

    108

    2k1 =k2 =0.3 Mpc−1h

    0.2 0.4 0.6 0.8 1.0

    α12/π

    0.8

    1.0

    1.2

    Bm

    ock(α

    12)/B

    Big

    MD(α

    12)

    Vakili et al. (2017)

    Mohammadjavad Vakili/ 2017-01-24

  • Anisotropic RSD (Preliminary)Work in progress!

    0.0 0.1 0.2 0.3 0.4 0.5

    k hMpc−1

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    Pm

    ock(k,µ

    )/P

    ref(k,µ

    )

    µ=0.1

    µ=0.3

    µ=0.5

    µ=0.7

    µ=0.9

    Mohammadjavad Vakili/ 2017-01-24

  • Summary

    I We have presented a new version of thePATCHY code with MCMC estimation of biasparameters and FastPM gravity solver.

    I By testing our method with the halos in theBigMultiDark simulation, we recover P (k) at∼ 2% level to high k modes (k ∼ 0.4 hMpc−1),and the bispectrum at a ∼ 15− 20% level!

    I Redshift space clustering results are not idealyet! But a different approach for treatment ofRSD is currently being developed.

    Mohammadjavad Vakili/ 2017-01-24

  • Tackling PSF and photometric redshiftsystematics in imaging surveys

    I Based on works in collaboration with:David Hogg (NYU, CCA), Alex Malz (NYU)

    Mohammadjavad Vakili/ 2017-01-24

  • LSST and the next generation of imagingsurveys

    0.26 0.30 0.34 0.38N = 280001 Bandwidth = 0.001184

    Den

    sity

    0.80 0.85 0.90N = 280001 Bandwidth = 0.002538

    Den

    sity

    0.60 0.64 0.68 0.72N = 280001 Bandwidth = 0.001319

    Den

    sity

    −1.5 −1.0 −0.5N = 280001 Bandwidth = 0.0208

    Den

    sity

    −1.5 −0.5 0.5 1.5N = 280001 Bandwidth = 0.1012

    Den

    sity

    0.80

    0.85

    0.90

    1

    1

    1

    1

    1

    1

    1

    1

    0.60

    0.64

    0.68

    0.72

    1

    1

    1

    1

    1

    1

    −1.

    5−

    1.0

    −0.

    5

    1

    1

    1

    1

    0.26 0.30 0.34 0.38

    −1.

    5−

    0.5

    0.5

    1.5

    0.80 0.85 0.900.60 0.64 0.68 0.72 −1.5 −1.0 −0.5 −3 −2 −1 0 1 2 3N = 280001 Bandwidth = 0.1012

    Den

    sity

    clusteringcosmic shearclusterN3x2pt3x2pt+clusterN+clusterWL

    Ωm σ8 h w0 wa

    wa

    w0

    hσ 8

    Pro

    b

    Kraus & Eifler 2016

    Mohammadjavad Vakili/ 2017-01-24

  • LSST and the next generation of imagingsurveys

    Jain et al. 2015Mohammadjavad Vakili/ 2017-01-24

  • Weak lensing measurements

    I Weak lensing measurements are the basis ofmany powerful probes:

    I Cosmic ShearI Galaxy Cluster CosmologyI Cross-correlation with CMB and galaxies

    Hildebrandt et al. 2016Mohammadjavad Vakili/ 2017-01-24

  • Weak lensing measurements

    I Weak lensing measurements are the basis ofmany powerful probes:

    I Cosmic ShearI Galaxy Cluster CosmologyI Cross-correlation with CMB and galaxies

    Mantz et al. 2014Mohammadjavad Vakili/ 2017-01-24

  • Weak lensing is limited by systematics

    I The problem of inferring the cosmic shearsignals from observations is far from idealized.Cosmic shear signal is dominated by:

    I the PSFI shape noiseI Intrinsic alignmentsI and many more: Blending, noise bias, ...

    Mohammadjavad Vakili/ 2017-01-24

  • Impact of the PSF (CFHTLenS)

    Heyman et al. 2011

    Mohammadjavad Vakili/ 2017-01-24

  • Impact of the PSF (DES)

    100 101 102

    θ (arcmin)

    10−7

    10−6

    10−5

    ξ +∆e(θ)

    Jarvis et al. 2016

    Mohammadjavad Vakili/ 2017-01-24

  • A closer look at the atmospheric PSFVariation of LSST atmospheric PSF ellipticitiesacross the FoV Simulations run by LSST PhotonSimulator (Peterson 2011)

    Mohammadjavad Vakili/ 2017-01-24

  • A closer look at the atmospheric PSFIn practice, we can only empirically estimate thePSF at the positions of stars and predict its valueelsewhere

    Mohammadjavad Vakili/ 2017-01-24

  • LSST Atmospheric turbulenceHow can we optimally interpolate the PSF?

    Vakili et al. in preparation: Gaussian Processinterpolation method beats a more traditionalpolynomial interpolation. Atmosphere still causesconfusion in sub-arcminute scales!

    Mohammadjavad Vakili/ 2017-01-24

  • Weak lensing is limited by systematics : theimpact of Photo-z’s

    I Accurate redshift probabilities are needed fortomographic two-point function calculations,determination of redshift distributions,inference of cluster masses.

    1

    0

    1

    2

    3

    4

    5

    n(z

    )

    0.1

  • Common photo-z estimation methods

    I Template fitting

    I Machine Learning

    I Cross-correlation with spectroscopic sample

    0.0 0.5 1.0 1.5 2.0z

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    P(z

    )

    Galaxy's true redshiftRandom forestPhysical model

    Mohammadjavad Vakili/ 2017-01-24

  • Combining different datasets : WFIRST andLSST

    I Accuracy and precision of P (z) for individualgalaxies can be enhanced by combining thedata from overlapping surveys:

    Mohammadjavad Vakili/ 2017-01-24

  • LSST filters

    Mohammadjavad Vakili/ 2017-01-24

  • WFIRST filters

    Mohammadjavad Vakili/ 2017-01-24

  • LSST and WFIRST

    P (z|F̂, {SEDk}) =∫ ∏

    k

    dtkP (z, tk|F̂, {SEDk})

    F̂ = {F̂LSST, F̂WFIRST}Template library {SEDk} from Brown et al. (2014)used in LSST DC1.

    Mohammadjavad Vakili/ 2017-01-24

  • P (z|F̂) with single exposure LSST andWFIRST?

    Mohammadjavad Vakili/ 2017-01-24

  • P (z|F̂) with single exposure LSST andWFIRST?

    WFIRST photo-z is limited by distinguishinggalaxy SED’s at WFIRST wavelengths

    Mohammadjavad Vakili/ 2017-01-24

  • P (z|F̂) with single exposure LSST andWFIRST?

    Mohammadjavad Vakili/ 2017-01-24

  • P (z|F̂) with single exposure LSST andWFIRST?

    WFIRST photo-z is limited by distinguishinggalaxy SED’s at WFIRST wavelengths

    Mohammadjavad Vakili/ 2017-01-24

  • n(z) with single exposure LSST andWFIRST?

    How well can we recover the redshift distributions?p(N|{dk}) ∝p(N ) exp[−

    ∫N (z)dz]×∏k ∫ p(zk|dk)p(zk) dzk

    n(z) = dNdz

    Mohammadjavad Vakili/ 2017-01-24

  • n(z) with single exposure LSST andWFIRST?

    How well can we recover the redshift distributions?

    0.3 0.6 0.9 1.2 1.5 1.8redshift

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    n(z

    )

    WFIRST

    LSST

    LSST + WFIRST

    True n(z)

    Mohammadjavad Vakili/ 2017-01-24

  • n(z) with single exposure LSST andWFIRST?

    How well can we recover the redshift distributions?

    0.3 0.6 0.9 1.2 1.5 1.8redshift

    0.5

    1.0

    1.5

    n(z

    )/n

    tru

    e(z)

    WFIRST

    LSST

    LSST + WFIRST

    Mohammadjavad Vakili/ 2017-01-24

  • How do we optimally combine differentdatasets

    I Treat different datasets independently

    I Simultaneously constrain photometry andshapes with both datasets:

    P (F̂, e|dpixel)

    wheredpixel

    is the pixel-level data from all band-passes

    Mohammadjavad Vakili/ 2017-01-24

  • How do we optimally combine differentdatasets

    I Real World scenario:

    Mohammadjavad Vakili/ 2017-01-24

  • Joint vs Independent modeling of bandpasses

    I Joint modeling of all band-passes at the pixellevel could mitigate the biases in fluxestimates and hence the redshifts

    Mohammadjavad Vakili/ 2017-01-24

  • Summary

    I The impact of PSF residual systamtics can becontrolled if we use a more flexible GaussianProcess model for PSF interpolation.

    I We have presented results showing thataccuracy and precision of photometricredshift probabilities can be enhanced bycombining datasets.

    I Joint modeling of all bandpasses at the pixellevel leads to more robust photometricredshift estimation.

    Mohammadjavad Vakili/ 2017-01-24


Recommended