+ All Categories
Home > Documents > HW Solutions Chapter 4-5

HW Solutions Chapter 4-5

Date post: 04-Oct-2014
Category:
Upload: guyz-wongthongsri
View: 788 times
Download: 73 times
Share this document with a friend
Popular Tags:
17
Chapter 4 (MECH of MAT) 4-4 The copper shaft id subjected to the axial loads shown. Determine the displacement of end A with respect to end D if the diameters of each segment are mm, mm, and mm AB BC CD d d d 20 25 12 . Take GPa cu E 126 . kN kN kN kN kN kN kN x AB AB x BC AB x CD CD F F F F F F F F F 0 40 0 40 0 40 50 0 10 0 30 0 30 / / / N m N . m N . m Pa . m Pa . m Pa . m . m i i BC BC CD CD AB AB DA i i i AB AB BC BC CD CD DA DA FL F L F L F L EA E A E A E A 3 3 3 2 2 2 9 9 9 3 40 10 2 10 10 3 75 30 10 25 126 10 0 02 126 10 0 025 126 10 0 012 4 4 4 3 8484 10 / . mm Ans. DA 3 85
Transcript
Page 1: HW Solutions Chapter 4-5

Chapter 4 (MECH of MAT) 4-4 The copper shaft id subjected to the axial loads shown. Determine the displacement of end A with respect to end D if the diameters of each segment are

mm, mm, and mmAB BC CDd d d 20 25 12 . Take GPacuE 126 .

kN kN

kN kN kN

kN kN

x AB AB

x BC AB

x CD CD

F F F

F F F

F F F

0 40 0 40

0 40 50 0 10

0 30 0 30

/

/

/

N m N . m N . m

Pa . m Pa . m Pa . m

. m

i i BC BC CD CDAB ABD A

i i i AB AB BC BC CD CD

D A

D A

F L F L F LF L

E A E A E A E A

3 3 3

2 2 29 9 9

3

40 10 2 10 10 3 75 30 10 2 5

126 10 0 02 126 10 0 025 126 10 0 0124 4 4

3 8484 10

/ . mm Ans.D A 3 85

Page 2: HW Solutions Chapter 4-5

4-13 A spring-supported pipe hanger consists of two springs which are originally unstretched and have a stiffness of k = 60 kN/m, three 304 stainless steel rods, AB and CD which have a diameter of 5 mm, and EF, which has a diameter of 12 mm, and a rigid beam GH. If the pipe and the fluid it carries have a total weight of 4 kN, determine the displacement of the pipe when it is attached to the support.

kN kN

kN kN

kN

y EF EF

y AG CH AG CH

y S AG S AG

F F F T

F F F F F T symmetry

F F F F F C

0 4 0 4

0 4 0 2

0 0 2

The displacement of pipe is from 3 parts 1. The elongation of rod EF 2. The contraction of spring (Consider force SF that produced the contraction in one spring)

3. The elongation of rod AG or CH (Consider force AGF that produced the elongation in one

rod)

N . m N . m N

N/m Pa . m Pa . m

.

pipe EF S AG

S AG AGEF EFpipe

EF EF spring AG AG

pipe

pipe

FL

EA

F F LF L

E A k E A

3 33

32 29 9

4 10 0 75 2 10 0 752 10

60 10193 10 0 012 193 10 0 0054 4

33 867 10 m3

. mm Ans.pipe 33 9

stainless steel GPaE 304 193

Page 3: HW Solutions Chapter 4-5

4-21 The rigid beam is supported at its ends by two A-36 steel tie rods. The rods have diameters

mmABd 12 and . mmCDd 7 5 . If the

allowable stress for the steel is MPaallow 115 , determine the intensity of the

distributed load w and its length x on the beam so that the beam remains in the horizontal position when it is loaded.

. m

N where : N/m and : m .

N w.

A CD

CD

y AB CD

AB CD

AB

xM F wx

wxF w x

F F F wx

F F wx

wxF wx

2

2

0 2 4 02

14 8

0 0

4 8 here : N/m and : m w x 2

Given; 1. The beam remains in the horizontal position

and

or

Member and will reach allowable stress at the same time

AB CD

CD CDAB ABAB CD AB CD

AB AB CD CD

CDABAB CD

AB CD

FL

AE

F LF LE E L L

A E A E

FF

A A

AB CD

Page 4: HW Solutions Chapter 4-5

2. MPaallow 115

MPa

MPa. m

. kN

AB allow

AB

AB

AB

AB

F

A

F

A

F

F

2

115

1150 012

413 006

MPa

MPa. m

. kN

CD allow

CD

CD

CD

CD

F

A

F

A

F

F

2

115

1150 0075

45 0805

From (1);

.. N N N/m

.

wxw

x

2 33

2

24 386 105 0805 10

4 8

From (2);

. .. N N

.

.. N . N : m

. m

. N/m . N/m

.

xx

x x

where xx

x

w

3 3 23

2 2

33 3

33

2

24 386 10 24 386 1013 006 10

4 8

24 386 1013 006 10 5 0804 10

1 3483

24 386 1013 414 10

1 3483

. kN/m

. m Ans.

w

x

13 4

1 35

Page 5: HW Solutions Chapter 4-5

4-36 The A-36 steel pipe has an outer radius of 20 mm and an inner radius of 15 mm. If it is fits snugly between the fixed walls before it is loaded, determine the reaction at the walls when it is subjected to the load shown.

Compatibility;

where and

. m . m

C A

B A C B

BC BCAB ABAB BC AB BC

AB AB BC BC

A B

A B

FL

EA

F LF LE E A A

E A E A

F F

F F

0

0

0

0 3 0 7 0

72

3

Insert (2) into (1);

kN

. kN

kN . kN . kN

B B

B

A

F F

F

F

716

34 8

16 4 8 11 2

. kN

. kN Ans.A

A

F

F

11 2

4 8

x AB A AB A

x C BC BC C

F F F F F

F F F F F

0 0

0 0

Equilibrium;

kN

kN

x A B

A B

F F F

F F

0 16 0

16 1

Page 6: HW Solutions Chapter 4-5

4-45 The distributed loading is supported by the three suspender bars. AB and EF are made from aluminum and CD is made from steel. If each bar has a cross-sectional area of 450 mm2, determine the maximum intensity w of the distributed loading so that an allowable stress of MPaallow st 180 in the steel and

MPaallow al 94 in the aluminum is not

exceeded. GPa, GPast alE E 200 70 .

Compatibility; the system is symmetry, so same displacement at A, C, and E

where and

GPa GPa

al st

al al st stal st al st

al al st st

al st

st al

FL

EA

F L F LL L A A

E A E A

F F

F F

70 20020

27

Insert (2) into (1);

.

.

al al

al

st al

F F w

F w w

F F w w w

202 3

721

0 617653420 20 21 30

1 76477 7 34 17

Because and st al st alF F A A 3 , the stress in steel is 3 times of in aluminum while allow allowst al 2 ,

therefore the system is controlled by steel. Case 1; Assume steel failed

MPa

Pa m

. N/m

allowst st

st

st

F

A

w

w

16

6 2

31

180

3017 180 10

450 10

45 9 10

Case 2; Assume aluminum failed

MPa

Pa m

. N/m

allowal al

al

al

F

A

w

w

26

6 2

32

94

2134 94 10

450 10

68 486 10

Because w w1 2 ; so the system is controlled by steel member and the maximum intensity w is 45.9

kN/m Ans.

Equilibrium;

. m . m

C E A

E A al

y al st

al st

M F F

F F F

F F F w

F F w

0 1 5 1 5 0

0 2 3 0

2 3 1

Page 7: HW Solutions Chapter 4-5

4-112 The rigid link is supported by a pin at A and two A-36 steel wires, each having an unstretched length of 300 mm and cross-sectional area of 7.8 mm2. Determine the force developed in the wires when the link supports the vertical load of 1.75 kN.

Equilibrium;

. kN mm mm mm

. . kN

A B C

B C

M F F

F F

0 1 75 150 100 225 0

2 25 2 625 1

Compatibility; From similar triangle

mm mm

.

. where and

.

C B

C B

C C B BC B C C B B

C C B B

C B

FL

AE

F L F LL L A E A E

A E A E

F F

225 100

2 25

2 25

2 25 2

Insert (2) into (1);

. . . kN

. kN

. . . kN . kN

B B

B

C B

F F

F

F F

2 25 2 25 2 625

0 43299

2 25 2 25 0 43299 0 97423

. kN

. kN Ans.B

C

F

F

0 433

0 974

Page 8: HW Solutions Chapter 4-5

4-84 The rigid block has a weight of 400 kN and is to be supported by posts A and B, which are made of A-36 steel, and the post C, which is made of C83400 red brass. If all the posts have the same original length before there are loaded, determine the average normal stress developed in each post when post C is heated so that its temperature is increased by 10 oC. Each post has a cross-sectional area of 5000 mm2.

Compatibility; The system is symmetry, the displacement of all bars are same

o o

where and

/ C C m Pa m Pa

. N

.

A B

st st B Bbr B st B st B

st st B brass

st B

B st

B st

FL

AE

F L F LTL L L A A

A E A E

F F

F F

F F

6

6 2 9 6 2 918 10 10

5000 10 200 10 5000 10 101 10

0 505 90900

90900 0 505 2

Insert (2) into (1);

N . N

. N

N . N . . N . N

st st

st

B st

F F

F

F F

3

3

3 3

2 90900 0 505 400 10

123 39 10

90900 0 505 90900 0 505 123 39 10 153 21 10

Determine the stress in each post;

. N. MPa

mm

. N. MPa

mm

stA C

BB

F

A

F

A

F

A

3

2

3

2

123 39 1024 678

5000

153 21 1030 642

5000

. MPa and . MPa Ans.A C B 24 7 30 6

Equilibrium;

m m

kN

kN

G C A

A C st

y st B

st B

M F F

F F F

F F F

F F

0 1 1 0

0 2 400 0

2 400 1

Page 9: HW Solutions Chapter 4-5

4-114 The 2014-T6 aluminum rod has a diameter of 12 mm and is lightly attached to the rigid supports at A and B when T1 =25oC. If the temperature becomes T2 = -20oC, and an axial force of P = 80 N is applied to the rigid collar as shown, determine the reactions at A and B.

Compatibility;

where and

. m

. P

B A

C A B C

Force Temp Force TempC A C A B C B C

AC AC BC BCAC AC BC BC AC BC al AC BC

AC AC BC BC

A

FL

EA

F L F LTL TL E E E A A

E A E A

F

9

0

0

0

0

0 125

73 1 10

o o o

o o o

/ C C C . ma . m

. m / C C C . m

. Pa . m

. N

. N

B

B A

B A

F

F F

F F

6

2

6

29

23 10 20 25 0 1250 012

4

0 223 10 20 25 0 2 0

73 1 10 0 0124

0 625 13905

0 625 13905 2

Insert (2) into (1);

. N N

. N

. N . . N N . N

A A

A

B A

F F

F

F F

0 625 13905 80

8606 15

0 625 13905 0 625 8606 15 13905 8525 2

. kN and . kN Ans.A BF F 8 61 8 53

Chapter 5 (MECH of MAT)

x AC A AC A

x BC B BC B

F F F F F

F F F F F

0 0

0 0

Equilibrium;

N

N

x A B

A B

F F F

F F

0 80 0

80 1

oFor 2014-T6 aluminum, / C, . GPaal alE 623 10 73 1

Page 10: HW Solutions Chapter 4-5

5-12 The solid shaft is fixed to the support at C and subjected to the torsional loading shown. Determine the shear stress at points A and B and sketch the shear stress on volume elements located at these points.

. m N.m . m. Pa

. m . m

. m N.m . m. Pa

. m . m

A

B

T

J

T

T

2 6

4 4

1 6

4 4

0 035 500 0 0357 4241 10

0 035 0 0352 2

0 02 800 0 026 7878 10

0 035 0 0352 2

. MPa

. MPa Ans.A

B

4 45

6 79

N.m800

N.m300

CT

N.m800

N.m800

N.m300

T1

T2

N.m

N.m

xM T

T

1

1

0 800 0

800

x

N.m N.m

N.m

xM T

T

2

2

0 800 300 0

500

Page 11: HW Solutions Chapter 4-5

5-13 A steel tube having an outer diameter of 62.5 mm is used to transmit 3 kW when turning at 27 rev/min. Determine the inner diameter d of the tube to the nearest multiples of 5 mm if the allowable shear stress is MPa.allow 70

W

N.m rev/min rad/rev min/ sec

P T

PT

33 10 10000

27 2 1 60 3

max

. m

Pa. m

. m

allow

allow

Tc J

Tc

J

d

d

6

4 4

3

10000 0 06253 2

70 100 0625

32

56 8345 10

mm Ans.d 60

Page 12: HW Solutions Chapter 4-5

5-56 The motor delivers 32 kW to the 304 stainless steel solid shaft while it rotates at 20 Hz. The shaft has a diameter of 37.5 m and is supported on smooth bearings at A and B, which allow free rotation of the shaft. The gears C and D fixed to the shaft remove 20 kW and 12 kW, respectively. Determine the absolute maximum stress in the shaft and the angle of twist of gear C with respect to gear D.

WN.m

Hz

WN.m

Hz

WN.m

Hz

C

D

P T

PT

PT

PT

3

3

3

32 10 800

2 20

20 10 500

2 20

12 10 300

2 20

Page 13: HW Solutions Chapter 4-5

Determine the internal load in each section;

N.m

x AC

AC

M T T

T T

0 0

800

N.m N.m

x CD C

CD C

M T T T

T T T

0 0

800 500 300

x BD

BD

M T

T

0 0

0

Determine the shear stress in each section;

. m N.m

. Pa. m

. m N.m

. Pa. m

ACAC

CDCD

BDBD

Tc

J

T c

J

T c

J

T c

J

6

4

6

4

800 0 03752

24 593 100 0375

32300 0 0375

29 2225 10

0 037532

0

Angle of twist;

o

N.m . m. rad .

Pa . m

CD CDCD

CD CD

TL

GJ

T L

G J

49

3000 2

0 0013116 0 07515275 10 0 0375

32

max

o

. MPa

. CCW Ans.CD

24 6

0 0752

Page 14: HW Solutions Chapter 4-5

5-66 The device serves as a compact torsion spring. It is made of A-36 steel and consists of a solid inner shaft CB which is surrounded by and attached to a tube AB using a rigid ring at B. The ring at A can also be assumed rigid and is fixed from rotating. If the allowable shear stress for the material is MPaallow 84 and

the angle of twist at C is limited to oallow 3 ,

determine the maximum torque T that can be applied at the end C.

Case 1; Consider MPaallow 84 in tube AB

max

. m MPa

. m . m

. mPa

. m . m

. N.m . N.m

AB allow

tube

case

Tc J

T

T

T T

4 4

6

4 4

1

0 02584

0 025 0 018752

0 02584 10

0 025 0 018752

1409 34 1409 34

Case 1; Consider MPaallow 84 in shaft BC

max

. m MPa

. m

. m Pa

. m

. N.m . N.m

BC allow

shaft

case

Tc J

T

T

T T

4

6

4

2

0 012584

0 01252

0 012584 10

0 01252

257 71 257 71

Case 3; Consider oallow 3

o

o

and

. m . m radian

Pa . m . m Pa . m

. N.m

c allow c B A C B

shaft shafttube tubeallow

tube tube shaft shaft

TL GJ

T LT L

G J G J

T T

T

4 4 49 9

0 3 0 6 3

18075 10 0 025 0 01875 75 10 0 01252 2

240 02 . N.mcaseT 3 240 02

Because ,case case caseT T T3 2 1, therefore the system is controlled by allow and max N.mT 240 Ans.

x tube tube

x shaft shaft

M T T T T

M T T T T

0 0

0 0

Page 15: HW Solutions Chapter 4-5

5-77 The shaft is made of L2 tool steel, has a diameter of 40 mm, and is fixed at its ends A and B. If it is subjected to the couple, determine the maximum shear stress in regions AC and CB.

Equilibrium;

N.m

N.m

x A B

A B

x AC A AC A

x BC B BC B

M T T

T T

M T T T T

M T T T T

0 200 0

200 1

0 0

0 0

Compatibility;

where

. m . m

B A

C A B C

AC AC BC BCAC AC BC BC

AC AC BC BC

A B

A B

TL GJ

T L T LG J G J

G J G J

T T

T T

0

0

0

0 4 0 6 0

32

2

Insert (2) into (1);

N.m

N.m

N.m N.m

B B

B

A B

T T

T

T T

3200

280

3 380 120

2 2

Shear stress in each section;

N.m . m. Pa

. m

N.m . m. Pa

. m

ACAC

BCBC

Tc J

T c

J

T c

J

6

4

6

4

120 0 04 29 5493 10

0 0432

80 0 04 26 3662 10

0 0432

. MPa

. MPa Ans.AC

BC

9 55

6 37

Page 16: HW Solutions Chapter 4-5

5-79 The shaft is made from a solid steel section AB and a tubular portion made of steel and having a brass core. If it is fixed to a rigid support at A, and a torque of T = 50 N.m is applied to it at C, determine the angle of twist that occurs at C and compute the maximum shear stress and maximum shear strain in the brass and steel. Take GPa, GPast brG G 80 40 .

Consider section BC;

N.m N.m

;

where

GPa . m . m GPa . m

x br st br st

st br

st st br brst br

st st br br

st br

st br

M T T T T

Compatibility

T L T LL L

G J G J

T T

T T

4 4 4

0 50 0 50 1

80 0 02 0 01 40 0 012 2

30 2

Insert (2) into (1); N.m

N.m

N.m N.m

br br

br

st br

T T

T

T T

30 50

50

3150 1500

30 3031 31

Determine the deformation of section BC;

o

N.m m. rad . CW

Pa . m

br brBC

br br

T L

G J

49

501

310 0025670 0 14708

40 10 0 012

Consider section AB;

o

N.m N.m

N.m . m. rad . CW

Pa . m

x AB AB

AB ABB A

AB AB

M T T

T L

G J

49

0 50 0 50

50 1 50 0037302 0 21372

80 10 0 022

Page 17: HW Solutions Chapter 4-5

Determine the rotation at end C;

o

. rad . rad

. rad .

C C B B A

C

0 0025670 0 0037302

0 0062972 0 36080

Determine the stress and strain in steel;

N.m . m. Pa

. m

N.m . m. Pa

. m . m

. Pa. rad

Pa

AB ABst

AB

BC stst st

BC

BCBC stst

Tc

J

T c

J

T c

J

G

6

4

6

4 4

66

9

50 0 023 9789 10

0 022

15000 02

314 1072 10

0 02 0 0124 1072 10

51 340 1080 10

Determine the stress and strain in brass;

N.m . m. Pa

. m

. Pa. rad

Pa

BC brbr br

BC

BCBC brbr

Tc

J

T c

J

G

6

4

66

9

500 01

311 0268 10

0 012

1 0268 1025 670 10

40 10

o. CW Ans.C 0 361

max

max

max

max

. MPa in section

. rad in section

. MPa

. rad Ans.

st

st

br

st

BC

BC

6

6

4 11

51 3 10

1 03

25 7 10


Recommended