+ All Categories
Home > Documents > Hybrid Optical Packet and Circuit Switching in Spatial ... · PDF fileHybrid Optical Packet...

Hybrid Optical Packet and Circuit Switching in Spatial ... · PDF fileHybrid Optical Packet...

Date post: 23-Mar-2018
Category:
Upload: lyque
View: 219 times
Download: 3 times
Share this document with a friend
27
Hybrid Optical Packet and Circuit Switching in Spatial Division Multiplexing Fiber Networks R. S. Luis , H. Furukawa, G. Rademacher, B. J. Puttnam, and N. Wada Photonic Network System Laboratory – National Institute of Information and Communications Technology - Japan [email protected]
Transcript

Hybrid Optical Packet and Circuit Switching in Spatial Division Multiplexing Fiber Networks

R. S. Luis, H. Furukawa, G. Rademacher, B. J. Puttnam, and N. Wada Photonic Network System Laboratory – National Institute of Information and Communications Technology - Japan [email protected]

Contents

•  SDM Networks Using Homogeneous MCFs

•  Integrated OPS and OCS SDM Networks

•  Experimental Demonstration

•  Conclusions

5/16/17 Photonic Network System Laboratory 2

SDM Networks

5/16/17 Photonic Network System Laboratory 3

SingleCoreFiber

Conven.onalNetworkNodes

Increasesofnetworkcapacitymaybeunabletohandletheincreaseintrafficdemand!

SDM Networks

5/16/17 Photonic Network System Laboratory 4

SDMMedium

Conven.onalNetworkNodes Increasesofnetworkcapacity

aremul9plied.

SDM Networks

5/16/17 Photonic Network System Laboratory 5

SDMMedium

SDMNetworkNodes NetworkResourcesare

Op9mizedforSDM

SDM Networks Using Homogeneous MCFs

5/16/17 Photonic Network System Laboratory 6

IndependentSingle-Mode

Fibers

Few/Mul.-ModeFibers

HomogeneousMul.-CoreFibers

HeterogeneousMul.-CoreFibers

• Highskew• NoCrosstalk

• HighCrosstalk• HighLatency

• Lowskew• LowCrosstalk

• Highskew• VeryLowCrosstalk

SDM Networks Using Homogeneous MCFs

5/16/17 Photonic Network System Laboratory 7

IndependentSingle-Mode

Fibers

Few/Mul.-ModeFibers

HeterogeneousMul.-CoreFibers

• Highskew• NoCrosstalk

• HighCrosstalk• HighLatency

• Highskew• VeryLowCrosstalk

HomogeneousMul.-CoreFibers

• Lowskew• LowCrosstalk

SDM Networks Using Homogeneous MCFs

5/16/17 Photonic Network System Laboratory 8

HomogeneousMul.-CoreFibers

SDM Networks Using Homogeneous MCFs

5/16/17 Photonic Network System Laboratory 9

HomogeneousMul.-CoreFibers

SMFs

DSP TX

LASER

RX

LO

DSP

SDMDSP

SharedLASER

SharedLO

TX RXSDMDSP

DSP TX

LASER

RX

LO

DSPMul9-Core

Fiber

HomogeneousMul9-Core

Fiber

SDMDSP

SharedLASER

SharedLO

TX RXSDMDSP

Mul9-CoreFiber

Mul9-CoreAmplifier

• Light on each core is “uncoupled” from the other cores

– Residual coupling yields inter-core crosstalk

• Propagation characteristics are similar amongst all cores

– Residual differences in group velocity yield inter-core skew

• Simple transition from single-core to multi-core fiber systems

• Nearly time-aligned Spatial Super-Channels

– Simple shared DSP amongst spatial channels

– Spatial modulation formats and Spatial coding

– Self-Homodyne Detection

Crosstalk-Limited Spectral Efficiency Assumptions: •  Crosstalk behaves as an AWGN with power

proportional to the signal power (high symbol rates and/or long distances and signals w/ null carrier)

•  Average crosstalk depends only on the fiber geometry •  Similar launch power on all fiber cores •  Linear transmission •  Spectral Efficiency:

5/16/17 Photonic Network System Laboratory 10

SNRintheabsenceofcrosstalk

Crosstalk–Ra.obetweenavg.crosstalkandsignalpowers

1B.J.PuQnam,etal.,ECOC,PDP.3.1,20152E.Specht,hQp://www.packomania.com3F.Ye,etal.,Op.csExpress22(19),23007,2014

Consideredcorearrangementstomaximizecorepitch2

SE =X

k

SEcore k

SEcore k = log

2

h1 +

�SNR�1

+XTk

��1

i

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50

SpectralEfficien

cy,b

it/s/Hz

CoreCount

Crosstalk-Limited Spectral Efficiency

5/16/17 Photonic Network System Laboratory 11

ExampleofthelimitedSEwitha50kmfiber

SNR = 15 dB SNR = 10 dB SNR = 5 dB

SNR = 20 dB

24cores

27cores

30cores

SE dominated by ASE

SE dominated by Crosstalk

Crosstalk-Limited Spectral Efficiency

0

5

10

15

20

25

30

35

40

45

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18 20 22 24

Op9

mum

CoreCo

unt

SpectralEfficien

cy,b

it/s/Hz

SNR,dB

5 km 50 km

500 km 5000 km

5/16/17 Photonic Network System Laboratory 12

260µm

33µm

Crosstalk-Limited Spectral Efficiency

0

5

10

15

20

25

30

35

40

45

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18 20 22 24

Op9

mum

CoreCo

unt

SpectralEfficien

cy,b

it/s/Hz

SNR,dB

5 km 50 km

500 km 5000 km

5/16/17 Photonic Network System Laboratory 13

260µm

33µm

IntraDatacenterNetworks

Regional-MetroNetworks

100

1000

10000

2011 2012 2013 2014 2015 2016 2017

Throughp

ut,Tb/s

Year

SDM Networks Using Homogeneous MCFs

5/16/17 Photonic Network System Laboratory 14

123

4567Marker

[1][2]

[3]

[4]

[5]

[6]

[7]

1J. Sakaguchi, et al., OFC 2011 PDPB6

2B. Zhu, et al., OPEX, 19(17), 2011

3J. Sakaguchi, et al., OFC 2011 Th5C.1

4H. Takara, et al., ECOC 2012, Th3C.1

5B. Puttnam, et al., ECOC 2015, PDP.3.1

6D.Qian, et al., FIO 2012 FW6C.3

7D. Soma, et al., ECOC 2015, PDP.3.2

ThroughputUsingSingle-ModeMCFsThroughputUsingFew-Mode/HybridMCFs

SDM Networks Using Homogeneous MCFs

5/16/17 Photonic Network System Laboratory 15

ArchitectureonDemandexperimentaldemonstra9on

G.Saridisetal.,ECOC2016

JointSpa9alPacketSwitching

H.Furukawaetal.,OFC2016

Integrated OPS and OCS SDM Networks

•  Optical packet switched (OPS) and Optical circuit switched (OCS) links can be flexibly established

•  OCS Spatial super channels (SSC) provide ultra-high capacity

•  OPS-SSC provide granularity •  Arbitrary combinations of spatial

channels and wavelengths are possible

•  Joint spatial circuit and/or packet switching may reduce hardware requirements

5/16/17 Photonic Network System Laboratory 16

Space

Wavelength

Ultra High Capacity OCS-SSC

OCS-SSC

OCS

OCS OPS-SSC

OPS

Integrated OPS and OCS SDM Networks

•  Optical packet switched (OPS) and Optical circuit switched (OCS) links can be flexibly established

•  OCS Spatial super channels (SSC) provide ultra-high capacity

•  OPS-SSC provide granularity •  Arbitrary combinations of spatial

channels and wavelengths are possible

•  Joint spatial circuit and/or packet switching may reduce hardware requirements

5/16/17 Photonic Network System Laboratory 17

Tx/Rx Tx/Rx Tx/Rx Tx/Rx

Joint Spatial Packet Switch

Wavelength Selective Switch

Circuit SwitchMCF

Joint Spatial Circuit Switch

MCF

preamble header

preamble payload

payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

Time

Wavelength

Optical Packet Switch

•  Electro-absorption switches •  100 Gb/s multi-wavelength

packets •  Optical-Label Processing •  Burst-mode amplification

5/16/17 Photonic Network System Laboratory 18

100GOTNTransponder

OCS(ROADM) OPS

H.Furukawa,et.al,P.4.16,ECOC2015.

2x2 EA Switch 2

1

2

1

SW Cont.

100G-OP Transponder

10GbE x10

OP

OP

OP

OP

10GbE frame

100G Optical packet

Joint Spatial Optical Packet Switch

•  Electro-absorption switches •  400 Gb/s multi-wavelength spatial packets •  Optical-Label Processing – Core 1 •  Burst-mode amplification

5/16/17 Photonic Network System Laboratory 19

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payloadpreamble header

preamble payload

payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payload

preamble payloadSpace

Time

Wavelength

1 x N

M-Joint Switch1 x N

1 x N

1 x N

x M

1 x N

M-Joint Switch1 x N

1 x N

1 x N

x M

M-Joint Buffer

N x 1

M-Joint BufferN x 1

M-Joint Buffer

N x 1

M-Joint BufferN x 1

Experimental Demonstration

•  19-Core 30 km MCF •  19-Core MC-EDFA

5/16/17 Photonic Network System Laboratory 20

Node 2

19-CoreMCF30km

MC-EDFA

1

69

234

AWG

CombGen.

BPF EDFA OPEDFA DPMZM

24.5 GBaud16QAM

Dummy Channel

Test Channel

even

odd

3D Waveguide1 Tb/s

OCS-SSCTransmitter

8

400 Gb/sOPS

18

6

234

1 Tb/sOCS-SSCReceiver

400 Gb/sOPS

1 Tb/s OCS SSC Receiver

EDFA BPF

Cohere

nt

Rece

iver

Real-Tim

eO

scillosco

pe

1 Tb/s OCS-SSC Transmitter

NetworkTester

Node 1

SW Control

2x2EASW

DCF

BM-EDFA

Splitter1:4

PacketTransponder

400 Gb/s OPS-SSC19-Core MC-EDFA

19-Core30 km MCF

5/16/17

Mux

EDFA

MCF–30km

Experimental Demonstration

•  1 Tb/s OCS-SSC (2 cores x 3 wavelengths)

•  PDM-16QAM at 24.5 Gbaud

•  Ultra-wideband frequency comb generator (up to 400 wavelengths)

5/16/17 Photonic Network System Laboratory 21

Node 2

19-CoreMCF30km

MC-EDFA

1

69

234

AWG

CombGen.

BPF EDFA OPEDFA DPMZM

24.5 GBaud16QAM

Dummy Channel

Test Channel

even

odd

3D Waveguide1 Tb/s

OCS-SSCTransmitter

8

400 Gb/sOPS

18

6

234

1 Tb/sOCS-SSCReceiver

400 Gb/sOPS

1 Tb/s OCS SSC Receiver

EDFA BPF

Cohere

nt

Rece

iver

Real-Tim

eO

scillosco

pe

1 Tb/s OCS-SSC Transmitter

NetworkTester

Node 1

SW Control

2x2EASW

DCF

BM-EDFA

Splitter1:4

PacketTransponder

400 Gb/s OPS-SSC19-Core MC-EDFA

19-Core30 km MCF

Experimental Demonstration

•  400 Gb/s OPS-SSC •  Emulated Joint Packet

Switching

5/16/17 Photonic Network System Laboratory 22

Node 2

19-CoreMCF30km

MC-EDFA

1

69

234

AWG

CombGen.

BPF EDFA OPEDFA DPMZM

24.5 GBaud16QAM

Dummy Channel

Test Channel

even

odd

3D Waveguide1 Tb/s

OCS-SSCTransmitter

8

400 Gb/sOPS

18

6

234

1 Tb/sOCS-SSCReceiver

400 Gb/sOPS

1 Tb/s OCS SSC Receiver

EDFA BPF

Cohere

nt

Rece

iver

Real-Tim

eO

scillosco

pe

1 Tb/s OCS-SSC Transmitter

NetworkTester

Node 1

SW Control

2x2EASW

DCF

BM-EDFA

Splitter1:4

PacketTransponder

400 Gb/s OPS-SSC19-Core MC-EDFA

19-Core30 km MCF

Experimental Demonstration

5/16/17 Photonic Network System Laboratory 23

Node 2

19-CoreMCF30km

MC-EDFA

1

69

234

AWG

CombGen.

BPF EDFA OPEDFA DPMZM

24.5 GBaud16QAM

Dummy Channel

Test Channel

even

odd

3D Waveguide1 Tb/s

OCS-SSCTransmitter

8

400 Gb/sOPS

18

6

234

1 Tb/sOCS-SSCReceiver

400 Gb/sOPS

1 Tb/s OCS SSC Receiver

EDFA BPF

Cohere

nt

Rece

iver

Real-Tim

eO

scillosco

pe

1 Tb/s OCS-SSC Transmitter

NetworkTester

Node 1

SW Control

2x2EASW

DCF

BM-EDFA

Splitter1:4

PacketTransponder

400 Gb/s OPS-SSC19-Core MC-EDFA

19-Core30 km MCF

16-QAM 1 Tb/s Transmitter

Multi-CoreEDFA

30km Multi-Core Fiber3 Wavelengths

2 Spatial channels

Multi-WavelengthPacket Transponder

Multi-WavelengthPacket Switch

Powersplitter

Multi-WavelengthPacket Transponder

Multi-WavelengthPacket Switch

16-QAM Receiver

OCS-SSC

OPS-SSC

Allocated Channel Plan Measured Channel Plan

WavelengthSpace

1 Tb/s OCS-SSC

400 Gb/sOPS-SSC

AB

C

A

Experimental Demonstration

5/16/17 Photonic Network System Laboratory 24

16-QAM 1 Tb/s Transmitter

Multi-CoreEDFA

30km Multi-Core Fiber3 Wavelengths

2 Spatial channels

Multi-WavelengthPacket Transponder

Multi-WavelengthPacket Switch

Powersplitter

Multi-WavelengthPacket Transponder

Multi-WavelengthPacket Switch

16-QAM Receiver

OCS-SSC

OPS-SSC

Allocated Channel Plan Measured Channel Plan

WavelengthSpace

1 Tb/s OCS-SSC

400 Gb/sOPS-SSC

AB

C

A

Conclusion

•  Addressed the physical aspects of the use of homogeneous multi-core fibers in SDM networks

•  Made the case for a hybrid spatial packet and circuit switching architecture for SDM networks

•  Experimentally demonstrated a SSC-OPS + SSC OCS system using joint optical packet switching, multi-core fiber and multi-core amplification

•  Future work: Including joint spatial circuit switching; network management and control; higher throughput

5/16/17 Photonic Network System Laboratory 25

Acknowledgement

The authors acknowledge the efforts of the NICT technical staff on the experimental demonstration •  Takeshi Makino •  Takahiro Hashimoto •  Michie Kurihara

5/16/17 Photonic Network System Laboratory 26

Thanks for your attention!

5/16/17 Photonic Network System Laboratory 27

Questions?


Recommended