+ All Categories
Home > Documents > Hydrogenation of Arenes for Organic Synthesiskanai/seminar/pdf/Lit_Y_Hirao_M2.pdf · 2020. 10....

Hydrogenation of Arenes for Organic Synthesiskanai/seminar/pdf/Lit_Y_Hirao_M2.pdf · 2020. 10....

Date post: 26-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
39
Hydrogenation of Arenes for Organic Synthesis Literature Seminar #3 2020/10/23 M2 Yuki Hirao
Transcript
  • Hydrogenation of Arenesfor Organic Synthesis

    Literature Seminar #3

    2020/10/23

    M2 Yuki Hirao

  • 2

    Catalytic Hydrogenation

  • 3

    Hydrogenation of Arenes

    Coord. Chem. Rev. 2016, 314, 134.

    Aromatic Stabilization Energy (ASE) contributes to the greater resistance by hydrogenation.

  • 4

    Application

    Industrial Application Material Science

    Natural Product Medicinal Chemistry

    Angew. Chem. Int. Ed. 2019, 58, 10460.

  • 5

    Challenges

    Reactivity

    Stereoselectivity Chemoselectivity

    The hydrogenation of arenes is hindered by the

    added kinetic barrier resulting from the

    aromatic stabilization energy.

    The hydrogenation of multisubstituted arenes

    may form several diastereomers.

    Substituted saturated carbo- & heterocycles are

    often chiral.

    Elaborate substrates often exhibit competing

    side reactions.ex.) more reductively labile

    units, such as carbonyls, hydrodefunctionalizations

    Angew. Chem. Int. Ed. 2019, 58, 10460.

  • 6

    Contents

    1. Introduction

    2. Stereoselectivity・diastereoselectivity・enantioselectivity

    3. Chemoselectivity・FG tolerance・mechanistic investigation

    4. Summary

  • 7

    cis-Selectivity

    Arene hydrogenation generally proceeds with high cis selectivity.

    cis isomer vs trans isomerkinetically thermodynamically

    The formation of the trans isomer requires a π-facial exchange (catalyst dissociation-reassociation process).

    ✓Hydrogenation of dearomatized intermediates should be faster than that of stabilized aromatic substrate.

    ✓The catalyst would have to bind to the sterically more hindered π-face.

    RSC Adv. 2016, 6, 18419.

  • 8

    Enantioselectivity

    Chem. Rev. 2012, 112, 2557.

  • 9

    Chiral Auxiliary

    Angew. Chem. Int. Ed. 2004, 43, 2850.

  • 10

    Chiral BrØnsted Acid Catalyst

    Angew. Chem. Int. Ed. 2006, 45, 3683.

  • 11

    Chiral Ligand

    Angew. Chem. Int. Ed. 2019, 58, 10460.

  • 12

    Application in Total Synthesis

    B. M. Stoltz et al. Science 2019, 363, 270.

  • 13

    Retrosynthesis of (-)-Jorumycin

    B. M. Stoltz et al. Science 2019, 363, 270.

  • 14

    Enantio- & Diastereoselective Hydrogenation

    B. M. Stoltz et al. Science 2019, 363, 270.

  • 15

    Catalyst Screening

    B. M. Stoltz et al. Science 2019, 363, 270.

  • 16

    Short Summary

    Angew. Chem. Int. Ed. 2019, 58, 10460.

  • 17

    Contents

    1. Introduction

    2. Stereoselectivity・diastereoselectivity・enantioselectivity

    3. Chemoselectivity・FG tolerance・mechanistic investigation

    4. Summary

  • 18

    Chemoselectivity | FG tolerance

    Challenges

    1. Other reducible sites

    2. Hydrodefunctionalization

    3. Sterically hinderance

    4. Negative influence in electronical properties

  • 19

    Phenol Hydrogenation to Cyclohexanone

    T. Jiang, B. Han et al. Science 2009, 326, 1250.

  • 20

    Aromatic Carbonyl Compounds

    X. Zeng et al. J. Am. Chem. Soc. 2015, 137, 9250.

  • 21

    Substrate Scope

    X. Zeng et al. J. Am. Chem. Soc. 2015, 137, 9250.

  • 22

    Hydrogenation of Fluoroarenes

    F. Glorius et al. Science 2017, 357, 908.

  • 23

    Reaction Optimization

    F. Glorius et al. Science 2017, 357, 908.

  • 24

    Substrate Scope

    F. Glorius et al. Science 2017, 357, 908.

  • 25

    Mechanistic Experiments

    F. Glorius et al. Science 2017, 357, 908.

  • 26

    Deuterium-Labeling Experiments

    X. Zeng et al. Angew. Chem. Int. Ed 2019, 58, 16785.

  • 27

    Fluoropyridines

    F. Glorius et al. Nat. Chem. 2019, 11, 264.

  • 28

    Dearomatization Strategy

    T. Ohmura, M. Suginome et al. J. Am. Chem. Soc. 2012, 134, 3699.F. Glorius et al. Nat. Chem. 2019, 11, 264.

  • 29

    Substrate Scope

    F. Glorius et al. Nat. Chem. 2019, 11, 264.

  • 30

    Application

    F. Glorius et al. Nat. Chem. 2019, 11, 264.

  • 31

    Contents

    1. Introduction

    2. Stereoselectivity・diastereoselectivity・enantioselectivity

    3. Chemoselectivity・FG tolerance・mechanistic investigation

    4. Summary

  • 32

    Sillica gel improves the reactivity

    F. Glorius et al. Angew. Chem. Int. Ed 2018, 57, 8297.

  • 33

    Catalyst Poisoning Study

    F. Glorius et al. ACS Catal. 2020, 10, 6309.

  • 34

    Catalyst Filtlation & Rycycling

    F. Glorius et al. ACS Catal. 2020, 10, 6309.

  • 35

    Kinetic Study

    F. Glorius et al. ACS Catal. 2020, 10, 6309.

  • 36

    Observation of Ligand

    F. Glorius et al. ACS Catal. 2020, 10, 6309.

  • 37

    Comparing the Performance

    F. Glorius et al. ACS Catal. 2020, 10, 6309.

  • 38

    Summary

    F. Glorius et al. ACS Catal. 2020, 10, 6309.

    Silica gel-supported Rh(0) NPs as active catalytic species

    CAAC-derived pyrrolidium and pyrrolidine act as modifiers that are key in controlling the chemoselectivity.

  • 39

    Summary

    Functionalization of arene is more facile than that of the saturated products.


Recommended