+ All Categories
Home > Documents > Hydropower Optimal Power Flow

Hydropower Optimal Power Flow

Date post: 02-Jun-2018
Category:
Upload: alejandro-cardenas
View: 232 times
Download: 0 times
Share this document with a friend

of 26

Transcript
  • 8/10/2019 Hydropower Optimal Power Flow

    1/26

    Dimensional Analysis for Determining OptimalDischarge and Optimal Penstock Diameter inImpulse and Reaction Water Turbines

    1

    Arturo Leon1and Ling Zhu

    1

    School of Civil and Construction Engineering, Oregon State University2Department of Civil and Environmental Engineering, Louisiana State University

    X Congreso Latinoamericano de Estudiantes de Ingenieria Civil - XXII Congreso

    Nacional de Estudiantes de Ingenieria Civil del Per, August 4-8, !"4#

  • 8/10/2019 Hydropower Optimal Power Flow

    2/26

    Ackno!ledgements"

    #inancial support"

    $onneville Po%er Administration o& the'#(# )e*artment o& Energ+ )E. undera%ard num/er 0IP128#

  • 8/10/2019 Hydropower Optimal Power Flow

    3/26

    Presentation outline

    $ac3ground5otivation

    )imensional anal+sis A**lication Conclusions

    $

  • 8/10/2019 Hydropower Optimal Power Flow

    4/26

    %ydropo!er systems

    &arkamis hydroelectric po!er plant' Turkey

    Three (orges hydropo!er

    plant' )hina

    %%%#%ater-technolog+#net

    %oo*er Dam' +,

    %%%#hdrinc#com

    %%%#*o%er-technolog+#com

  • 8/10/2019 Hydropower Optimal Power Flow

    5/26

    -ackground./oti*ation

    6"7 o& glo/al electricit+ *roduction came &romh+dro*o%er in !!9

    6)evelo*ment o& all the remaining h+droelectric*otential could not ho*e to cover total &uture %orld

    demand

    6:+dro*o%er due to its associated reservoirstorage, can *rovide i/ilit+ and relia/ilit+ &or

    energ+ *roduction in integrated s+stems# therdi&&use and varia/le rene%a/le energ+ sources

    %ind, %ave, solar. can *la+ a larger role in

    *roviding electrical *o%er o& commercial

  • 8/10/2019 Hydropower Optimal Power Flow

    6/26

    -ackground./oti*ation 0)ont2

    6Im*lementation o& remaining h+droelectric *otentialcan ma3e a vast contri/ution to im*roving livingstandards in the develo*ing %orld (outh America, Asia

    and A&rica., %here the greatest *otential still e;ists#

    65inimi=ing %ater consum*tion &or *roducingh+dro*o%er is critical given that overuse o& &lo%s &or

    energ+ *roduction ma+ result in a shortage o& &lo%s &or

    other *ur*oses such as irrigation or navigation

    60heoretical &rame%or3 &or determining o*timal design&lo% and o*timal *enstoc3 diameter &or im*ulse and

    reaction tur/ines is N0availa/lein literature

  • 8/10/2019 Hydropower Optimal Power Flow

    7/26

    3lectrical po!er 0P2 of impulse andreaction turbines 0)ont2

    4

    ( )g LP Q H h=

    = t g = const

    Hg : gross head

    hL : total head losses

    : specific weight of water = g( )

    : water densityg : acceleration of gravity

    Q : flow discharge

    t : turbine efficiency

    g : generator efficiency

  • 8/10/2019 Hydropower Optimal Power Flow

    8/26

    3lectrical po!er 0P2 of impulse andreaction turbines 0)ont2

    5

    P =Q Hg hL( )h

    L =

    Q2

    2gA22 C

    L

    2

    21 2

    2

    2

    21 2

    2

    for an impulse turbine

    for a reaction turbine

    N

    N

    L

    d

    ALf k k

    D AC

    ALf k

    D A

    + + =

    + +

    L : length

    D2 : diameter of penstock

    A2 : cross - section area of penstock

    AN : nozzle area at exit

    f : friction factor

    1-2

    N

    2

    : draft tube cross-sectional area at outlet

    k : sum of local losses in penstock

    due to entrance, bends, penstock fittings and gates

    k : nozzle head loss coefficient

    11, : 0.98 0.99

    d

    N V

    V

    A

    k CC

    =

  • 8/10/2019 Hydropower Optimal Power Flow

    9/26

    A dimensionless relationship bet!eenpo!er and flo! discharge 0)ont2

    6

    6Choose re&erence *o%er Pr. and re&erence discharge Qr.

    6Choose Pras the ma;imum *o%er can /e generated %ith

    &i;ed CL and o& "!!

    2

    2

    22

    g LQP Q H CgA

    =

    dP dQ = 0

    Qr= 2A3

    1

    3gH

    g , Pr =4

    3H

    gA3

    1

    3gH

    g

    A3 = A

    N for an impulse turbine

    Ad

    for a reaction turbine

  • 8/10/2019 Hydropower Optimal Power Flow

    10/26

    A dimensionless relationship bet!eenpo!er and flo! discharge 0)ont2

    17

    2

    2

    2

    2g L

    QP Q H C

    gA

    =

    P+ = P Pr, Q+ = Q Qr

    with

    = CLA3

    A2

    2

    = f L, D2, f, k , A3 A2(

    !!

    2

    P Q Q + + + =

    [ ]

    [ ]

    21

    0.01, 1.0 for impulse turbines"n applications,

    10, 1000 for reaction turbines

    D

  • 8/10/2019 Hydropower Optimal Power Flow

    11/26

    11

    Im*ulse tur/ines > !#8.

    Dimensionless discharge *ersus Dimensionless Po!er

  • 8/10/2019 Hydropower Optimal Power Flow

    12/26

    1

    ?eaction tur/ines > !#8.

    Dimensionless discharge *ersus Dimensionless Po!er

  • 8/10/2019 Hydropower Optimal Power Flow

    13/26

    Determine optimal 8 and optimal D 0)ont2

    1$

    2! !! 0,2 2

    dP QdQ

    + ++

    =

    @P @Q> !achieve ma;imum Pho%ever, not o*timalB

    P+( )max =1

    2

    , Q+( )max =1

    2

    5inimi=ing %ater

    consum*tion

    Achieving large @P

    %ith small @

    5a;imi=e @P @

  • 8/10/2019 Hydropower Optimal Power Flow

    14/26

    Determine optimal 8 and optimal D 0)ont2

    19

    2! !! 0,2 2

    dPQ

    dQ + +

    +

    =

    5inimi=ing %ater

    consum*tion

    Achieving large @P

    %ith small @

    5a;imi=e @P @

    @P @Q> D

    Ideal condition to

    save %ater /ut *o%er

    *roduced is small

  • 8/10/2019 Hydropower Optimal Power Flow

    15/26

    1:

    Im*ulse tur/ines > !#8.;P

  • 8/10/2019 Hydropower Optimal Power Flow

    16/26

    1?

    Im*ulse tur/ines > !#8.;P

  • 8/10/2019 Hydropower Optimal Power Flow

    17/26

    14

    Determine optimal 8 and optimal D 0)ont2

    o*timal head loss hL > hL/ Hg. "2#7

    Qopt upper =2

    3A2

    7

    10

    gHg

    CL

    Popt upper =

    76

    135 HgA27

    10

    gHg

    CL

    dP+dQ+

    opt

    = 0.8

    Q+( )opt upper =7

    30

    P+( )opt upper =19

    15

    7

    30

  • 8/10/2019 Hydropower Optimal Power Flow

    18/26

    15

    Influence of changing penstock

    diameter on po!er *ariation

    P+

    = Q

    +

    3

    !!

    2P Q Q + + +

    =

    !

    !!

    2

    P QP

    Q Q

    + +

    ++ +

    =

  • 8/10/2019 Hydropower Optimal Power Flow

    19/26

    Im*ulse tur/ines Q+> D.

    ;P

  • 8/10/2019 Hydropower Optimal Power Flow

    20/26

    Qopt upper =2

    3A2

    7

    10

    gHg

    CL

    Popt upper =76

    135HgA2

    7

    10

    gHg

    CL

    Qopt = 4538

    PHg

    P s*eci&ied

    Popt =38

    45

    HgQ

    CL( )opt

    A22

    14

    45

    gHg

    Q2

    Q s*eci&ied

    Turbine design !ith P or Qspecified

  • 8/10/2019 Hydropower Optimal Power Flow

    21/26

    3@ample" Impulse Turbine design

    ( )

    ( )

    ( )

    ( )( )

    2

    1 2

    # 2

    $onditions:%ross head 200 m

    &enstock length '00 m

    1#

    Nozzle (elocit) coefficient 0.98'

    1.'

    *oughness height of penstock material 0.0+' mm

    inematic (iscosit) 10 m -s

    urbine efficien

    g

    N

    V

    H

    L

    A

    A

    C

    k

    =

    =

    =

    =

    =

    ==

    ( )

    ( )

    c) 82/

    %enerator efficienc) 90/

    t

    g

    =

    =

  • 8/10/2019 Hydropower Optimal Power Flow

    22/26

    Impulse Turbine design 0)ont2

    )ase A1F design an im*ulse tur/ine %ith Q> !#7 mD

    s

    ( )( )

    ( )

    ( ) ( )

    opt -+

    2 2

    2

    2

    10 0.9

    2

    2

    1+1#9!.8 m 1

    +'

    1 1 0.0!0

    0.2' 2

    '.+log!. *e

    '001.' 1# !

    L g

    N

    V

    L N

    C gH

    A Q

    kC

    f

    D

    fC k

    D

    = =

    = =

    =

    +

    = + +

    D2 = 0.3968 m

  • 8/10/2019 Hydropower Optimal Power Flow

    23/26

    Impulse Turbine design0)ont2

    Case A"F design an im*ulse tur/ine %ith Q> !#7 mD

    sssuming that a schedule 80 steel pipe is reuired due to structural

    considerations, a 18 in outside diameter pipe 3ould be selected.

    3all thickness 4 0.9!8 in

    internal diameter 4 1#.12+ in 5+09.' mm6

    LC

    ( )

    2

    272

    2

    2

    2'.!'

    dimensionless head loss 0.1!+ 51!.+/6 1'.#/2

    electrical po3er 0.82 0.90 1000 9.8 0.#

    0.#200 2'.!' 4'1+21 4'1.+ k

    2 9.8 0.1!1

    L L

    g

    Qh C

    gH A

    P

    =

    = =

    =

  • 8/10/2019 Hydropower Optimal Power Flow

    24/26

    /ATLA- toolbo@ for turbine designhtt*F%e/#engr#oregonstate#eduGleonCodes#html

    http://web.engr.oregonstate.edu/~leon/Codes.htmlhttp://web.engr.oregonstate.edu/~leon/Codes.html
  • 8/10/2019 Hydropower Optimal Power Flow

    25/26

    )O)L+,IO, 0he *resent anal+sis resulted in various

    dimensionless relationshi*s /et%een P, Qand hL&or

    determining o*timal design &lo% and *enstoc3

    diameter &or designing im*ulse and reaction tur/ines

    0he derived relationshi*s %ere used to %ithdra%general insights on h+dro*o%er o*timi=ation# Hor

    instance, it %as &ound that &or minimi=ing %ater

    consum*tion, the ratio o& head loss to gross head

    hL:g. should not e;ceed "2# 0o &acilitate the calculations, a 5A0LA$ h+dro*o%er

    tool/o; %as develo*ed#

  • 8/10/2019 Hydropower Optimal Power Flow

    26/26

    /any thanks for your attentionB/any thanks for your attentionB

    )ontact")ontact"Arturo LeonArturo Leon(chool o& Civil and Construction Engineering,(chool o& Civil and Construction Engineering,regon (tate 'niversit+regon (tate 'niversit+

    3Cmail"3Cmail"arturo#leonoregonstate#eduarturo#leonoregonstate#eduResearch Web page"htt*F%e/#engr#oregonstate#eduGleon

    ?

    mailto:[email protected]:[email protected]://web.engr.oregonstate.edu/~leonhttp://web.engr.oregonstate.edu/~leonmailto:[email protected]

Recommended