+ All Categories
Home > Documents > I am from..

I am from..

Date post: 09-Jan-2016
Category:
Upload: kesler
View: 49 times
Download: 4 times
Share this document with a friend
Description:
I am from. OPOLE. Opole University. Institute of Physics, Plasma Spectroscopy Group. 1. Symmetry of. the plasma. produced in a wall-stabilized d.c. arc. 2. Wall-stabilized arc (Maecker). 3. Wall-stabilized arc (Shumaker). 4. Main advantages of the wall-stabilized arc. - PowerPoint PPT Presentation
35
OPOLE Opole University Institute of Physics, Plasma Spectroscopy Group
Transcript
Page 1: I am from..

OPOLE Opole University

Institute of Physics,Plasma Spectroscopy Group

1

Page 2: I am from..

Symmetry

of

the plasma

produced in

a wall-stabilized d.c. arc

2

Page 3: I am from..

Wall-stabilized arc (Maecker)

3

Page 4: I am from..

Wall-stabilized arc (Shumaker)

4

Page 5: I am from..

Main advantages of the wall-stabilized arc

5

•very stable (as well spatially as temporally)

•long time of stable work (hours)

•cylindrical symmetry of the plasma

•uniformity of the plasma along the arc axis(neglecting infinitesimally small area near electrodes)

•the plasma is at least close to theLocal Thermal Equilibrium

Page 6: I am from..

Usually the discharge is conducted in an inert gas atmosphere with small

admixtures of the element under study.

6

•Argon

•Helium

Page 7: I am from..

temperature: 8 000 – 15 000 (K)

pressure: 1 atmosphere

electron densities: 1015 – 1017 (cm–3 )

Typical parameters of plasma produced in a wall-stabilized arc

7

Page 8: I am from..

Wall-stabilized arc (this work)

8

Page 9: I am from..

Gas inlet-outlet

9

Ca

thod

e

A rH e

Flo

wm

ete

rs

s ide w indow

Ano

de

Page 10: I am from..

Gas flow 10

Page 11: I am from..

Experiment parametersEstimated Ar

concentration

(per vol.)

Discharge

current

(A)

30 10.0 % 45

60 25.7% 4.5%

45

11

Page 12: I am from..

Optical set-up :A – top view,B – side view;

1a – wall-stabilized arc, 1b – tungsten strip lamp (standard source),

2 – flat mirror,3 – spherical mirror,4 – filter, 5 – spectrograph, 6 – CCD camera, 7 – PC computer, 8 – flat mirror.

12

Page 13: I am from..

Detector tracks 13

Page 14: I am from..

Spectra registered in 6545–6685Å range 14

6540 6560 6580 6600 6620 6640 6660 6680

Wavelength (Å)

C athode

A node

ArI

I 664

3.69

7 Å

HeI

667

8.15

2 Å

ArI

I 668

4.78

8 Å

H

6562

.8 Å

Page 15: I am from..

Spectra registered in 6945–7095Å range 15

6960 6980 7000 7020 7040 7060 7080

Wavelength (Å)

C athode

A node

HeI

706

5.17

9 Å

HeI

706

5.21

7 Å

HeI

706

5.71

0 Å

ArI

706

7.21

7 Å

ArI

703

0.25

1 Å

ArI

696

5.40

9 Å

Page 16: I am from..

What can cause the differences in line intensities?

Changes of plasma parameters (enhancement of the excitation)

Changes in chemical plasma composition(partial pressure or concentration of the species)

16

Page 17: I am from..

Methods

ne = f (FWHM(H))

T = f (ne,Ar I, Ar II)

natoms Ar,H = fBoltzmann(T, )

nions Ar,H = fSaha(T, ne,natoms)

natoms He = patm– k·T · ni

aHe = nHe/nHe( HeI)

nions He = fSaha(T, ne,natoms, aHe)

Method (B){system of LTE equation}

natoms He,Ar,H = fBoltzmann(T, )

nions He,Ar,H = fSaha(T, ne,natoms)

T = p/(k· n)

ne = z· niz

Method (A){partial LTE}

17

Page 18: I am from..

Axial distribution of the temperature at different discharge currents (values on the arc axis). 18

Method (A)

-4 -3 -2 -1 0 1 2 3 410000

11000

12000

13000

14000

15000

16000

17000

18000

19000

i = 30 A i = 45 A i = 60 A

T (

K)

Distance from the arc center (cm)

Method (B)

-4 -3 -2 -1 0 1 2 3 410000

11000

12000

13000

14000

15000

16000

17000

18000

19000

i = 30 A i = 45 A i = 60 A

T (

K)

Distance from the arc center (cm)

Page 19: I am from..

Axial distribution of the electron density at different discharge currents

(values on the arc axis). 19

Method (A)

-4 -3 -2 -1 0 1 2 3 4

0.0

5.0x1015

1.0x1016

1.5x1016

i = 30 A i = 45 A i = 60 A

n e (c

m-3 )

Distance from the arc center (cm)

Method (B)

-4 -3 -2 -1 0 1 2 3 4

0.0

5.0x1015

1.0x1016

1.5x1016

i = 30 A i = 45 A i = 60 A

n e (c

m-3 )

Distance from the arc center (cm)

Page 20: I am from..

Axial distribution of the temperature at different plasma compositions (values on the arc axis). 20

Method (A)

-4 -3 -2 -1 0 1 2 3 410000

11000

12000

13000

14000

15000

16000

17000

18000

19000

large amount of Ar small amount of Ar

T (

K)

Distance from the arc center (cm)

Method (B)

-4 -3 -2 -1 0 1 2 3 410000

11000

12000

13000

14000

15000

16000

17000

18000

19000

large amount of Ar small amount of Ar

T (

K)

Distance from the arc center (cm)

Page 21: I am from..

Axial distribution of the electron density at different plasma compositions

(values on the arc axis). 21

Method (A)

-4 -3 -2 -1 0 1 2 3 4

0.0

5.0x1015

1.0x1016

1.5x1016

large amount of Ar small amount of Ar

n e (c

m-3 )

Distance from the arc center (cm)

Method (B)

-4 -3 -2 -1 0 1 2 3 4

0.0

5.0x1015

1.0x1016

1.5x1016

large amount of Ar small amount of Ar

n e (c

m-3 )

Distance from the arc center (cm)

Page 22: I am from..

Spatial distribution of plasma parameters

(method A, i = 60 A)

-2-1

01

2

-0.2

-0.1

0.0

0.1

0.2

10000

12000

14000

16000

18000

T (

K)

Distance from the arc center (cm)

cathode

anode

-2-1

01

2

0.0

5.0x1015

1.0x1016

1.5x1016

-0.2

-0.1

0.0

0.1

0.2

n e (c

m -3

)

r (cm

)

Distance from the arc center (cm)

cathode anode

22

Page 23: I am from..

Spatial distribution of Argon mass fraction (method A , i = 60 A)

-2-1

01

2

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

-0.1

0.0

0.1

0.2

Ar

mas

s fr

actio

n

r (cm

)

Distance from the arc center (cm)

cathode anode 23

Page 24: I am from..

Spatial distribution of Hydrogen mass fraction (method A , i = 60 A)

-2-1

01

2

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

-0.2

-0.1

0.0

0.1

0.2

H m

ass

frac

tion

r (cm

)

Distance from the arc center (cm)

cathode anode 24

Page 25: I am from..

Spatial distribution of Helium mass fraction (method A , i = 60 A)

-2-1

01

2

-0.2

-0.1

0.0

0.1

0.2

0.4

0.5

0.6

0.7

0.8

0.9

He

mas

s fr

actio

n

Distance from the arc center (cm)

cathode

anode

25

Page 26: I am from..

End-on spectra – how to interpret it?

Cathode

Anode

6560 6580 6600 6620 6640 6660 6680

W avelength (Å )

ArII

6643

.697

Å

HeI

6678

.152

Å

ArII

6684

.788

Å

H

6562

.8Å

26

Page 27: I am from..

Demixing effect

27

Murphy has shown that in a mixture of two homonuclear gases that do not react with each other the treatment of diffusion can be greatly simplified if local chemical equilibrium is assumed.

In this case, instead of considering the diffusion of individual species separately, one can consider the diffusion of gases.

Here a gas, for example nitrogen, is defined to consist of all the species that can be derived from that gas, for example N2, N2

+, N, N+, N++, and the electrons derived from the ionization of nitrogen molecules and atoms.

Page 28: I am from..

A. B. MurphyPhys. Rev. E 55

7473 (1997)

28

Temperature dependence of the mole fractions of the species present in a mixture of argon and helium if no demixing occurs.

Page 29: I am from..

Demixing effect

• mole fraction (or partial pressure) gradient,

Demixing can be caused by:

• frictional forces,

• thermal diffusion,

• external forces (e.g. electric field).

29

Page 30: I am from..

A. B. Murphy, Phys. Rev. Lett. 73,

1797 (1994)

30

Combined diffusion coefficients for different mixtures of argon and nitrogen.

(a) Mole fraction diffusion coefficient; (b) temperature diffusion coefficient; (c) thermal diffusion coefficient.

Page 31: I am from..

Radial distributions of Argon mass fraction (7 different gas mixtures). 31

0.00 0.05 0.10 0.15

0.87

0.78

0.00 0.05 0.10 0.15

0.78

0.79

0.00 0.05 0.10 0.150.69

0.70

0.71

0.72

0.73

0.74

0.00 0.05 0.10 0.150.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.00 0.05 0.10 0.150.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.00 0.05 0.10 0.150.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.00 0.05 0.10 0.15

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.89A

r m

ass

frac

tion

r (cm) r (cm)

0.70

r (cm)

0.54

r (cm)

0.37

r (cm)

0.28

r (cm)

Ar mass fraction in gas mixture

0.14

r (cm)

Page 32: I am from..

Radial distributions of Argon mass fraction (2 different gas mixtures).

0.00 0.05 0.10 0.15 0.200.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ar mass fraction (0.89 in gas mixture)

r(cm)

mas

s fr

actio

n A

r in

arc

pla

sma

{in c

old

gas

0.89

}

Ar mass fraction in gas mixture

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 Ar mass fraction

(0.14 in gas mixture)

Ar m

ass fraction in arc plasma {in cold gas 0.14}

32

Page 33: I am from..

Radial distributions of temperature (7 different gas mixtures). 33

0.00 0.05 0.10 0.15 0.20

8000

9000

10000

11000

12000

Ar mass fractionin gas mixture

0.89 0.78

0.700.540.370.280.14

T (

K)

r (cm)

Page 34: I am from..

Effective temperaturesDdetermined based on intensities of •Ar I 6965.43Å •Ar I 7030.25 Å (E1.5 eV)

34 34

Eff

ect

ive

te

mp

era

ture

(K

)

-4 -3 -2 -1 0 1 2 3 40

2000

4000

6000

8000

10000

12000

14000

16000

between stabilizing pla tes within stabilizing plates

Distance from the arc center (cm)

CATHODE

ANODE

0.00 0.05 0.10 0.15 0.20 0.25 0.300

2000

4000

6000

8000

10000

12000

14000

16000

r (cm)

Te

mp

era

ture

(K

)

CATHODE

ANODE

0.00 0.05 0.10 0.15 0.20 0.25 0.30-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

r (cm)

Em

mis

sion

coe

ffici

ent (

a.u.

)

Ar I 7030.25 Å 0.0

0.5

1.0

1.5

2.0

2.5

3.0

Em

mission coefficient (a.u.)

Page 35: I am from..

The End

THANK YOUTHANK YOUfor your attentionfor your attention

35


Recommended