+ All Categories
Home > Documents > I Danaila Bose Einstein

I Danaila Bose Einstein

Date post: 30-Oct-2014
Category:
Upload: cocoaramirez
View: 32 times
Download: 1 times
Share this document with a friend
Popular Tags:
38
FreeFEm++ and quantized vortices in fast-rotating Bose-Einstein condensates Ionut Danaila Laboratoire Jacques Louis Lions Universit ´ e Pierre et Marie Curie (Paris 6) http://www.ann.jussieu.fr/danaila 2nd Workshop on FreeFem++, Paris, September 2, 2010
Transcript
Page 1: I Danaila Bose Einstein

FreeFEm++ and quantized vortices infast-rotating Bose-Einstein condensates

Ionut Danaila

Laboratoire Jacques Louis LionsUniversite Pierre et Marie Curie (Paris 6)

http://www.ann.jussieu.fr/∼danaila

2nd Workshop on FreeFem++, Paris, September 2, 2010

Page 2: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Outline

1 Vortices in Bose-Einstein condensatesExperimental Bose-Einstein condensateVortices in fluids and superfluids

2 Mathematical description and numerical simulationGross-Pitaevskii equationPrevious numerical simulations

3 FreeFEm++ implementation: Sobolev gradients

4 Conclusion and future work

Page 3: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Outline

1 Vortices in Bose-Einstein condensatesExperimental Bose-Einstein condensateVortices in fluids and superfluids

2 Mathematical description and numerical simulationGross-Pitaevskii equationPrevious numerical simulations

3 FreeFEm++ implementation: Sobolev gradients

4 Conclusion and future work

Page 4: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Experimental BEC

Bose-Einstein condensate (1)

New state of the matter: super-atomProperties: superfluid, super-conductor.

Predicted in 1924S. Bose A. Einstein

Created in 1995Nobel Prize 2001C. E. Wieman (Univ. Colorado)E. A. Cornell (Univ. Colorado)W. Ketterle (MIT, Cambridge)

Page 5: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Experimental BEC

Bose-Einstein condensate (1)

New state of the matter: super-atomProperties: superfluid, super-conductor.

Predicted in 1924S. Bose A. Einstein

Created in 1995Nobel Prize 2001C. E. Wieman (Univ. Colorado)E. A. Cornell (Univ. Colorado)W. Ketterle (MIT, Cambridge)

Page 6: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Experimental BEC

Bose-Einstein condensate (2)Experiment of Wieman and Cornell (1995)

1000 atoms of Rubidium (Rb)magnetic trapcooling by lasers + radio-frequencyT ∼ 20nKsize ∼ 100µm, t ∼ 1s

explosion in experimental and theoretical activity(Wikipedia)

Experiments in Lab. Kastler Brossel, ENS Paris

Page 7: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Experimental BEC

Bose-Einstein condensate (2)Experiment of Wieman and Cornell (1995)

1000 atoms of Rubidium (Rb)magnetic trapcooling by lasers + radio-frequencyT ∼ 20nKsize ∼ 100µm, t ∼ 1s

explosion in experimental and theoretical activity(Wikipedia)

Experiments in Lab. Kastler Brossel, ENS Paris

Page 8: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Vortices in fluids and superfluids

Vortices in fluids and superfluids

classical fluids• easy intuition (velocity - pressure)

• complicated math description

solid rotation

superfluids• difficult intuition(vanishing viscosity)• simple math description(wave function)

local rotation

(JILA, Colorado)

Page 9: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Vortices in fluids and superfluids

Vortices in fluids and superfluids

classical fluids• easy intuition (velocity - pressure)• complicated math description

solid rotation

superfluids• difficult intuition(vanishing viscosity)• simple math description(wave function)

local rotation

(JILA, Colorado)

Page 10: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Vortices in fluids and superfluids

Vortices in fluids and superfluids

classical fluids• easy intuition (velocity - pressure)• complicated math description

solid rotation

superfluids• difficult intuition(vanishing viscosity)• simple math description(wave function)

local rotation

(JILA, Colorado)

Page 11: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Vortices in fluids and superfluids

Vortices in fluids and superfluids

classical fluids• easy intuition (velocity - pressure)• complicated math description

solid rotation

superfluids• difficult intuition(vanishing viscosity)• simple math description(wave function)

local rotation

(JILA, Colorado)

Page 12: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Vortices in fluids and superfluids

Identification of a vortex (1)

Macroscopic descriptionψ wave function

ψ =√ρ(r)eiθ(r)

vortex :: ρ = 0 + rotationvelocity field

v(r) =hm∇θ

quantified circulation

Γ =

∫v(s)ds = n

hm

Page 13: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Vortices in fluids and superfluids

Identification of a vortex (2)

optical lattice

giant vortex

Page 14: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Vortices in fluids and superfluids

Creating vortices in BEC

Rotation

Wake of moving objects

Phase imprint

Page 15: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Outline

1 Vortices in Bose-Einstein condensatesExperimental Bose-Einstein condensateVortices in fluids and superfluids

2 Mathematical description and numerical simulationGross-Pitaevskii equationPrevious numerical simulations

3 FreeFEm++ implementation: Sobolev gradients

4 Conclusion and future work

Page 16: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Gross-Pitaevskii equation

Gross-Pitaevski theory (1)3D Gross-Pitaevski energy

E(ψ) =

∫D

~2

2m|∇ψ|2︸ ︷︷ ︸

kinetic

+ ~Ω · (iψ,∇ψ × x)︸ ︷︷ ︸rotation

+ Vtrap|ψ|2︸ ︷︷ ︸trap

+ Ng3D|ψ|4︸ ︷︷ ︸interactions

scaling : [A. Aftalion, T. Riviere, Phys. Rev. A, 2001.]

r = x/R, u(r) = R3/2ψ(x), R = d/√ε

d = (~/mω⊥)1/2 , ε = (d/8πNas)2/5 , Ω = Ω/(εω⊥).

Dimensionless energy

E(u) = H(u)− ΩLz(u), Lz(u) = i∫

u(y∂xu − x∂yu

)H(u) =

∫12|∇u|2 +

12ε2 Vtrap(r)|u|2 +

14ε2 |u|

4

Page 17: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Gross-Pitaevskii equation

Gross-Pitaevski theory (1)3D Gross-Pitaevski energy

E(ψ) =

∫D

~2

2m|∇ψ|2︸ ︷︷ ︸

kinetic

+ ~Ω · (iψ,∇ψ × x)︸ ︷︷ ︸rotation

+ Vtrap|ψ|2︸ ︷︷ ︸trap

+ Ng3D|ψ|4︸ ︷︷ ︸interactions

scaling : [A. Aftalion, T. Riviere, Phys. Rev. A, 2001.]

r = x/R, u(r) = R3/2ψ(x), R = d/√ε

d = (~/mω⊥)1/2 , ε = (d/8πNas)2/5 , Ω = Ω/(εω⊥).

Dimensionless energy

E(u) = H(u)− ΩLz(u), Lz(u) = i∫

u(y∂xu − x∂yu

)H(u) =

∫12|∇u|2 +

12ε2 Vtrap(r)|u|2 +

14ε2 |u|

4

Page 18: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Gross-Pitaevskii equation

Gross-Pitaevski theory (2)

D ⊂ R3 et u = 0 on ∂D

E(u) =

∫D

12|∇u|2 + Vtrap(r)|u|2 +

g2|u|4 − Ωi

∫D

u∗(At∇

)u

under the unitary norm constraint∫D|u|2 = 1

(meta-)stable states :: local minima of theenergy min E(u)

Numerical methodsDirect minimization of the energy −→ Sobolev gradients.Imaginary time propagation.

Page 19: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Gross-Pitaevskii equation

Evolution of the numerical wave function

parameters of the simulation Vtrap, Ω

initial condition: ansatz for the vortex / field for Ω = 0convergence: |δE/E| ≤ 10−6

Page 20: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Previous numerical simulations

(3D) Imaginary time propagation

E(u) =

∫12|∇u|2 + Vtrap(r)|u|2 +

g2|u|4 − Ωi

∫u∗(At∇

)u

Euler-Lagrange eq/ stationary Gross-Pitaevskii eq

∂u∂t− 1

2∇2u − iΩ(At∇)u = −u(Vtrap + g|u|2)+µεu

constraint:∫D u2 = 1

normalized gradient flow (Bao and Du, 2004)

∂u∂t

= −12∂E(u)

∂u= −1

2∇L2E(u)

Page 21: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Previous numerical simulations

Finite difference 3D code3D numerical code :: BETI

solves :: ∂u∂t = H(u) +∇2u,u ∈ C

combined Runge Kutta + Crank-Nicolson schemeul+1 − ul

δt= alHl + blHl−1 + cl∇2

(ul+1 + ul

2

)ADI factorization

(I − clδt ∇2) = (I − clδt ∂2x )(I − clδt ∂2

y )(I − clδt ∂2z )

projection after 3 steps of R-K

u =u∫D |u|2

Page 22: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Previous numerical simulations

Spatial discretization

compact schemes (Pade) of order 613

u′

i−1 + u′

i +13

u′

i+1 =149

ui+1 − ui−1

2h+

19

ui+2 − ui−2

4h,

211

u′′

i−1+u′′

i +2

11u

′′

i+1 =1211

ui+1 − 2ui + ui−1

h2 +3

11ui+2 − 2ui + ui−2

4h2

boundary conditions : u = 0computational domain

D ⊃ ρTF = ρ0 − Vtrap = 0 ,∫

DρTF = 1

grid ≤ 240× 240× 240

Page 23: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Previous numerical simulations

Comparison with experimentsP. Rosenbusch, V. Bretin , J. Dalibard, Phys. Rev. Lett. 2002.

A. Aftalion, I. Danaila, Phys. Rev. A, 2003.U vortex S vortex 3D U-vortex

Page 24: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Previous numerical simulations

Comparison with mathematical theories

Validation of theoretical resultsA. Aftalion et al., Phys Rev A,2001, 2002.

Eγ =

∫γρTF dl − Ω

| ln ε|

∫γρ2

TF dz

1 no vortex for small Ω

2 β > 1 min= straight vortex3 β ≤ 1 min= U vortex4 γ ∈ (x , z) ou γ ∈ (y , z)

5 Ω, β large ; min = straightvortex

Page 25: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Previous numerical simulations

Simulation the real experiment

• 3D simulation(107 grid points).

V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Phys. Rev. Lett. 2003.

I. Danaila, Phys. Rev. A, 2005.

Page 26: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Previous numerical simulations

Beyond the physical experiment (1)

I. Danaila, Phys. Rev. A, 2005.

Page 27: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Previous numerical simulations

Beyond the physical experiment (2)

moment cinetique

vu de haut

coupe z=0

Page 28: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Previous numerical simulations

Suggesting new configurations

Z. Handzibababic, S. Stock, B.Battelier, V. Bretin, J. Dalibard,Phys. Rev. Lett. 2004

3D simulation

Page 29: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Outline

1 Vortices in Bose-Einstein condensatesExperimental Bose-Einstein condensateVortices in fluids and superfluids

2 Mathematical description and numerical simulationGross-Pitaevskii equationPrevious numerical simulations

3 FreeFEm++ implementation: Sobolev gradients

4 Conclusion and future work

Page 30: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Direct minimization of the energysearch critical points E(u)

Steepest descent method

∂u∂t

= −∇E(u)

−12∇L2E(u) =

∇2u2− Vtrapu − g|u|2u + iΩAt∇u

Sobolev gradients J. W. Neuberger, Springer 1997/2010

L2(D,C) :: 〈u, v〉L2 =

∫D〈u, v〉

H1(D,C) :: 〈u, v〉H =

∫D〈u, v〉+ 〈∇u,∇v〉

Garcıa-Ripoll and Perez-Garcıa, SISC and PRA, 2001

Page 31: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

New descent method(I. Danaila and P. Kazemi, SIAM J. Sci Computing, 2010)

New gradient

〈u, v〉HA =

∫D〈u, v〉+ 〈∇Au,∇Av〉, ∇A = ∇+ iΩAt

HA(D,C) = H1(D,C) ⊂ L2(D,C)

New projection method for the constraint

projection on β′(u) = 0, with β(u) =∫D |u|

2

G = ∇X E(u), X =

L2,H1,HA

, 〈vX , v〉X = 〈u, v〉L2

Pu,XG = G − B vX , B =

[<〈u,G〉L2

<〈u, vX 〉L2

]

Page 32: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Implementation of the new method

2D implementationfinite difference (4th order) with Matlab,finite elements with FreeFem++ (www.freefem.org).

Appealing (new) features of FreeFem++easy to implement weak formulations,use combined P1, P2 and P4 elements,complex matrices available,mesh interpolation and adaptivity.

Page 33: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

FreeFem++ implementation

• compute the gradient for X = H1∫D∇G∇h + Gh = RHS =

∫D∇u∇h + 2h

[Vtrapu + g|u|2u − iΩAt∇u

]• compute the gradient X = HA∫

D

[1 + Ω2(y2 + x2)

]Gh +∇G∇h − 2iΩ(At∇G)h = RHS

• projection

Pu,XG = G − B vX , B =

[<〈u,G〉L2

<〈u, vX 〉L2

]• time advancement

un+1 = un − δt Pu,XG(un).

Page 34: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Mesh adaptivity with FreeFem++(I. Danaila, F. Hecht, J. Computational Physics, 2010.)

Mesh refinement by metrics control χ = [ur ,ui ] ;P1 finite elements+ adaptivity ≡ high order (6th order FD)

Vtrap = 12 r2 + 1

4 r4,Ω = 2 → Ω = 2.5.

iterations

E(u

)

0 500 1000 15005

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

xy

0 1 2 3 40

1

2

3

4

ε = 10-3a)

x

y

0 1 2 3 40

1

2

3

4

ε = 10-5b)

x

y

0 1 2 3 40

1

2

3

4

ε = 10-3c)

x

y0 1 2 3 40

1

2

3

4

ε = 10-5d)

Page 35: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Computing physical cases: Abrikosov lattice

Harmonic trapping potential: Vtrap = 12 r2, Ω = 0.95.

Page 36: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Computing physical cases: giant vortex

Quartic trapping potential: Vtrap = 12 r2 + 1

4 r4, g = 1000.

Page 37: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Outline

1 Vortices in Bose-Einstein condensatesExperimental Bose-Einstein condensateVortices in fluids and superfluids

2 Mathematical description and numerical simulationGross-Pitaevskii equationPrevious numerical simulations

3 FreeFEm++ implementation: Sobolev gradients

4 Conclusion and future work

Page 38: I Danaila Bose Einstein

Bose-Einstein condensates GP equation FFEM Conclusion and future work

Conclusion and future work

Simulations are needed for BEC!rich variety of configurationscomplementary information to experimentssuggest new configurations

Future work with FreFem++add time-step optimization in the steepest descend methodreal-time evolution of the condensate3D simulations.


Recommended