+ All Categories
Home > Documents > I. Introduction to Perforating Gun and Conveyance · PDF file12 Modeling Approach Description...

I. Introduction to Perforating Gun and Conveyance · PDF file12 Modeling Approach Description...

Date post: 22-Mar-2018
Category:
Upload: duongphuc
View: 229 times
Download: 6 times
Share this document with a friend
25
1 Plastic Collapse Behaviors of Perforating Guns with Scallops Haifeng Zhao, David Iblings, Aleksey Barykin, and Mohamed Mehdi Schlumberger May 10, 2016, Galveston, TX 2016 International Perforating Symposium (IPS) IPS-16-39
Transcript

1

Plastic Collapse Behaviors of Perforating Guns with Scallops

Haifeng Zhao, David Iblings, Aleksey Barykin, and Mohamed Mehdi

Schlumberger

May 10, 2016, Galveston, TX

2016 International Perforating Symposium (IPS) IPS-16-39

2 2

Outline

I. Introduction to Perforating Gun and Conveyance

Systems

II. Ultimate Collapse Strength for Recessed Tubulars

III. Finite Element Analysis (FEA) and Test Validation

IV. Conclusions and Future Work

2

3 3

I. Introduction to Perforating Gun and Conveyance Systems

3

4 4

Slickline Coiled Tubing

Wireline Tubing-Conveyed Perforating (TCP):

Completions and Drillstem testing

Open-string TCP system

Perforating Gun and Conveyance Systems

4

5 5

Density and Phasing

Distance (in degrees) between charges

Phasing Density

Number of shots per foot (spf)

360/ 6 =60 phasing

1 ft

5

6 6

II. Ultimate Collapse Strength for Recessed Tubulars

6

7 7

Review: Collapse Strength of a Slick Pipe LamΓ© Thick Wall Yield Collapse Formula (Yield at Pipe ID)

API Bulletin 5C3

Tamano Ultimate Collapse Equation (SPE 48331)

𝑃𝐿𝑐 = πœŽπ‘¦π·π‘œ2 βˆ’π·π‘–

2

2π·π‘œ2 Open Ends

Closed Ends 𝑃𝐿𝑐 = πœŽπ‘¦π·π‘œ2 βˆ’ 𝐷𝑖

2

3π·π‘œ2

π·π‘œ = 𝐷

𝑑 =1

2π·π‘œ βˆ’ 𝐷𝑖

π‘˜ = 𝐷 𝑑

𝑃𝐿𝑐 = 2πœŽπ‘¦ βˆ™π‘˜ βˆ’ 1

π‘˜2

𝑃𝐿𝑐 = 2.31 βˆ™ πœŽπ‘¦ βˆ™π‘˜ βˆ’ 1

π‘˜2

π‘ƒπ‘Œπ‘  = 2πœŽπ‘¦ βˆ™π‘˜ βˆ’ 1

π‘˜2

Yield Collapse

𝑃𝑃 = πœŽπ‘¦π΄

π‘˜βˆ’ 𝐡 βˆ’ 𝐢

Plastic Collapse

𝑃𝑇 = πœŽπ‘¦πΉ

π‘˜βˆ’ 𝐺

Transition Collapse

𝑃𝑇𝐸 =2𝐸

1 βˆ’ 𝑣2βˆ™

1

π‘˜ π‘˜ βˆ’ 1 2

Elastic Collapse

𝑃𝑇 =1

2𝑃𝐸 + π‘ƒπ‘Œ βˆ’

1

4𝑃𝐸 βˆ’ π‘ƒπ‘Œ

2 + π‘ƒπΈπ‘ƒπ‘Œπ»

𝑃𝐸 = 1.08 Γ—2𝐸

1 βˆ’ 𝑣2βˆ™

1

π‘˜ π‘˜ βˆ’ 1 2

π‘ƒπ‘Œ = 2πœŽπ‘¦ βˆ™π‘˜ βˆ’ 1

π‘˜21 +

1.5

π‘˜ βˆ’ 1

𝐻 = 0.071 βˆ™ 𝑒 % + 0.0022 βˆ™ 𝑒 % βˆ’ 0.18 βˆ™πœŽπ‘ŸπœŽπ‘¦

7

8 8

Ultimate Collapse Strength of Scalloped Gun Carriers

𝑃𝑐 = πœ‡ βˆ™ 𝑃𝑇

πœ‡ – Collapse strength reduction factor due to scallops

𝑃𝑇 – Tamano ultimate collapse strength equation

𝝁

𝑃𝑇 𝑃𝑐

Definition

Slick Pipe Recessed Pipe Collapse strength

reduction factor

8

9 9

Reference: Collapse Strength of Perforated Casing

πœ‡0 = 1 βˆ’π‘‘

𝑆

Reference: SPE 51188

𝑑 𝑆 – (1D) spacing fraction of recess

3D representation

d

s

Cross-section view

9

10 10

πœ‡ for Scalloped Gun Carriers

πœ‡1 = 1 βˆ’π‘‘

π‘†βˆ™β„Ž

𝑑

πœ‡2 = 1 βˆ’ π‘“π‘Ÿ

πœ‡3 = 1 βˆ’ π›Όπ‘“π‘Ÿ

π‘“π‘Ÿ – (3D) volume fraction of recess

𝛼 – fitting factor

h

t

d

Cross-section view 3D representation

s π‘‘Γ—β„Ž

𝑆×𝑑 – (2D) area fraction of recess

10

11 11

III. FEA and Test Validation

11

12 12

Modeling Approach Description Nonlinear post-buckling analysis using Riks method based on

arc length scheme in ABAQUS

Material model: isotropic hardening plasticity with bilinear,

power law or measured stress-strain curve

Boundary conditions: external pressure prescribed on the

exterior surface with end connection supported

Collapse Criteria When the collapse pressure is reached, the structure will deform dramatically and lose pressure-bearing

capacity.

Local Yielding

12

13 13

Physical Understanding of Collapse (Post-buckling)

0 0.05 0.1 0.15 0.2 0.25 0.30

0.2

0.4

0.6

0.8

1

1.2

U/D

P/P

ma

x

Collapse

P3

P1

P2

-3 -2 -1 0 1 2 30

0.05

0.1

0.15

0.2

0.25

0.3

x/S

U/D

Collapse

P1

P2

P3

Collapse pressure definition

13

14 14

Example: Collapse Animation of 15SPF 5 FT

Deformation Scale Factor = 1

14

15 15

Test Validation of FEA

Description Test Temp

[Deg F]

D/t Tested Collapse

Pressure

[psi]

FEA

𝑷𝒄𝒐𝒍𝒍𝒂𝒑𝒔𝒆

[psi]

Difference

with Tests [%]

Test 1 368 9.4 32,250 30,660 -4.9%

Test 2 318 10.7 22,500 22,831 +1.5%

Test 3 250 10.7 24,263 23,651 -2.5%

Test 4 250 14.0 18,329 18,633 +1.7%

Test 5 400 11.6 22,745 23,311 +2.4%

Note:

β€’ Detailed geometric, product name and material parameters are confidential.

β€’ Stress/strain data utilized in the FEA analyses is full measured data from a test

15

16 16

Case Study: πœ‡2 Expression

πœ‡2 = 1 βˆ’ π‘“π‘Ÿ = 1 βˆ’ 90 βˆ™π‘‘2

π‘†π·πœƒβˆ™β„Ž

𝑑 π‘“π‘Ÿ = 𝑉𝑠 𝑉𝑒

𝑉𝑒 = 𝑆 Γ—πœ‹

180πœƒπ· Γ— 𝑑

𝑉𝑠 = 2 Γ—1

4πœ‹π‘‘2β„Ž

16

17

Case Study: Parametric Study of 7-in OD, 5-ft Length Carrier

17

D [in] t [in] q [deg] S [in] w [in] d [in]

7

0.5

0.7

1.0

60 4.0 0.2 1.0

D [in] t [in] q [deg] S [in] h [in] d [in]

7 0.7

25.7

36

45

60

90

4.0 0.5 1.0

D [in] t [in] q [deg] S [in] h [in] d [in]

7 0.7 60

4.0

6.0

8.0

12.0

16.0

0.5 1.0

D [in] t [in] q [deg] S [in] h [in] d [in]

7 0.7 60 4.0

0.3

0.4

0.5

0.6

1.0

D [in] t [in] q [deg] S [in] h [in] d [in]

7 0.7 60 4.0 0.5

0.7

1.0

1.3

D [in] t [in]

7

0.5

0.7

1.0

Dimension of slick pipes

Wall Thickness, t

Angular Phasing, q

Longitudinal Spacing, S

Scallop Depth, h

Scallop Diameter, d

πœ‡FEA = 𝑃scallopFEA 𝑃pipe

FEA

Definition of β€œtrue” 𝝁

18 18

Sensitivity Study of Collapse Strength Reduction Factor

πœ‡1 = 1 βˆ’π‘‘

π‘†βˆ™β„Ž

𝑑 πœ‡2 = 1 βˆ’ 90 βˆ™

𝑑2

π‘†π·πœƒβˆ™β„Ž

𝑑

[1] 𝐷 𝑑 vs. πœ‡

πœ‡3 = 1 βˆ’ 3 βˆ™ 90 βˆ™π‘‘2

π‘†π·πœƒβˆ™β„Ž

𝑑

πœ‡FEA = 𝑃scallopFEA 𝑃pipe

FEA

6 7 8 9 10 11 12 13 14 150.5

0.6

0.7

0.8

0.9

1

D/t

Coll

apse

Str

ength

Reduct

ion F

acto

r

FEA

1

2

6 7 8 9 10 11 12 13 14 150.5

0.6

0.7

0.8

0.9

1

D/t

Col

laps

e S

tren

gth

Red

ucti

on F

acto

r

FEA

1

3

Collapse strength reduction factor πœ‡ is linearly proportional to D/t ratio.

18

19 19

Sensitivity Study of Collapse Strength Reduction Factor

πœ‡1 = 1 βˆ’π‘‘

π‘†βˆ™β„Ž

𝑑 πœ‡2 = 1 βˆ’ 90 βˆ™

𝑑2

π‘†π·πœƒβˆ™β„Ž

𝑑

[2] πœƒ vs. πœ‡

πœ‡3 = 1 βˆ’ 3 βˆ™ 90 βˆ™π‘‘2

π‘†π·πœƒβˆ™β„Ž

𝑑

πœ‡FEA = 𝑃scallopFEA 𝑃pipe

FEA

0 30 60 90 120 150 1800.5

0.6

0.7

0.8

0.9

1

q [deg]

Coll

apse

Str

ength

Reduct

ion F

acto

r

FEA

1

2

0 30 60 90 120 150 1800.5

0.6

0.7

0.8

0.9

1

q [deg]

Col

laps

e S

tren

gth

Red

ucti

on F

acto

r

FEA

1

3

Collapse strength reduction factor πœ‡ is inversely proportional to πœƒ.

19

20 20

Sensitivity Study of Collapse Strength Reduction Factor

πœ‡1 = 1 βˆ’π‘‘

π‘†βˆ™β„Ž

𝑑 πœ‡2 = 1 βˆ’ 90 βˆ™

𝑑2

π‘†π·πœƒβˆ™β„Ž

𝑑

3 𝑆 vs. πœ‡

πœ‡3 = 1 βˆ’ 3 βˆ™ 90 βˆ™π‘‘2

π‘†π·πœƒβˆ™β„Ž

𝑑

πœ‡FEA = 𝑃scallopFEA 𝑃pipe

FEA

2 4 6 8 10 12 14 16 18 20 22 240.5

0.6

0.7

0.8

0.9

1

S [in]

Coll

apse

Str

ength

Reduct

ion F

acto

r

FEA

1

2

2 4 6 8 10 12 14 16 18 20 22 240.5

0.6

0.7

0.8

0.9

1

S [in]

Col

laps

e S

tren

gth

Red

ucti

on F

acto

r

FEA

1

3

Collapse strength reduction factor πœ‡ is inversely proportional to S.

20

21 21

Sensitivity Study of Collapse Strength Reduction Factor

πœ‡1 = 1 βˆ’π‘‘

π‘†βˆ™β„Ž

𝑑 πœ‡2 = 1 βˆ’ 90 βˆ™

𝑑2

π‘†π·πœƒβˆ™β„Ž

𝑑

[4] β„Ž vs. πœ‡

πœ‡3 = 1 βˆ’ 3 βˆ™ 90 βˆ™π‘‘2

π‘†π·πœƒβˆ™β„Ž

𝑑

πœ‡FEA = 𝑃scallopFEA 𝑃pipe

FEA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.5

0.6

0.7

0.8

0.9

1

h [in]

Coll

apse

Str

ength

Reduct

ion F

acto

r

FEA

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.5

0.6

0.7

0.8

0.9

1

h [in]

Col

laps

e S

tren

gth

Red

ucti

on F

acto

r

FEA

1

3

Collapse strength reduction factor πœ‡ is β€œlinearly” proportional to h.

21

22 22

Sensitivity Study of Collapse Strength Reduction Factor

πœ‡1 = 1 βˆ’π‘‘

π‘†βˆ™β„Ž

𝑑 πœ‡2 = 1 βˆ’ 90 βˆ™

𝑑2

π‘†π·πœƒβˆ™β„Ž

𝑑

[5] 𝑑 vs. πœ‡

πœ‡3 = 1 βˆ’ 3 βˆ™ 90 βˆ™π‘‘2

π‘†π·πœƒβˆ™β„Ž

𝑑

πœ‡FEA = 𝑃scallopFEA 𝑃pipe

FEA

0 0.3 0.6 0.9 1.2 1.50.5

0.6

0.7

0.8

0.9

1

d [in]

Coll

apse

Str

ength

Reduct

ion F

acto

r

FEA

1

2

0 0.3 0.6 0.9 1.2 1.50.5

0.6

0.7

0.8

0.9

1

d [in]

Col

laps

e S

tren

gth

Red

ucti

on F

acto

r

FEA

1

3

Collapse strength reduction factor πœ‡ is a quadratic function of d.

22

23 23

IV. Conclusions and Future Work

23

24 24

Conclusions and Future Work An analytical collapse strength equation based on Tamano formula was proposed for scalloped

perforating guns.

The proposed equation was thoroughly validated with the aid of FEA in a multivariable parametric

space – an analysis hardly affordable with the use of physical tests.

An FEA method used to validate the proposed equation showed strong agreement with the test

data giving collapse predictions for scalloped tubulars within 5% of the test results.

The method applied to scalloped perforating guns can also be used for any tubulars with

patterned cutouts or recesses, such as prepacked sand screens, perforated or slotted liners, etc.

24

25 25

Questions?

25

Publications

β€’ Zhao, H., Iblings, D., Barykin, A., and Mehdi, M., 2015, Plastic Collapse Behaviors of Tubulars with Recess Patterns,

Proceedings of ASME International Mechanical Engineering Congress & Exposition, IMECE2015-50204, Houston, TX.

β€’ Zhao, H., Iblings, D., Barykin, A., and Mehdi, M., 2016, Plastic Collapse Behaviors of Tubulars with Recess Patterns, ASCE-

ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering , Accepted.

IPS-16-39


Recommended