+ All Categories
Home > Documents > I NASA I. I Mechanics of Composite Materials: Past ...

I NASA I. I Mechanics of Composite Materials: Past ...

Date post: 03-Dec-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
41
I NASA Technical Memorandum 100793 I . I I I Mechanics of Composite Materials: Past, Present, and Future christos c. chamis Lewis Research Center Cleveland, Ohio - (EaSA-TB- lOOn3) lECBABiICS CF CGCOPGSXTP ma- 13744 41 P CSCL 11D EILTEBZALS: PAST, FEESENT ALLC EGTUBE (NASS) Uaclas ~3124 o 3 2 ~ 3 Presented at the I 21st Annual Meeting of the Society for Engineering Science Blacksburg, Virginia, October 15-17, 1984
Transcript

I NASA Technical Memorandum 100793

I . I I

I Mechanics of Composite Materials: Past, Present, and Future

christos c. chamis Lewis Research Center Cleveland, Ohio

-

(EaSA-TB- l O O n 3 ) lECBABiICS CF CGCOPGSXTP m a - 13744 41 P CSCL 11D EILTEBZALS: PAST, FEESENT ALLC EGTUBE (NASS)

Uaclas ~ 3 1 2 4 o 3 2 ~ 3

Presented at the I

21st Annual Meeting of the Society for Engineering Science Blacksburg, Virginia, October 15-17, 1984

MECHANICS OF COMPOSITE MATERIALS: PAST, PRESENT, AND FUTURE

C h r i s t o s C. Chamis N a t i o n a l Ae ronau t i cs and Space A d m i n i s t r a t i o n

Lewis Research Center C leve land, Oh io 44135

ABS TRACT

Composite mechanics d i s c i p l i n e s a r e presented and desc r ibed a t t h e i r

v a r i o u s l e v e l s o f s o p h i s t i c a t i o n and a t t e n d a n t sca les o f a p p l i c a t i o n .

C o r r e l a t i o n w i t h exper imenta l da ta i s used as t h e pr ime d i s c r i m i n a t o r between

a l t e r n a t i v e methods and l e v e l of s o p h i s t i c a t i o n . Ma jor emphasis i s p laced

on: ( 1 ) where composi te mechanics has been; ( 2 ) what i t has accompl ished; ( 3 )

where i t i s headed, based on p resen t research a c t i v i t i e s ; and ( 4 ) a t t h e r i s k

o f be ing presumptuous, where i t shou ld be headed. The d i s c u s s i o n i s developed

u s i n g se lec ted , b u t t y p i c a l , examples o f each composi te mechanics d i s c i p l i n e

i d e n t i f y i n g degree o f success, w i t h r e s p e c t t o c o r r e l a t i o n w i t h exper imenta l

da ta , and problems remain ing . The d i s c u s s i o n i s cen te red about f i b e r / r e s i n

composi tes drawn m a i n l y from t h e a u t h o r ' s research a c t i v i t i e s l e x p e r i e n c e

spanning two decades a t Lewis.

STAR CATEGORY 24

Key words: Fiber-compos t e s ; R e s n -mat r ices ; I n t e r p l y h y b r i d s ; I n t r a p l y

h y b r i d s ; Micromechanics; Macromechanics; Combined-stress f a i l u r e ; Laminate

theo ry ; S i n g u l a r i t y mechanics; L i f e l d u r a b i l i t y ; F r a c t u r e toughness; Damage

t o l e r a n c e ; P rog ress i ve f r a c t u r e ; S t r u c t u r a l a n a l y s i s ; Envi ronmenta l e f f e c t s

INTRODUCTION/BACKGROUND

Composite mechanics has evolved to encompass a wide range of continuum

and discrete mechanics methods.

fiber/matrix composite behavior.

predicted at various inherent scales (corresponding to the fabrication

processes) in the composite from microstructure to structural response. Within

each inherent scale has evolved a specialty composites mechanics discipline

with several levels of sophistication.

These methods are used to study and predict

The composite behavior is studied and/or

The various levels of sophistication that have evolved in each composite

mechanics discipline were influenced by three important factors: (1)

capturing the intrinsic physics; ( 2 ) degree o f local detail desired; and (3)

technical interests of the investigator(s1. Collectively, these three factors

have led to numerous significant contributions at the various scales of

composite behavior.

The objective of this report is to describe/discuss composite mechanics

at its various levels of sophistication and attendant inherent scales of

application with respect to past, present, and future.

such a report is to stimulate thinking which will hopefully lead t o

"revolutionary" research.

(1) composite mechanics inherent scales; ( 2 ) composite mechanics disciplines;

( 3 ) composite mechanics discipline levels of sophistication; ( 4 ) factors

influencing composite mechanics discipline; scale, and level of

sophistication; ( 5 ) discriminators between alternate methods of level of

sophistication; ( 6 ) composite mechanics - where it has been; ( 7 ) composite

mechanics - what it has accomplished; ( 8 ) composite mechanics - where it is

headed; and ( 9 ) composite mechanics - where it should go (a personal view).

The intent of preparing

The description/discussion is organized as follows:

2

Examples are used to supplement and complement the discussion. These

examples are mainly taken from the author and his Lewis collegues' research

over the years.

mechanics during that period. The references sited are NASA reports which are

available in practically all technical libraries. Each of these references

includes relevant references for that subject.

However, they are representative of the evolution of composite

A

C

D

d

E

E

F

.F

G

I

i

K

M

m

N

NQ

R

s SN

SYMBOLS

laminate axial stiffness

global damping matrix; laminate stiffness matrix; stress wave speed

laminate bending stiffness

fiber diameter

elastic properties matrix as defined by subscripts; modulus, as defined

by subscripts

failure strain as defined by subscripts

global force; failure criterion function

hygrothermal property degradation factor

strain energy release rate

i denti ty matri x index

global stiffness matrix; coupling coefficient in failure criterion

global mass matrix; laminate moment as defined by subscripts

moi s ture

laminate in-plane force as defined by subscripts

number of layers in a laminate

ply orientation matrix; impacting sphere radius

strength as defined by subscripts

fatigue strength

3 -

T temperature

t thickness as defined by subscripts

U global displacement

x,y,z global (structural axes) coordinates

1,2 ,3 ply material axes coordinates

a thermal expansion coefficient as defined by subscripts

n 6 inter fiber spacing

& strain as defined by subscripts

EO global reference plane strain

x eigenvalue; resin selection criteria ratio as defined by

X global curvatures as defined by subscripts

V Poisson's ratio as defined by subscripts

P density as defined by subscripts

U stress as defined by subscripts

w circular frequency

Subscripts

C compress i on

C compos i te property

HTM hygrothermornechanical effect

moisture expansion coefficient as defined by subscripts

Q PlY property m moisture, hygrothermal effects

r resin property

S shear

S sphere

T tension, temperature

xyz respective coordinate directions, properties

subscripts

I 4

123 p l y m a t e r i a l axes r e s p e c t i v e p r o p e r t i e s

a T-tens ion or C-compression

I3 T- tens ion or C-compression

M a t r i c e s

[ 1 a r ray , m a t r i x

v e c t o r , column m a t r i x

[ 1-1 m a t r i x i n v e r s e

I: I T m a t r i x t ranspose

COMPOSITE MECHANICS: INHERENT SCALES AND DISCIPLINES

The v a r i o u s composite sca les correspond t o t h e way the composite i s

made. A schematic i l l u s t r a t i n g how a p o l y i m i d e composite b lade i s made i s

shown i n F ig . 1. The sca les may be v i s u a l i z e d as t h e dimension

(homogenizat ion d imension) w i t h i n which t h e heterogeneous l o c a l s t r u c t u r e i s

desc r ibed and i n t e g r a t e d . W i t h i n t h i s sca le , the i n d i v i d u a l c o n s t i t u e n t s a re

homogenized. R e f e r r i n g t o F i g . 1, t h e micromechanics sca le i s t h e f i b e r

spac ing w i t h i n t h e u n i d i r e c t i o n composite ( a f t e r i n s i t u p o l y m e r i z a t i o n ,

F i g . 1 ) . The macromechanics sca le i s t he p l y th i ckness s ince the p l y

m a t e r i a l - a x i s may be r o t a t e d to p r o v i d e t h e d e s i r e d p r o p e r t i e s about the

s t r u c t u r a l axes (b road goods and p l y c u t t i n g , F i g . 1 ) . The lam ina te t h e o r y

sca le i s t he l am ina te th i ckness which i s an i n t e g r a l m u l t i p l e o f p l y

t h i c k n e s s . W i t h i n t h i s sca le t h e heterogeneous laye red s t r u c t u r e (made o f

p l i e s and i n t e r p l y l a y e r s ) i s homogenized i n t o a composite laminate ( s t a c k i n g

o f p l i e s , f i g . 1 ) . The s t r u c t u r a l mechanics sca le i s severa l t i m e s t h e

laminate th i ckness ( f i n i s h e d b lade , F i g . 1 ) . There fore , these a re the f o u r

impor tan t sca les w i t h i n which t h e v a r i o u s composite mechanics d i s c i p l i n e s a re

fo rmu la ted .

5 -

The various composite mechanics disciplines that have evolved to

describelstudy composite behavior may be grouped into those listed in Table 1 .

The respective scales and homogenization dimensions are summarized in

Table 2. The math model sophistication for each discipline, including region

modeled and key assumptions made, are summarized in Table 3. Continuum

mechanics includes theory of elasticity, plasticity as well as related

subjects, for example fatigue and defect growth.

Several of the composite mechanics disciplines have been integrated into

These codes generally simulate the composite behavior at its computer codes.

various scales. How the integration can be implemented in a code is

schematically shown in Fig. 2 .

The left part of Fig. 2 depicts the upward integration (synthesis) o f

constituent material behavior through the successively larger composite scales

and up to the structure.

(decomposition) of the structural behavior through the progressively smaller

composite scales and down to the constituent material space ( P

f (u, T, m)). This figure pictorially represents the major disciplines of

composite mechanics and parallels the fabrication process in Fig. 1. The

combined stress failure criteria, singularity mechanics, and life/durability

disciplines (Table 2) generally need the composite behavior (stresses,

strains, displacements) predicted by this type o f integrated computer code at

The right part depicts the downward traced

=

I the various scales. The results presented and discussed later were obtained

using such a code [ l l .

COMPOSITE MECHANICS: WHERE HAS IT BEEN? WHAT HAS IT ACCOMPLISHED?

A summary of where composite mechanics has been and what has been

accomplished by using it i s presented in Table 4. The summary, expected

presented in qualitative terms. It includes: (1 ) research conducted on

Y , i s

that

6

d i s c i p l i n e ; (2 ) success ach ieved - t o t h e e x t e n t t h a t t h e r e s e a r c h has

suceeded i n p r o v i d i n g t h e fo rma l i sms to unders tand and /o r q u a n t i f y t h e

composi te b e h a v i o r w i t h wh ich the d i s c i p l i n e i s d e a l i n g ; and ( 3 ) a p p l i c a t i o n -

how e x t e n s i v e l y t h e composi tes community i s u s i n g t h a t d i s c i p l i n e .

I t i s worth n o t i n g t h a t those d i s c i p l i n e s wh ich have r e c e i v e d r a t h e r

min ima l amount o f r e s e a r c h a r e used most e x t e n s i v e l y . The reasons a r e : ( 1 )

t h e t h e o r e t i c a l fundamenta ls a r e e a s i l y unders tood - fo l low c l a s s i c a l

mechanics; ( 2 ) t h e a p p l i c a t i o n i s r e l a t i v e l y s t r a i g h t f o r w a r d ; and (3) t h e

p r e d i c t e d r e s u l t s c o r r e l a t e w i t h measured d a t a .

The r e s u l t s to be p resen ted subsequen t l y were s e l e c t e d t o demonst ra te , t o

some e x t e n t , t h e q u a l i t a t i v e e v a l u a t i o n summarized i n Tab le 4 .

Composite Micromechanics

A schematic on which composi te micromechanics can be based i s shown i n

F i g . 3. The concepts d e p i c t e d i n t h i s f i g u r e i n c o n j u n c t i o n w i t h mechanics

p r i n c i p l e s and assuming i n t e g r a t e d average b e h a v i o r l eads t o t h e t y p e o f

micromechanics equa t ions summarized i n F i g . 4 [21. A complete s e t o f p l y

hygrothermomechanical behav io r r e l a t i o n s h i p s i s summarized i n F i g . 5.

Comparisons o f no rma l i zed r e s u l t s p r e d i c t e d by u s i n g t h e equa t ions i n F i g . 4

w i t h measured d a t a a r e shown i n F i g . 6 f o r s e v e r a l i n t r a p l y h y b r i d

composi tes. A s can be seen, t h e comparisons a r e g e n e r a l l y i n good agreement.

A n o t i c e a b l e e x c e p t i o n i s t h e shear modulus ( S M ) . T h i s modulus i s d i f f i c u l t

t o measure a c c u r a t e l y ; t h i s may account f o r apparen t d i s c r e p a n i e s .

Micromechanics equa t ions for p l y u n i a x i a l s t r e n g t h s a r e summarized i n

F i g . 7 [31. Comparisons w i t h measured d a t a a r e shown i n F i g . 8 f o r t h e same

i n t r a p l y h y b r i d s as i n F i g . 6 . The comparisons a r e a l s o i n g e n e r a l l y good

agreement. The d a t a i n F i g s . 6 and 8 a r e from R e f . 4.

P r e d i c t e d r e s u l t s i n c l u d i n g hyg ro the rma l e f f e c t s a r e shown i n F i g . 9 151.

Again, t h e agreement i s v e r y good c o n s i d e r i n g t h e c o m p l e x i t y of t h e composi te

behav io r s i m u l a t e d by t h e r e l a t i v e l y s imp le e q u a t i o n s . C o l l e c t i v e l y , t h e

comparisons shown i n F

p r e d i c t un i d i r e c t i o n a l

I accuracy". Acceptab le

agreement between p r e d

gs . 5, 6 , 8, and 9 demonst ra te t h a t micromechanics

compos i te b e h a v i o r w i t h i n "accep tab le e n g i n e e r i n g

e n g i n e e r i n g accuracy i s used h e r e i n t o mean t h a t t h e

c t e d r e s u l t s and measured d a t a i s cons ide red t o be as

good as can be expec ted based on e n g i n e e r i n g judgement and on c o n s i d e r a t i o n s

o f t h e c o m p l e x i t i e s and u n c e r t a i n t i e s i n v o l v e d .

Composite Macromechanics

The composi te macromechanics d i s c i p l i n e has genera ted t h e equa t ions t o

p r e d i c t o f f - a x i s ( u n i d i r e c t i o n a l composi tes loaded a t an ang le t o t h e f i b e r

d i r e c t i o n ) p r o p e r t i e s when t h e p r o p e r t i e s abou t t h e m a t e r i a l axes a r e known.

These equa t ions a r e summarized i n F i g . 10 i n m a t r i x form 161. The schematic

i n t h i s f i g u r e de f i nes t h e two c o o r d i n a t e axes and t h e r o t a t i o n . R e s u l t s

p r e d i c t e d by these e q u a t i o n s a r e compared w i t h measured d a t a i n F igs . 1 1 and

12 171. A s can be seen, t h e agreement i s v e r y good. What i s more s i g n i f i c a n t

I about these comparisons i s t h a t p r o p e r t i e s about t h e m a t e r i a l axes were

p r e d i c t e d u s i n g t h e micromechanics e q u a t i o n s d e s c r i b e d p r e v i o u s l y .

Combined S t r e s s F a i l u r e C r i t e r i a

An expanded form o f a combined s t r e s s f a i l u r e c r i t e r i o n e q u a t i o n

i n c l u d i n g hygro thermal and c o n s t a n t a m p l i t u d e c y c l i c l o a d e f f e c t s i s shown i n

F i g . 1 3 [ 6 1 . R e s u l t s p r e d i c t e d from t h i s e q u a t i o n a r e compared w i t h measured

I da ta i n F i g . 14 C71. The d a t a i s a t room tempera tu re , d r y monotonic l o a d

c o n d i t i o n s . The agreement i s e x c e l l e n t .

Laminate Theory

A form of laminate theory equations are summarized in Fig. 15 111.

Results predicted by using these equations are compared with measured data in

Table 5 [81 for moduli and Poisson's ratios.

10 percent except for two of the in plane shear moduli. It is well known that

measuring composite shear properties is a rather delicate task. Uncertainties

in measured data are just as much in question for these types of tests as are

some of the assumptions made in deriving laminate theory equations.

The agreement is better than

Laminate strength (stress at fracture) predicted by linear laminate

theory (equations Fig. 15) in combination with combined stress failure

criteria (equations similar to that in Fig. 13) are compared with measured

data in Fig. 16 C81. The data in this figure is for three different laminates

subjected to 'ive different load conditions and tested at hot-wet

environmental conditions. The spread in the predicted results is for two

cases: ( 1 ) f rst ply failure - lower bound and ( 2 ) last ply failure - upper

bound. It is very important to observe that the predicted lower bound (first

ply failure) i s below the lowest measured data for the majority of the cases.

Needless to say, the agreement is well within acceptable engineering accuracy.

Laminate fracture s t r e s s predictions for a composite thin tube subjected

to combined tension and torsion (Fig. 17) are compared in Table 6 191. The

agreement is excellent and what is even more important, the predicted upper

bound is below the measured data. It is accepted

community that linear laminate theory for first-.p

conservative fracture stresses for the laminate.

results shown in Table 6.

within the composites

y-failure tends to pred

This is consistent with

ct

the

9 -

Singularity Mechanics

Singularity mechanics in composites has received and continues to receive

substantial research attention. Singularity mechanics is required in order to

determine stress concentrations in the vicinity of: (1) defects (cracks,

holes, delaminations, ply drops); ( 2 ) free-edge interlaminar planes; (3)

joints; ( 4 ) load applications; and (5) support conditions. The level o f

sophistication for composite singularity mechanics varies from the simple

net-section-area stress, to anisotropic elasticity, to three-dimensional

finite difference or finite element analysis.

The equations for predicting the hoop stress concentration in the

periphery of a circular hole in an anisotropic infinite plate due to in-plane

loads are shown in Fig. 18 [61 . These equations are significant since

measured data show that the stress concentration in crack-like defects is

similar to a circular hole with equivalent diameter (Fig. 19, 161). It may be

concluded, therefore, that laminate defect stress concentrations are readily

estimated within acceptable engineering accuracy, using closed form equations

for equivalent diameter circular holes in infinite anisotropic plates.

Stress singularity fields near free edges, near interlaminar

delaminations, and near transply cracks are frequently evaluated using

appropriate three-dimensioal finite element analyses. Representative results

obtained from these analyses are shown in Fig. 20 1101 for free-edge and in

Fig. 21 1 1 1 1 for interlaminar delamination. The corresponding local failure

modes induced by these stress fields, cumulative damage, and subsequent

progressive fracture will be discussed later.

Life/Durabi 1 i ty

Life/durability is generally used to describe how long a composite

structure with inadvertent defects will survive in its monotonic or cyclic

10

load service environment. Fracture toughness and damage tolerance are

equivalently used to imply lifeldurability.

seek to answer one or more of the following important questions: (1) what is

the number of load cycles which will induce structural fracture in a composite

without and/or with assumed defects? ( 2 ) what is the critical size that an

assumed defect will grow to for imminent structural fracture under applied

service loading conditions? and (3) what is the defect size that a loaded

composite structure can safely withstand? The first two questions are

associated with the life/durability under cyclic loads; while the third

question is associated with a suddenly induced damage and it is traditionally

considered a composite material characterstic. The answers to all three

questions are clearly structural, since they require simultaneous

consideration of composite material, laminate configuration structure, and

loading conditions.

Both of these equivalent terms

The results summarized in Fig. 22 [121 are an answer to the first

question.

simplified composite mechanics model in conjunction with empirical data C121.

This procedure can be used to quantify laminate configuration and/or loading

environment effects on laminate lifeldurability. The answer to the second

question requires evaluation of local damage occurrence, cumulative damage,

and progressive fracture. This evaluation is, by necessity, performed by

developing and using sophisticated and integrated computer codes such as

CODSTRAN (EmPosite Durability S u c t u r a l flalysis, [131>. Results obtained

using CODSTRAN are compared with measured data in Fig. 23 [131. A s can be

observed, the agreement is well within acceptable engineering accuracy. The

These were obtained using a procedure which consists of a

1 1

l o c a l f a i l u r e modes c o n t r i b u t i n g t o damage growth a r e summarized i n Table 7

C141. C l e a r l y CODSTRAN can be used t o c o m p u t a t i o n a l l y s i m u l a t e t h e l o c a l

damage occurrence, c u m u l a t i v e damage, and p r o g r e s s i v e f r a c t u r e .

The answer t o t h e t h i r d q u e s t i o n i s o b t a i n e d by e v a l u a t i n g what i s

d e f i n e d h e r e i n as "Composite S t r u c t u r e F r a c t u r e Toughness." Composite

s t r u c t u r e f r a c t u r e toughness i s p r e d i c t e d by u s i n g composi te mechanics i n

c o n j u n c t i o n w i t h f r a c t u r e mechanics concepts and w i t h f i n i t e element

a n a l y s i s . The genera l procedure i s summarized i n F i g . 24 C111.

R e p r e s e n t a t i v e r e s u l t s o b t a i n e d a r e shown i n F i g . 25 1111 where ranges o f

measured d a t a a r e a l s o i n c l u d e d . The impor tance o f composi te mechanics i n

answer ing t h e t h i r d q u e s t i o n i s f a r r e a c h i n g . I t makes i t p o s s i b l e t o

q u a n t i f y composi te damage t o l e r a n c e i n terms o f two e a s i l y i d e n t i f i a b l e

f r a c t u r e toughness parameters: s t r a i n energy r e l e a s e r a t e and d e f e c t s i z e

( c r a c k l e n g t h ) .

I t i s w o r t h n o t i n g t h a t t h e use o f composi te mechanics i n c o n j u n c t i o n

w i t h f i n i t e e lement a n a l y s i s i n o r d e r t o c o m p u t a t i o n a l l y s i m u l a t e composi te

l i f e l d u r a b i l i t y ( f r a c t u r e - toughness/damage-tolerance) i s a r e c e n t and

e v o l v i n g development. The t r a d i t i o n a l p r a c t i c e t o e v a l u a t e these i s t h e use

o f a p p r o p r i a t e exper imen ts .

S t r u c t u r a l A n a l y s i s

The gove rn ing equa t ions f o r composi te s t r u c t u r a l a n a l y s i s a r e summarized

i n F i g . 26 i n m a t r i x f o rm. These equa t ions a r e embedded i n genera l purpose

s t r u c t u r a l a n a l y s i s codes. Composite mechanics a r e used t o genera te a l l t he

m a t e r i a l p r o p e r t i e s r e q u i r e d i n these e q u a t i o n s . Represen ta t i ve r e s u l t s

o b t a i n e d fo r t h e n a t u r a l f r e q u e n c i e s o f a h y b r i d composi te f a n b l a d e ( F i g . 26)

a r e summarized and compared w i t h measured d a t a i n Table 8 1151 and i n F i g . 27

C151 fo r r e s u l t s o b t a i n e d f o r impact response. The agreement i s v e r y good.

12

The fan b lade was s e l e c t e d t o i l l u s t r a t e t h e e f f e c t i v e n e s s o f composite

mechanics i n d e s c r i b i n g composi te behav io r a t a l l sca le l e v e l s and i n c l u d i n g

i n t e r p l y and i n t r a p l y h y b r i d s as w e l l as a m e t a l l i c l e a d i n g edge dev i ce . The

composite mechanics used, i n t h i s case, i s i n t e g r a t e d i n t o a computer code

COBSTRAN ( B m p o s i t e g lade m u c t u r a l AJalysis, 1161). A un ique f e a t u r e i n

t h i s code i s i t s r e s i d e n t c o n s t i t u e n t m a t e r i a l s databank where the p r o p e r t i e s

o f a l a r g e number o f f i b e r s and m a t r i c e s a re a v a i l a b l e .

composite micromechanics and lam ina te t h e o r y make i t p o s s i b l e t o s i m u l a t e a l l

t ypes o f composites and even combina t ions w i t h me ta l s . I t i s t he good

agreement w i t h measured d a t a (Tab le 8 and F i g . 27) t h a t has l e d t o t h e

ex tens i ve use o f composi te s t r u c t u r a l a n a l y s i s no ted i n Table 4.

Th is databank,

The p r e d i c t i o n o f l i f e l d u r a b i l i t y o f composite s t r u c t u r e s g e n e r a l l y

r e q u i r e s e x t e n s i v e use o f composi te s t r u c t u r a l a n a l y s i s . The s t r u c t u r a l

a n a l y s i s i s used to p r e d i c t t h e g l o b a l s t r u c t u r a l response (d isp lacements ,

f requencies, b u c k l i n g , e t c . ) w h i l e s i n g u l a r i t y mechanics and methods desc r ibed

i n t h e l a s t s e c t i o n a r e used t o p r e d i c t l o c a l behav io r i n c l u d i n g dominant

f a i l u r e modes.

COMPOSITE MECHANICS: WHERE I S I T HEADED? WHERE SHOULD I T GO?

Where composi te mechanics i s headed (based on r e c e n t research emphasis)

and where i t shou ld go ( a u t h o r ' s persona l v i e w ) a re summarized i n Table 9 f o r

the seven d i f f e r e n t d i s c i p l i n e s . A s can be seen i n Table 9, the t rends f o r

where i t s go ing are : ( 1 ) t r a d i t i o n a l , c l a s s i c a l , or conven t iona l ; ( 2 )

m o s t l y ne l i g i b l e a n t i c i p a t e d research e f f o r t ; and ( 3 ) major emphasis on user

f a m i l i a r i t y w i t h a v a i l a b l e genera l purpose f i n i t e element codes. S i n g u l a r i t y

mechanics, and l i f e l d u r a b i l i t y however, w i l l con t i nue t o r e c e i v e cons ide rab le

c l a s s i c a l and/or semiconvent ional a t t e n t i o n .

13 -

On the other hand, the author sees need for balanced research in all the

disciplines. This research should focus on developing methods and criteria

for: ( 1 ) fracture initiation and propagation at all scale levels; ( 2 )

combined mode fracture and mode tracking; (3) in situ ply strengths and

failure mode branching; ( 4 ) three-dimensional behavior with detailed account

of local heterogeneities and nonlinearities; ( 5 ) environmental

(moisture/temperature) effects; (6) composite mechanics, specialty finite

elements and substructuring techniques for all scale levels; and ( 7 )

dedicated, self-adaptive, expert-system-driven algorithms for enhanced

computational efficiency while retaining acceptable engineering accuracy in

the predicted results. The development of these methods will more than likely

require innovative, creative, and even revolutionary thinking in order to

introduce the new variables that define/describe the local physics. Two

illustrative examples in this direction are: the effect of interlaminar

delamination on natural frequencies (Fig. 28) and a rectangular array with an

off-center fiber for formulating micromechanics (Fig. 29).

CONCLUSIONS

A personal, but representative, assessment of composite mechanics has

been presented. The assessment is presented by grouping composite mechanics

into seven disciplines: (1) micromechanics; ( 2 ) macromechanics; (3) combined

stress failure; ( 4 ) laminate theory; ( 5 ) singularity mechanics; ( 6 )

lifejdurability; and ( 7 ) structural analysis. The scale levels associated

with each discipline and the various levels of sophistication of composite

math models in each discipline are described. What has been accomplished in

each discipline, emphasis on current research, and future trends are

summarized. The future trends are mainly conventional. Greater progress will

be achieved by pursuing unconventional and innovative methods which are

14

dedicated, adaptive, and expert-system-driven. Composite mechanics spans many

disciplines with each playing a very significant role in its future growth and

success. Successful contributions, which are timely and cost-effective, will

require the col lective/coord

di sc i pl i nes .

C11 Murthy, P.L.N. and Cham

nated research efforts of experts from these

REFERENCES

s , C.C., "ICAN: Integrated Composites Analyzer,"

NASA Report TM-83700, National Aeronautics and Space Administration,

Washington, DC, 1984.

C21 Chamis, C.C., "Simplified Composite Micromechanics Equations for Hygral,

Thermal and Mechanical Properties," SAMPE Quarterly, Vol. 15, Apr. 1984,

pp. 14-23. (NASA Report TM-83320, National Aeronautics and Space

Administration, Washington, DC, 1983.)

C31 Chamis, C.C., "Simplified Composite Micromechanics Equations for Strength,

Fracture Toughness, and Environmental Effects," NASA Report TM-83696,

National Aeronautics and Space Administration, Washington, DC, 1984.

[41 Chamis, C.C., Lark, R.F., and Sinclair, J.H., "Mechanical Property

Characterization o f Intraply Hybrid Composites," NASA Report TM-79306,

National Aeronautics and Space Administration, Washington, DC,. 1979.

C51 Chamis, C.C. and Sinclair, J.H., "DurabilitylLife of Fiber Composites in

Hygrothermomechanical Environments," in Composite Materials: Testinq and

Design, ASTM, Philadelphia, PA, 1982, pp. 498-512. (NASA Report TM-82749,

National Aeronautics and Space Administration, Washington, DC, 1981.)

[ 6 1 Chamis, C.C. and Smith, G.T., "Resin Selection Criteria for Tough

Composite Structures," AIAA Journal, Vol. 23, June 1985, pp. 902-911.

(NASA Report TM-83449, National Aeronautics and Space Administration,

Washington, DC, 1983.)

15 *

[ 7 1 Chamis, C.C. and S i n c l a i r , J.H., "Mechanical Behav io r and F r a c t u r e

C h a r a c t e r i s t i c s of O f f - A x i s F i b e r Composites: 11-Theory and Comparisons,"

NASA Repor t TP-1082, N a t i o n a l Ae ronau t i cs and Space A d m i n i s t r a t i o n ,

Washington, DC, 1978.

[ 8 1 Chamis, C.C., L a r k R.F., and S i n c l a i r , J.H., "An I n t e g r a t e d Theory for

P r e d i c t i n g t h e Hygrothermomechanical Response o f Advanced Composite

S t r u c t u r a l Components," NASA Repor t TM-73812, N a t i o n a l Ae ronau t i cs and

Space A d m i n i s t r a t i o n , Washington, DC, 1977.

[ 9 1 Chamis, C.C. and S u l l i v a n , T . M . , "Combined-Load S t r e s s - S t r a i n

R e l a t i o n s h i p s for Advanced F i b e r Composites," NASA Repor t TM-X-71825,

N a t i o n a l Ae ronau t i cs and Space A d m i n i s t r a t i o n , Washington, DC, 1976.

[ l o ] Mur thy , P.L.N. and Chamis, C.C., "A S tudy o f I n t e r p l y Layer E f f e c t s on

t h e Free Edge S t r e s s F i e l d of A n g l e p l i e d Laminates," Computers and

S t r u c t u r e s , Vol. 20, No. 1-3, 1985, pp. 431-441. (NASA Repor t TM-86924,

N a t i o n a l A e r o n a u t i c s and Space A d m i n i s t r a t i o n , Washington, DC, 1984.)

1111 Mur thy , P.L.N. and Chamis, C.C. , " I n t e r l a m i n a r F r a c t u r e Toughness:

Three-Dimensional F in i t e -E lemen t Mode l i ng f o r End-Notch and Mixed Mode

F lexu re , " NASA Repor t TM-87138, N a t i o n a l Ae ronau t i cs and Space

A d m i n i s t r a t i o n , Washington, DC, 1985.

[121 Chamis, C.C. and G i n t y , C . A . , "Composite D u r a b i l i t y and Damage

To lerance: S i m p l i f i e d P r e d i c t i v e Methods," NASA Repor t TM-100179,

N a t i o n a l Ae ronau t i cs and Space A d m i n i s t r a t i o n , Washington, DC, 1987.

[131 Chamis, C.C. and Smith, G . T . , "CODSTRAN: Composite D u r a b i l i t y S t r u c t u r a l

A n a l y s i s , " NASA Repor t TM-79070, N a t i o n a l Ae ronau t i cs and Space

I A d m i n i s t r a t i o n , Washington, DC, 1978. I

1 6

1141 I r v i n e , T.B. and Gin ty , C.A., "Progress ive F r a c t u r e o f F i b e r Composites,"

Journal o f Composite M a t e r i a l s , Vol. 20, Mar. 1986, pp. 166-184. (NASA

Report TM-83701, Nat iona l Aeronaut ics and Space A d m i n i s t r a t i o n ,

Washington, DC, 1983.)

C151 Chamis, C.C. and S i n c l a i r , J.H., "Ana lys is o f High V e l o c i t y Impact on

H y b r i d Composite Fan Blades," NASA Report TM-79133, i n S t r u c t u r e s ,

S t r u c t u r a l Dynamics, and M a t e r i a l s , A I A A , New York, 1979, pp. 249-257.

(Nat iona l Aeronaut ics and Space A d m i n i s t r a t i o n , Washington, DC, 1979.)

[161 Chamis, C.C. and Lynch, J.E., "High-Tip-Speed F i b e r Composite Fan Blades:

V i b r a t i o n and S t r e n g t h Ana lys is , : NASA Report TM-X-71589, N a t i o n a l

Aeronaut ics and Space A d m i n i s t r a t i o n , Washington, DC, 1974.

TABLE 1 . - COMPOSITE MECHANICS DESCIPLINES

Micromechanics - I n t r a p l y h e t e r o g e n e i t y

Macromechanics - P l y homogenizat ion

Combined s t r e s s f a i l u r e c r i t e r i a - F i v e s t r e n g t h s

Laminate t h e o r y - Layered a n i s o t r o p i c medium

S i n g u l a r i t y mechanics - S t r e s s c o n c e n t r a t i o n s

L i f e / d u r a b i l i t y - Cumulat ive damage and p ropaga t ion

S t r u c t u r a l mechanics - Composite or l am ina te homogenizat ion

TABLE 2. - COMPOSITE MECHANICS SCALE LEVELS

D i s c i p l i n e s

Micromechanics

Macromechanics

Combined s t r e s s f a i l u r e c r i t e r i a

Laminate t h e o r y

S i n g u l a r i t y mechanics

L i f e l d u r a b i l i t y

S t r u c t u r a l mechanics

Scale

F i b e r d iamete r

Ply t h i c k n e s s

Ply t h i c k n e s s

Laminate t h i c k n e s s i n t e r p l y l a y e r t h i c k n e s s

I n f i n i t e s i mal

Ply t h i c k n e s s

Laminate t h i c k n e s s f i n i t e element s i z e

Homogenizat ion r a t i o , f i b e r d iameters ( F . D . )

1.2 F .D . ( F V R = 0.6)

15 F.D. (excep t boronlepoxy)

1 5 F.D. (excep t boronlepoxy)

M u l t i p l e s o f p l y t h i c k n e s s 15 F.D. and g r e a t e r

< < F i b e r d iameter

15 F .D . ( excep t boron/epoxy)

Many t imes t h e l a m i n a t e t h i c k n e s s

TABLE 3. - COMPOSITE MECHANICS MATH MODEL S O P H I S T I C A T I O N ~~ ~

D i s c i p l i n e

~

Micromechanics

Macromechani cs

Combined s t r e s s f a i 1 u r e

Laminate t h e o r y

S i n g u l a r i t y mechanics

L i f e l d u r a b i 1 i t y

S t r u c t u r a l mec han i c s

Region modeled

S i n g l e f i b e r a r r a y

Cont inuum

Cont inuum

L i n e th rough t h i c k n e s s

Cont inuum

Con t i nuum

Continuum

Key assumpt ion(s)

No i n t e r f a c e o r t h o t r o p i c cons t i tuen t s

Homogeneous o r t h o t r o p i c

Homogeneous o r t h o t r o p

Ani s o t r o p i c no i n t e r p

A n i s o t r o p i c

C

1 aye rs y l a y e r

O r t h o t r o p i c

A n i s o t r o p i c

Math model

Mechanics o f m a t e r i a l s cont inuum mechanics f i n i t e element

Mechanics o f m a t e r i a l s

Cont inuum mechanics f i v e i n p l a n e s t r e n g t h

f i n i t e element

Cont inuum mechanics f i n i t e element f i n i t e d i f f e r e n c e

" F r a c t u r e " mechanics

S t r u c t u r a l mechanics

Mechanics o f m a t e r i a l s

f i n i t e element

I 18

TABLE 4. - COMPOSITE MECHANICS

[Where has i t been? What has i t accomp l i shed? l

D i s c i p l i n e

Compos i t e

Compos i t e

Combined s t r e s s

Laminate t h e o r y

S i ngu l a r i t y mechanics

L i f e l d u r a b i 1 i t y

S t r u c t u r a l

m i cromechani cs

macromechanics

f a i 1 u r e

mechanics

Research conducted

Cons ide rab le

N e g l i g i b l e

Min imal

Cons ide rab le

S u b s t a n t i a l

S u b s t a n t i a l

Min imal

Success (understood/ q u a n t i f i e d )

~

P a r t i a1

Excep t iona l

N o t i c e a b l e

Acceptable

Promi s i ng

Promi s i ng

H i g h l y accep tab le

A p p l i c a t i o n

L i m i t e d

Ex tens i ve

Ex tens i ve

E x t e n s i v e

L i m i t e d

L i m i t e d

Ex tens i ve

TABLE 5 . - COMPARISON OF MEASURED AND PREDICTED ELASTIC PROPERTIES OF ANGLEPLIED LAMINATES

[AS/3531-5 w i t h 1.8 p e r c e n t m o i s t u r e and room tempera tu re . ]

Laminate

[0 /*452/0/+45Is

Measured

P r e d i c t e d

Percen t d i f f e r e n c e

1 0 2 / ~ 4 5 / 0 2 / 9 0 / 0 3 5

Measured

P r e d i c t e d

Percen t d i f f e r e n c e

[ ( 0 / * 4 5 / 9 0 ) 2 I s

Measured

P r e d i c t e d

Percen t d i f f e r e n c e

L o n g i t u d i n a l modulus, M S I

6.3

6.3

0

13.0

13.0

0

6.68

7.20

+7.8

Transverse modulus,

MS I

3.08

3.2

+3.9

4.2

4.5

+7.1

6.62

7.20

+8.7

Shear Modulus,

MS I

3.21

3.80

+18.4

1 . 5

1.6

+6.7

2.34

2.70

15.4

Ma jo r Poi sson ' s

R a t i o

0.803

.781

-2.70

0.325

.318

-2.2

0.350

f333

-4.8

19

TABLE 6 . - COMPARISON OF FRACTURE STRESSES

[The specimen was loaded t o f r a c t u r e i n combined a x i a l compression and t o r s i o n a l

l o a d i n g c o n d i t i o n . ]

S t r e s s type S t r e s s va lue , KSI

A x i a l

To rs i onal

Measured P r e d i c t e d

Lower bound Upper bound

20.2 17 .9 19.4

2 3 . 1 2 0 . 6 2 2 . 3

Notch type - 90

P l y o r i e n t a t i o n ; [&IS; e i n degrees

aLT = L o n g i t u d i n a l t e n s i o n . TT = Transverse t e n s i o n . S = I n t r a p l y shear.

Numbers denote f a i l u r e modes as f o l l o w s : ( 1 ) i n i t i a l f r a c t u r e due t o i n t r a p l y shear i n the

no tch t i p zone (2 ) minimal i n t r a p l y shear ing d u r i n g f r a c t u r e ( 3 ) some i n t r a p l y shear o c c u r r i n g near c o n s t r a i n t s

( g r i p s ) (4 ) de lamina t ions occur i n no tch t i p zone p r i o r t o any i n t r a p l y damage

I = I n t e r p l y de lamina t ion .

Unnotched -- s o l i d

Notched -- through s l i t

Notched -- through ho le

20

0 3 5

LT LT LT -- s3 s 3

s1 51 s1 LT LT LT

s1 s1 s1 LT LT LT

Mode Measured

1 62

2 190

3 288

4 42 5

5 6 6 7

TABLE 9. - COMPOSITE MECHANICS

[Where is it headed? Where should it go?]

Predicted Predicted/ measured

6 4 1.03

186 .98

3 0 3 1.05

4 5 4 1.01

6 5 3 .98

___

Di scipl i ne

Compos i te mi cromechani cs

Compos i te macromechanics

Combined stress fai 1 ure

Laminate theory

Singularity mechanics

Life/durabi 1 i ty

Structural mechanics

Effort/approach

Negligible

Negl i gi b 1 e

Negl igi ble

Nonl i near

(traditional)

(classical)

(classical )

(conventional)

Extensive homogeneous anisotropy (classical)

Progressive fracture (semi conventional)

Fami 1 iari ty with available GPFEC (user mode) limited FE development

Should go (personal view)

Fracture initiation and propagation

Combined mode fracture and mode tracking

In situ ply strengths and failure mode branching

Increase computational efficiency and three- dimensional behavior

Local heterogeneity and nonl ineari ty

Hygral, thermal, mechani- cal, and temporal aspects properly and tractably integrated

Development of composite mechanics specialty finite elements and substructuring methods

21

TAKEUP DRUM MONOMER SOLUTION

BROAD GOODS

I N SITU POLYMERIZATION

PL IES D I E

FIGURE 1. - PMR POLYIMIDE PROCESS.

FROM GLOBAL

ANALYSIS

COMPONENT TO GLOBAL STRUCTURAL STRUCTURAL

ANALYS I S /--- f ,I--- \

\ / 0 \

\ I' /'

/ I LAM1 NATE / \ I

I I \ \ \ \

\ \

LAMINATE \ / !-/z-!p I t THEORY

THEORY

LAMINATE \ / !-/z-!p I t THEORY

PLY

COMPOS I TE MICROMEC"""'rC THEORY - k -

IICS

/

I I

\ /

~ O P - D O W N CONSTITUENTS , ' TRACED

MATERIALS PROPERTIES P ( , T, M)

/ OR \

UPWARD INTEGRATED

"SYNTHESIS" I -------- "DECOMPOSITION" OR 'I.

BLADE

FIGURE 2. - ICAN: INTEGRATED COMPOSITES ANALYZER.

22

ONE END ARRAY

7 1

MATRIX ,! FILAMENT

REPEATED ELEMENT

FIGURE 3. - SCHEMATIC OF PLY, INTERNAL GEOMETRIC RELATIONSHIPS.

LONGITUDINAL NODULUS :

TRANSVERSE NODULUS:

SHEAR NODULUS:

SHEAR NODULUS :

POISSON'S RATIO:

POISSON'S RATIO:

31

L~~~~~ ( f ) L PLY ( a ,

FIGURE 4. - COMPOSITE NICROMECHANICS. MECHANICAL PROPERTIES.

23

EXPANDED FORM:

t

/

1

FIGURE 5. - PLY HYGROTHERMOMECHANICAL RELATIONSHIPS. LINEAR BEHAVIOR.

24

1

$ 1 I AS/E//KEV/E 3

0 sri 2 -

0 SM ,r LM ,r TM

PR 0 PR @ TM 8 LM

AS/E//S-G/E

I HMS/E//S-G/E

I n TM

HMS/E//KEV/E

I 1 I 0 10 20 30

SECONDARY COMPOSITE VOLUME. PERCENT

FIGURE 6. - ELASTIC PROPERTY TRANSLATION EFFICIENCY SUMMARY OF INTRAPLY HYBRIDS.

25

1. LONGITUDINAL TENSION:

2, LONGITUDINAL COMPRESSION :

FIBER COMPRESSION:

DELAMINATION/SHEAR:

MICROBUCKLING:

3. TRANSVERSE TENSION:

4. TRANSVERSE COMPRESSION:

5. INTRALAMI NAR SHEAR :

6. FOR VOIDS:

sj 11T " kf 'fl

Gm % l l C "

L T LONGITUDINAL TENSION TT TRANSVERSE TENSION IS I NTRALAMINAR SHEAR LF LONGITUDINAL FLEXURE TF TRANSVERSE FLEXURE L I LONGITUDINAL IMPACT T I TRANSVERSE IMPACT

2.0 I

I -my

I -

c 11 - [ 4k,N - k f h ] 1 12 I s, sm

VOID -'

FIGURE 7. - COMPOSITE MICROMECHANICS. UNIAXIAL STRENGTHS - IN-PLANE.

L AS/E//S - G/

I 0 10 20 30

SECONDARY COMPOSITE VOLUME, PERCENT

FIGURE 8. - STRENGTH TRANSLATION EFFICIENCY SUMMARY OF INTRAPLY HYBRIDS.

0 B/E 0 f lOD-II/E A HMS/E V AS/E

SOLID POINTS USED TO DETERMINE

0'. 90'. IS; 70, 250, 350 OF. DRY O', 90'. IS; 70, 250, 3 5 0 OF. DRY 0'. 90'. IS; 70, 250. 350 OF. DRY 90'. k45'; 73, 218 OF. D 8 1. 1% M

REFERENCE PROPERTIES

0 10 20 30 40 PREDICTED STRENGTH, KSI

FIGURE 9. - HYGROTHERMAL EFFECTS ON STRENGTH PREDICTED ACCURATELY.

26

COMP HGTM REL.

PLY HGTM REL.

STRAIN COMPAT .

STRESS EQUIL.

x. s

COMPARING COEFFICIENTS I N FIRST AND LAST EQUATIONS:

LOAD ANGLE. e7,

,r LOAD

0 MEASURED (CENTER GAGE) PREDICTED -

0 30 60 90

40x106 FIBER DIRECTION'

u) L 30 X X V

20

0

c 0 MEASURED (CENTER GAGE)

PREDICTED - G) I

m " m 30 60 90

LOAD ANGLE, e. DEG

FIGURE 11. - MODULUS CORPARISONS.

LOAD ANGLE, e -,

\

U

0 MEASURED (CENTER GAGE) PREDICTED - V

-1 I I 0 30 60 90

LOAD ANGLE, e, DEG

FIGURE 12. - COUPLING COEFFICIENT COM- PAR I SONS.

27

x. s

2

D

1

a, = TENSION OR COMPRESSION

FIGURE 13. - PLY COMBINED STRESS FAILURE CRITERION WITH HYGROTHERMOMECHANICAL EFFECTS.

LOAD 1 0 0 ~ 1 0 ~ ANGLE. e-,>

I ,r LOAD F I BER DIRECTION

v) Y

* 60 X X V

v,

0 30 60 90 LOAD ANGLE. DEG

FIGURE 14. - FRACTURE STRESS (STRENGTH) COMPARISONS.

28

FIGURE 15. - LAMINATE THEORY EQUATIONS FOR HYGROTHERNONECHANICAL (HGTM) LAMINATE.

29

150

125

100

75

5 0

2 5

0 1 2

MEASURED DATA (FROM AFFDL-TR-76-142, V. 1.1) 0 PREDICTED DATA (REF. 8) I

2 3 , , ’

1 C0/*452/0*451~

2

3

r PREDICTED

2 3 1 2 3 U L I I I I I I

TRANSVERSE SHEAR LONGITUDINAL LONGITUDINAL TRANSVERSE TENS I ON COMPRESSION TENS I ON COMPRESS I ON

FIGURE 16. - FRACTURE STRESS OF WET COMPOSITES IS ACCURATELY PREDICTED BY LERC INTEGRATED THEORY FOR HYDROTHERMOMECHANICAL RESPONSE.

I 30

AXIAL LOAD 4

*45'. 4-NIL BORON/ERLA- 4617. 0 .5 FVR

COORDI NAl AXIS -.

A - ROSETTE STRAIN GAGES-. ..

,- PRESSURE > , 2 I N .

10

\

I N .

\

FIGURE 17. - SCHEMATIC OF COMPOSITE TUBE SPECI- HEN SHOW I NG LOADS AND I NSTRUHENTATION.

31

2 2 ‘COO I & R, [ (R, + RDI) sin 501 cos e - I Qcxx Ecxx .. .l

rl \ y \ I

NORMAL STRESS

+ 1 (1 t R,) cos 2 8 + Ro - 11 sin 250 1 - - - c

SHEAR STRESS

FIGURE 18. - STRESS CONCENTRATIONS DEPEND SIGNIFICANTLY ON COMPOSITE MODULI.

FULL-PENETRATION HOLE

0 PRELOAD AT ROOM TEMPERATURE

0 ROOM TEMPERATURE PRELOAD AT 300 OF

40 R V 300 OF

a I- u

20

10 118 3/8 518 0 DEFECT SIZE, I N .

FIGURE 19. - DEFECTED LAMINATE STATIC FRACTURE DATA.

*OOo8 I

,006

,003

8

'N

X X

b 0 N

W

t .0004

-

-

.0004 -

8 X

x o c -.0004 - t - ,0004

- .0008 1

8 X X

X X

e D

8 X X

X e 0"

.6 mgl

.3 c LCLASSICAL 1

LAM I NATE \ THEORY \

\ I I

I I

0 \ .032

,024

,016

.008

0

- .008 0 .2 .4 . 6 .8 1 .o

\ -32 \ 'L CLASSICAL \

INTERPLY LAYER \ CENTER OF PLY I

I

- ---- c I .08

0 I

- .003

- ,006

8 X X

P > >

D

0 .2 4 . 6 .8 1 .o FREE-EDGE DISTANCE. X I IN.

FIGURE 20. - 3-D PLY AND INTERPLY STRESS FIELDS AS THE FREE EDGE IS APPROACHED (+20°PLY. Ck201 AS/E LAM I NATE 1 .

33

15

9 LCRACK T I P

I

v)

* 3 v) v)

2 -3 5

CYCLIC LOADING CONDITION

Ucxx = 30 K S I

T = 250 OF

T = -300 OF

-9 t

CYCLES TO CRACK I N I T I A T I O N

c*45/0/90 1 [ 9O2/fl 01s [+30/03 Is

36 500 4 220 -100 M I L L I O N

76 600 234 000 987 000 180 275 000 -100 M I L L I O N

0 -05 -10 .I5 -20 .25 DISTANCE FROM CRACK-TIP. I N .

FIGURE 21. - STRESS F I E L D I N INTERPLY LAYER

-15

NEAR CRACK T I P .

t I t t STEADY STATE CYCLIC CYCLIC CYCLIC

STRESS (L) STRESS (L) TEMPERATURE ( T ) MOISTURE (M) CYCLIC LOADING CONDITIONS

F IGURE 22. - COMPUTATINAL S IMULATION OF HYGROTHERMOMECHANICAL FATIGUE I N F I B E R COMPOSITES.

34

(a ) NO LOAD. (b) LOAD EQUAL APPROXIMATELY ONE-HALF FRACTURE LOAD.

C-SCAN RECORD

G

0 SELECT CRITICAL "G" AND CRITICAL "a"

C-SCAN RECORD CODSTRAN

INTERCHANGE

__ _ _ _ _ _

I

12 000

10 000

8 000 m d

d 6 000 4 0 2

4 000

2 000

0

2 a = 0.625

NOTE: CRACK OPENING DIS- PLACEMENT BETWEEN A AND B

I ,001 .002 .003 ,004 .005

CRACK OPENING DISPLACEMENT, I N .

FIGURE 23. - CODSTRAN PREDICTED RESULTS COMPARED WITH EXP DATA.

0 DETERMINE REQUISITE PROPERITIES AT DESIRED CONDITIONS USING COMPOSITE MICROMECHANICS

0 RUN 3-D F I N I T E ANALYSIS ON ENF ("F) FOR AN ARBITRARY LOAD

0 SCALE LOAD TO RATCH INTERLAMINAR SHEAR STRESS AT ELEMENT NEXT TO CRACK-TIP

0 WITH SCALED LOAD EXTEND CRACK AND PLOT STRAIN ENERGY RELEASE (GI VERSUS CRACK LENGTH (a )

EXTENDED CRACK LENGTH. a

0 METHOD HAS VERSATILITY/GENERALITY

FIGURE 24 . - GENERAL PROCEDURE FOR PREDICTING COMPOSITE INTERLAMINAR FRACTURE TOUGHNESS USING THE END-NOTCH-FLEXURE (ENF) OR MIXED- MODE-FLEXURE (NNF) METHOD.

35

5

4

3

2

1

0

-1 . a 1

17.0

r MIDSPAN DEFLECTION ( W )

, .

MODE / - GLOBAL MIXED ( I & 11) ----- LOCAL MIXED ( I & 11) --- LOCAL I

A 0' -----/@

i /i i

MODE / / - GLOBAL MIXED ( I & 11) ----- LOCAL MIXED ( I & 11) --- LOCAL I

A 0' -----/@ -- LOCAL 1 1

I I 1.2 1.3 1 1.1

EXTENDING CRACK-TIP DISTANCE. I N .

FIGURE 25. - MIXED-MODE-FLEXURE ENERGY RELEASE RATE AND COMPONENTS (ASIE).

36

LOCAL TRANSVERSE q- BORON TORSIONAL STRENGTHENING P L I E S 7 / / I STIFFENING PLIES

/ I / 1 ' ; , .

GRAPHITE/ KEVLAR CENTR I FUGAL AND FLE URAL LOAD P L I

LEADING EDGE

S- GLASS FLEX ROOT PLIES

FIGURE 26, - STRUCTURAL BEHAVIOR/RESPONSE GOVERNING EQUATIONS.

0 2 TIME. MSEC

4

FIGURE 27. - Z-COMPONENT OF L.E. T I P DIS- PLACEMENT. HYBRID COMPOSITE FAN BLADE, 2-LB BIRD IMPACT.

37

38

10

8

N I

z 6 a a W

a W cc L L

3 4 a t 9

i

\ < BENDING

3

2 1

1 2 3 4 0 a. IN.

FIGURE 28. - EFFECT OF CRACK LENGTH ON LOW- EST NATURAL FREQUENCIES.

rsx I

rs-

S, df

SQUARE ARRAY (2)

RECTANGULAR ARRAY (6)

PLY (1)

FIGURE 29. - COMPOSITE NICROMECHANICS - SCALE LEVELS.

39

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

Mechanics o f Composite M a t e r i a l s : Pas t , P resen t , and Fu tu re

NASA TM-100793 4. Title and Subtitle 5 . Report Date

10. Work Unit No.

7. Author@)

C h r i s t o s C. Chamis

I 505-63-1 1

8. Performing Organization Report No.

E-3936

9. Performing Organization Name and Address

N a t i o n a l A e r o n a u t i c s and Space A d m i n i s t r a t i o n Lewi s Research Center C leve land , O h i o 44135-3191

' iber-composi t e s ; Resin-matr ices; I n t e r p l y h y b r i d s : n t r a p l y h y b r i d s ; M i cromechani cs; Combi ned-stress a i l u r e : Laminate t h e o r v , S i n q u l a r i t v mechanics;

11. Contract or Grant No.

~

U n c l a s s i f i e d - U n l i m i t e d S u b j e c t Category 24

13. Type of Report and Period Covered

9. Security Classif. (of this report)

Uncl a s s i f i ed

~~ 1 Techn ica l Memorandum 2. Sponsoring Agency Name and Address

20. Security Classif. (of this page) 21. No of pages 22. Price'

Uncl ass i f i ed 40 A03 ,

N a t i o n a l A e r o n a u t i c s and Space A d m i n i s t r a t i o n Washington, D.C. 20546-0001

14. Sponsoring Agency Code

~

~~

5. Supplementary Notes

Presented a t t h e 2 1 s t Annual Mee t ing o f t h e S o c i e t y for E n g i n e e r i n g Science, B lacksburg , V i r g i n i a , October 15-17, 1984. I n v i t e d paper .

6. Abstract

Composite mechanics d i s c i p l i n e s a r e p resen ted and d e s c r i b e d a t t h e i r v a r i o u s l e v e l s o f s o p h i s t i c a t i o n and a t t e n d a n t sca les o f a p p l i c a t i o n . C o r r e l a t i o n w i t h exper imen ta l d a t a i s used as t h e p r ime d i s c r i m i n a t o r between a l t e r n a t i v e methods and l e v e l o f s o p h i s t i c a t i o n . Ma jo r emphasis i s p l a c e d on: ( 1 ) where composi te mechanics has been; ( 2 ) what i t has accompl ished; ( 3 ) where i t i s headed, based on p r e s e n t r e s e a r c h a c t i v i t i e s ; and ( 4 ) a t t h e r i s k o f b e i n g presumptuous, where i t shou ld be headed. The d i s c u s s i o n i s developed u s i n g s e l e c t e d , b u t t y p i c a l examples o f each compos i te mechanics d i s c i p l i n e i d e n t i f y i n g degree o f success, w i t h r e s p e c t t o c o r r e l a t i o n w i t h exper imen ta l d a t a , and problems rema in ing . The d i s c u s s i o n i s c e n t e r e d about f i b e r i r e s i n composi tes drawn m a i n l y from t h e a u t h o r ' s r e s e a r c h a c t i v i t i e s / e x p e r i e n c e spanning two decades a t Lewis .

7. Key Words (Suggested by Author@)) I 18. Distribution Statement

i f e / d u r a b i l i t y ; F r a c t u k e toughness:-Damage t o l e r a n c e ; ' r o g r e s s i v e f r a c t u r e ; S t r u c t u r a l a n a l y s i s ; n v i ronmental e f f e c t s


Recommended