+ All Categories
Home > Documents > I NTERCONNECT M ODELING M.Arvind 2 nd M.E Microelectronics

I NTERCONNECT M ODELING M.Arvind 2 nd M.E Microelectronics

Date post: 11-Jan-2016
Category:
Upload: kasie
View: 28 times
Download: 0 times
Share this document with a friend
Description:
I NTERCONNECT M ODELING M.Arvind 2 nd M.E Microelectronics. OVERVIEW. Introduction to On-Chip interconnects Modeling the parasitics Elmore Delay Model Repeater insertion Min delay condition Power Model Optimizing Power. Introduction to On-chip interconnects. - PowerPoint PPT Presentation
26
INTERCONNECT MODELING M.Arvind 2 nd M.E Microelectronics
Transcript
Page 1: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

INTERCONNECT MODELING

M.Arvind2nd M.E Microelectronics

Page 2: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

OVERVIEW

Introduction to On-Chip interconnects

Modeling the parasitics

Elmore Delay Model

Repeater insertion

Min delay condition

Power Model

Optimizing Power

Page 3: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Introduction to On-chip interconnects

Wires linking the transistors together

Three types of interconnects :

Local

Semi-global and

Global interconnect

Page 4: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Introduction to On-chip interconnects

Can be modeled as R, RC, LC, RLC or RLGC network.

Power lines R,RL

Signal lines C, RC

Clock lines & buses RLC

Page 5: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Modeling a piece of wire

Page 6: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Capacitance Modeling

Capacitance

• cw = 2 * (cg + cf * cc )

• cf is the coupling factor

Page 7: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Capacitance Modeling (cont)

cg has 2 components: cg1, cg2

1

2

( , , )

( , , , )

(s, , )

g

g

c

c f ILDT w

c f ILDT s h

c f h

Page 8: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Simplified Capacitance Model

For a circuit designer ILDT, h and ε are fixed. Therefore,

1

2

( )

( )

( )

g

g

c

c f w

c f s

c f s

Page 9: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Fringing Effects

1fC 2fC

1fC

0fC

1fC

Page 10: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Modeling Wire Resistance

Resistance

w

lr

Al

h w h sq

Page 11: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Pros and Cons of Cu

Pros Better electro-migration resistance

Cons Cu atoms diffuses into SiO2

Cladding layers of TiN, Si3N4 used to prevent this

Increases the resistance

Page 12: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Elmore Delay Model

Delay of a RC network is given by

1 1 1 2 2 1 2 3 3

1 2

( ) ( ) ...

( ... )n n

D RC R R C R R R C

R R R C

Page 13: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Delay of a long wire

Delay grows quadratic Hence need repeaters

Page 14: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Repeater Insertion

Repeaters are placed to reduce delay

Page 15: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Repeater Insertion (cont)

Delay grows linear

Page 16: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Modeling the repeater

Repeater is a large inverter (5-25μm) placed in-between interconnect lines.

Cgate, Cp α size of the repeater

RT = VDD/2*Iavg, where Iavg = ∫Iddt in the interval Td

Page 17: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Modeling the repeater (cont)

2

(1 ( )

at

{( ) }2

d dlin ds gs th

dsat ds dsat ds gs th

dsat d ds dsat gs th

dsdlin eff ox gs th ds

I I V V V

I V V V V V

I I V V V V

VWI C V V V

L

Page 18: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Delay equations

Delay of an interconnect segment is

Total delay is

TD= R *( ) *( )2w

w gate p w gate

CC C C R C

tot TD = {R *( ) *( )}*2w

w gate p w gate

CC C C R C N

Page 19: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Optimal Repeater Size and Spacing

The minimum delay condition

[ {( ) } { }]*2

0; 0;

2 ( )

w w wTgate p gate

t w

w gate

w w

t gate p

c l r l c lrD c c size c s N

size N N ND D

size N

rcSize

r c

r cN

r c c

Page 20: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Power modeling

Total power dissipated in the interconnect network is given by• Ptotal= Pdy + Psc + Pleak

• Pdy = Ctotal V²

ddf

• Psc = Isc per μm Vdd Wtotalftt

• Pleak = Ileak per μm WtotalVdd

Where is the switching factor, tt is the time taken

for the input to transit from Vthn to Vdd – Vthp

Page 21: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Power modeling (cont)

0

min

( )*2

(1 )

at , 0.12

* *

gs th ds

t t

wtotal gate p

V V V

nV Vleak

ddsc d gs ds dd

total

CC C C N

I I e e

VI I V V V

W W size N

Page 22: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Optimizing power

Min delay does not imply min power

Page 23: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Techniques to Reduce Power

Can be reduced by decreasing Supply voltage

Size of repeaters

Number of repeaters

Page 24: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Optimal Power Delay Tradeoff

Page 25: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

References

William J.Dally John W.Poulton., ”Digital Systems Engineering” Cambridge University Press,1998

Kaustav Banerjee et al., ”A power-optimal insertion methodology for global interconnects in nanometer designs” IEEE TRANSACTION ON ELECTRON DEVICES, VOL. 49, NO. 11, NOVEMBER 2002

Kaustav Banerjee et al., ”A global interconnect optimization scheme for nanometer scale VLSI with implications for latency, bandwidth, and power dissipation” IEEE TRANSACTION ON ELECTRON DEVICES. VOL. 51, NO.2, FEBRUARY 2004.

Page 26: I NTERCONNECT  M ODELING M.Arvind 2 nd  M.E Microelectronics

Thank You


Recommended