+ All Categories
Home > Documents > I Water Act - IDEALS

I Water Act - IDEALS

Date post: 07-Dec-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
43
WRC RESEARCH RJ3PORT No. 155 MEASUREMENTS IN MERGING FLOW by W. Hall C. Maxwell and Arni Snorrason Department of Civil Engineering University of Illinois at Urbana-Champaign Urbana, Illinois 61801 FINAL REPORT P r o j e c t No. A-103-ILL This project was partially supported by the U. S. Department of the Interior in accordance with Title I of the Water Research and Development Act of 1978, i P.L. 95-467, Agreement No. 14-34-0001-0115. UlJIVER3ITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory Urbana, Illinois 61801 January 1981 Contents of this publication do not necessarily' reflect the views and policies of the Office of Water Research and Technology, U.S. Department o f the Interior, nor does rnentlon of trade names or conmerclal products constitute their endorsement or reconmendation for use by the U.S. Government.
Transcript

WRC RESEARCH RJ3PORT No. 155

MEASUREMENTS I N MERGING FLOW

by

W. Ha l l C. Maxwell

and

Arni Snorrason

Department of C i v i l Engineering

Universi ty of I l l i n o i s a t Urbana-Champaign

Urbana, I l l i n o i s 61801

FINAL REPORT

Pro jec t No. A-103-ILL

This p r o j e c t was p a r t i a l l y supported by t h e U . S . Department o f t h e I n t e r i o r i n accordance with T i t l e I o f t h e Water Research and Development Act o f 1978,

i P.L. 95-467, Agreement No. 14-34-0001-0115.

UlJIVER3ITY OF ILLINOIS WATER RESOURCES CENTER

2535 Hydrosystems Laboratory Urbana, I l l i n o i s 61801

January 1981

Contents o f t h i s p u b l i c a t i o n do not necessar i ly ' r e f l e c t the views and p o l i c i e s o f the O f f i c e o f Water Research and Technology, U.S. Department o f the I n t e r i o r , nor does rnentlon o f t rade names o r conmerclal products c o n s t i t u t e t h e i r endorsement o r reconmendation f o r use by the U . S . Government.

ABSTRACT

Previous measurements of t h e v e l o c i t y f i e l d i n t h e v i c i n i t y of two i n t e r s e c t i n g submerged tu rbu len t j e t s provided evidence t h a t , cont rary t o t h e usual assumptions, i n t e r s e c t i n g flows may no t n e c e s s a r i l y be combined using vec tor add i t ion of v e l o c i t i e s o r momentum f l u x d e n s i t i e s .

To ga ther add i t iona l experimental evidence on t h e d e t a i l s of t h e v e l o c i t y f i e l d nea r t h e i n t e r s e c t i o n of two submerged tu rbu len t j e t s , t h i s s tudy measured time average v e l o c i t y magnitudes and d i r e c t i o n s of two perpendicular i n t e r s e c t i n g axisymmetricsubrnerged tu rbu len t incompressible a i r j e t s of approximately equal s t r eng th . Because o f t h e need t o d e t e c t r eve r se flows, a three-dimensional p i t o t - t y p e probe was used. This could sense yaw and p i t c h angles a s wel l a s v e l o c i t y magnitudes. Two s e t s o f measurements were taken. The more d e t a i l e d s e t was confined t o t h e p lane o f t h e nozzles , t h e l e s s d e t a i l e d s e t obtained c ross - sec t iona l d a t a a t four s t a t i o n s , t h r e e o f t hese being i n t h e observed r eve r se flow.

The da ta show t h a t t h e r eve r se flow spreads much more r a p i d l y perpendicular t o t h e nozzle plane than i n t h e nozzle plane, whereas t h e forward flow i s f a i r l y symmetric. , S i m i l a r i t y p r o f i l e s were found i n both t h e forward and r eve r se flows. In t h e forward flow t h e d i s t r i b u t i o n was e s s e n t i a l l y Gaussian. This was a l s o t r u e i n t h e backward flow i n t h e d i r e c t i o n normal t o t h e plane of t h e nozzles . In the p lane of t h e nozzles the backward flow p r o f i l e s were c l o s e t o s e m i - e l l i p t i c a l o r semi-c i rcu lar , depending on the s c a l e s f o r p l o t t i n g .

Maxwell, W. Hal l C . , and Arni Snorrason MEASUREMENTS I N MERGING FLOW Final r e p o r t t o t h e Off ice o f Water Research and Technology, Department of I n t e r i o r P ro jec t A-103-ILL, January 1981.

KEYWORDS: *Diffusion-flow/flow cha rac te r i s t i c s /* f low p r o f i l e s / f l u i d mechanics/* j e t s / *mixing

TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LIST OF TABLES

. . . . . . . . . . . . . . . . . . . . . . . . . . LIST OF FIGURES

. . . . . . . . . . . . . . . . . . . . . . . . . . LISTOFSYMBOLS

1 . INTRODUCTION AND OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . VELOCITY DISTRIBUTION IN A SINGLE JET

3 . EXPERIMENTAL MEASUREMENTS IN CROSSING FLOWS . . . . . . . . . 3.1 P u r p o s e a n d S c o p e . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . 3.2 E x p e r i m e n t a l A p p a r a t u s

. . . . . . . . . . . . . . . 3.3 E x p e r i m e n t a l M e a s u r e m e n t s

. . . . . . . . . . . . . . . . . . . . . 3.4 D a t a R e d u c t i o n

3.5 E x p e r i m e n t a l D a t a . . . . . . . . . . . . . . . . . . . 4 . DATA ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 5 . CONCLUSIONS AND P3COMMENDATIONS

. . . . . . . . . . . . . . . . . . . . . . 5.1 C o n c l u s i o n s

. . . . . . . . . 5.2 Recommenda t ions o n F u t u r e A p p l i c a t i o n s

. . . . . . . . . . . . . . . . . . . . . . . . . LISTOFREFERENCES

P a g e

iii

v i

v i i

v i i i

1

2

7

7

7

11

13

14

2 7

33

33

33

35

I J-

LIST OF TABLES

Table Page

1 Measured Two-dimensional Spreading Coefficients . . . . 3

2 Measured Axi-symmetrical Spreading Coefficients . . . . 5

v11

LIST OF FIGURES

Page Figure

Def in i t i on ske tch . . . . . . . . . . . . . . . . . . 8

Schematic r ep resen ta t ion of c ross ing a i r j e t a p p a r a t u s . . . . . . . . . . . . . . . . . . . . 9

Veloci ty vec to r s i n t h e p lane of t h e jets . . . . . . 15

Veloci ty i n the forward flow i n t h e p lane o f t h e n o z z l e s . . . . . . . . . . . . . . . . . . . 16

Veloci ty t r a v e r s e i n t h e backflow i n t h e p lane of t h e nozzles . . . . . . . . . . . . . . . . 17

Contours of equal v e l o c i t y i n t h e backflow a t x = 25.2 cm . . . . . . . . . . . . . . . . . . . 19

Contours of equal v e l o c i t y i n t h e backflow a t x = 25.5 cm . . . . . . . . . . . . . . . . . . . 20

Contours of equal v e l o c i t y i n t h e backflow a t x = 25.8 cm . . . . . . . . . . . . . . . . . . . 21

Contours of equal v e l o c i t y i n fbrward flow a t x = 26.2 cm . . . . . . . . . . . . . . . . . . . 2 2

Isometr ic p ro jec t ion of su r face represent ing backflow v e l o c i t i e s a t x = 25.2 cm . . . . . . . . . 2 3

Isometr ic p ro jec t ion of s u r f a c e r ep resen t ing backflow v e l o c i t i e s a t x = 25.5 cm . . . . . . . . . 2 4

I sometr ic p ro jec t ion of su r face r ep resen t ing v e l o c i t i e s a t x = 25.8 cm . . . . . . . . . . . . . . 25

Isometr ic p ro jec t ion of s u r f a c e represent ing forward v e l o c i t i t e s a t x = 26.2 cm . . . . . . . . . 26

Forward flow p r o f i l e s compared wi th Gaussian d i s t r i b u t i o n . . . . . . . . . . . . . . . . 28

Veloci ty p r o f i l e s i n t h e p lane of t h e nozzles i n the backflow . . . . . . . . . . . . . . . 2 9

Veloci ty p r o f i l e s normal t o t h e p lane of t h e nozzles i n t h e backflow . . . . . . . . . . . . . 3 1

P r o f i l e widths i n the forward and backflows . . . . . 32

LIST OF SYMBOLS

A incoming j e t nozz le , s e e Fig. 1

A. o u t l e t a r e a (per u n i t length f o r s l o t )

B incoming j e t nozzle, s e e Fig. 1

b ha l f width of v e l o c i t y p r o f i l e i n xy p lane Y

b ha l f width of v e l o c i t y p r o f i l e i n xz plane Z

C spreading c o e f f i c i e n t

j = 0 f o r p lane symmetry, = 1 f o r a x i a l symmetry

t o t a l p re s su re

p res su res sensed by l a t e r a l p o r t s

= P2 - P3

pressures sensed by upper and lower p o r t s

= P4 - P5

t r u e s t a t i c pressure

t r u e t o t a l pressure

time average ve loc i ty i n t h e x d i r e c t i o n , o r v e l o c i t y magnitude

average v e l o c i t y a t o u t l e t

average v e l o c i t y a t nozz le A o u t l e t

average v e l o c i t y a t nozz le B o u t l e t

maximum o r c e n t e r l i n e v e l o c i t y

or thogonal co-ordinate axes

ang le of p i t c h

y dev ia t ion from loca t ion of maximum v e l o c i t y

z dev ia t ion from loca t ion of maximum v e l o c i t y

angle of yaw

s tandard dev ia t ion of v e l o c i t y p r o f i l e i n xy plane

s tandard dev ia t ion of v e l o c i t y p r o f i l e i n xz p lane

2. VELOCITY DISTRIBUTION IN A SINGLE JET

The v e l o c i t y d i s t r i b u t i o n i n a submerged tu rbu len t j e t had been

considered by many i n v e s t i g a t o r s t o be adequately descri 'bed by a normal

d i s t r i b u t i o n . For both plane-symmetric and axisymmetric j e t s , t he

v e l o c i t y d i s t r i b u t i o n may be descr ibed by t h e fol lowing equat ion:

i n which u = t ime average v e l o c i t y i n t h e a x i a l , x, d i r e c t i o n ; u = average 0

v e l o c i t y a t t h e o u t l e t ; A. = o u t l e t a r e a (per u n i t l eng th f o r plane-symmetry);

C = spreading c o e f f i c i e n t ; y = a x i s normal t o x ( r a d i a l a x i s f o r a x i a l

symmetry); j = 0 f o r p lane symmetry, and j = 1 f o r a x i a l symmetry.

D i f f e ren t i n v e s t i g a t o r s have obtained d i f f e r e n t experimental

va lues f o r C, t h e spreading c o e f f i c i e n t , i n t h e case of both t h e plane-

symmetric j e t and t h e axisymmetric j e t . These r e s u l t s a r e d e a l t with i n

d e t a i l i n t h e fol lowing sec t ion .

2.2 Spreading Coef f i c i en t s f o r Plane- and Axi-Symmetric J e t s .

Table 1 summarizes spreading c o e f f i c i e n t s measured by a number of

i n v e s t i g a t o r s f o r two-dimensional t u rbu len t j e t s . The information has

been c o l l e c t e d from Refs. 1, 10 , 27 and 33. Where p o s s i b l e t h e o r i g i n a l

source of d a t a has been l i s t e d i n t h e References. The t a b l e r e f l e c t s t he

f a c t t h a t t h r e e d i f f e r e n t sources (1, 26, 33) gave t h r e e d i f f e r e n t va lues

of C from f i t t i n g F8rthmann1s data . Round-off e r r o r i n convert ing from t h e

no ta t ion of Refs. 1, 2 7 and 33 t o t h e p re sen t n o t a t i o n may account f o r p a r t

-

TABLE 1. Measured Two-dimensional Spreading Coef f i c i en t s

Experimenter

F'br t hmann

Reichard t

van d e r Hegge Zijnen

Albertson e t a l .

Reichard t

Mi l l e r & Comings

van d e r Hegge Zijnen

Nakaguchi

Olson

Bradbury

Heskestad

Knystautas

Gartshore

Heskest ad

Goldschmidt & Eskinazi

F lora & Goldschmidt

Mih & Hoopes

Jenkins & Goldschmidt

Kotsovinos

Se lec ted Average by:

Newman

Abraham

Fischer e t a l . 0.097+0.003 0.082+0.001

Year

19 34

1942

1949

1950

1951

1957

1958

1961

1962

1963

1963

1964

1965

1965

Axial C

0.098

- 0.114

0.109

- 0.093

0.092

0.107

0.100

0.100

0.098(?)

0.097

0.092

-

L a t e r a l C

0.082,0.084,0.086

0.095

0.084

0.109

0.098

0.082

0.082

0.090

0.090

0.068

0.090

0.090

0.088

0.087

0.093

of t h e d i f f e r ences . The t a b l e shows va lues ob ta ined by f i t t i n g t h e d a t a f o r

decay of t h e maximum v e l o c i t y a long t h e a x i s and va lues ob ta ined by f i t t i n g

t h e d i s t r i b u t i o n s normal t o t h e a x i s . Depending on one ' s ob j ec t i ve s ,one

may o b t a i n a "best" f i t t o e i t h e r of t h e s e d a t a sets o r , by compromising

s l i g h t l y on t h e goodness of f i t i n both cases, s e l e c t a s i n g l e spreading

c o e f f i c i e n t which a p p l i e s reasonably w e l l t o both ca se s e. g. t h e r e s u l t

ob ta ined by Albertson e t a l . (2 ) . This may then be used wi th Eq. 1. A

f u r t h e r oppor tun i ty f o r some compromise a r i s e s i n t h e s e l e c t i o n of a zero

c o r r e c t i o n o r s l i g h t s h i f t i n t h e o r i g i n of t h e co-ordinate system from t h e

phys i ca l l o c a t i o n of t h e s l o t o u t l e t .

Newman (33) concluded t h a t v a r i a t i o n s i n l a t e r a l spreading

c o e f f i c i e n t s ev ident from an examination of t h e work of e a r l i e r i n v e s t i g a t o r s

was appa ren t ly l a r g e l y due t o end e f f e c t s . E a r l i e r measurements were made

wi th low a s p e c t - r a t i o s l o t s , and i n s u f f i c i e n t c a r e was taken t o provide

f a i r i n g s on t h e end p l a t e s o r t o make them adequately l a r g e . This l e a d s

t o va lues of spreading c o e f f i c i e n t which a r e too low. H e pos tu l a t ed t h a t

v o r t i c e s forming a t t h e edge of t h e end p l a t e s induce spanwise f lows which

u s u a l l y t h i n t h e s h e a r flow. S ince t h i s problem does n o t a r i s e f o r

axisymmetric j e t s , v a r i a t i o n s i n measurements of t h e i r r a t e of growth a r e

much less. Based on a neg lec t of doub t fu l measurements Newman recommended

a l a t e r a l spreading c o e f f i c i e n t of 0.088 + 2%.

Albertson e t a l . (2) s t a t e d " . . . . c lose agreement i n t h e l i m i t e d

zone of es tab l i shment i s considered l e s s s i g n i f i c a n t than eva lua t ion of

both zones ( a s i n t h e two-dimensional case) i n terms of t h e same c o e f f i c i e n t . . . . ' I

Abraham (1) s e l e c t e d average va lues of 0.101 f o r a x i a l decay and

0.100 f o r l a t e r a l spreading a t l a r g e d i s t a n c e s from t h e o u t l e t i n h i s

TABLE 2. Measured h i - symmet r i ca l Spreading Coef f i c i en t s

Experimenter

Triipel

Betz

Ruden

Reichardt

Corrs in

Corrs in and Uberoi

Hinze and v. d. Hegge Zijnen

Keagy and Weller

Keagy, Weller, Reed & Reid

Alber t son ,Dai , J ensen& Rouse

Becher

Corrs in and Uberoi

Reichardt

Taylor , Grirnrnett, &Comings

~ l e x a n d e r , Baron & Comings

F o r s t a l l and Gaylord

Poreh and Cermak

Ricou and Spalding

Rosenweig, H o t t e l b Williams

Johannesen

Kizer

Wilson and Danckwerts

5

Year

1915

1923

1933

1942

1943

1949

1949

1949

1949

1950

1950

1950

1951

1951

1953

1955

1959

1961

1961

1962

1963

1964

1967

0.075+0.006

Average L a t e r a l C

0.072

0.081

0.076+0.002

Axia l C

- -

0.078

- -

0.076

0.078

- -

0.086

0.081

0.077

- -

0.076

0.075

0.078

0.065

- - - - - -

Average + s t . dev.

Se lec ted Average by:

Newman

Abraham

F i sche r e t a l .

L a t e r a l C

0.079

0.075

0.073, 0.076

0.072

0.071

0.072

0.071

0.075

0.070

0.075

0.081

- 0.081, 0.092

0.072

0.074

0.075

0.076, 0.078

0.071

0.081

0.076

0.073

0.070

0.085, 0.081

0.064, 0.071 pp

Year

1961

1963

19 79

0.077+0.005

Average Axial C

- 0.081

0.081+0.001

study. H e remarked t h a t t h e d a t a of Alber t son e t a l . i n d i c a t e t h a t t h e

l a t e r a l spreading c o e f f i c i e n t a c t u a l l y t ends t o i n c r e a s e wi th i nc reas ing

d i s t a n c e from t h e o u t l e t . H e i n d i c a t e d t h a t o t h e r experimental work

showed s i m i l a r t r e n d s , which agrees wi th obse rva t ions t h a t l a t e r a l d i s t r i -

bu t ions of t u r b u l e n t s t r e s s e s i n axisymmetric j e t s (7) and i n two-

dimensional jets (31) do no t e x h i b i t s i m i l a r i t y f o r d i s t a n c e l e s s than

40 diameters o r 40 s l o t h e i g h t s downstream from t h e o u t l e t .

Kotsovinos (27) a l s o advanced t h e hypothes i s t h a t t h e b a s i c

reason f o r v a r i a t i o n s i n spreading c o e f f i c i e n t s f o r p lane t u r b u l e n t jets

is t h a t growth is not exac t ly l i n e a r on a l a r g e s ca l e . Data from s e v e r a l

sources i n d i c a t e d t h a t t h e j e t width is a 'weak' non- l inear f u n c t i o n of x.

No explana t ion was advanced f o r t h e observed behavior .

F i s che r e t a l . (10) summarized va lues of l a t e r a l and a x i a l

spreading c o e f f i c i e n t s bu t d i d n o t d e t a i l t h e o r i g i n a l sources incorpora ted

i n t h e averages.

Clear ly , then , t h e r e i s no consensus on " c o r r e c t " va lues f o r

e i t h e r a x i a l o r l a t e r a l c o e f f i c i e n t s f o r two-dimensional jets.

Table 2 summarizes a x i a l and l a t e r a l spreading c o e f f i c i e n t s f o r

axisymmetr ical jets, aga in taken from Refs. 1, 10 , and 33. I n some c a s e s

where two v a l u e s a r e l i s t e d f o r t h e same t e s t , e.g. Ruden, 1933, t h e t a b l e

r e f l e c t s t h e f a c t t h a t Abraham (1) and F ischer e t a l . (10) ob ta ined

d i f f e r e n t v a l u e s of C from f i t t i n g t h e da t a . The d i f f e r e n c e aga in a l s o

i nc ludes e f f e c t s of round-off e r r o r when conver t ing from t h e n o t a t i o n used

by Abraham and by F ischer e t a l . t o t h e n o t a t i o n used h e r e i n . Table 2

i l l u s t r a t e s t h a t t h e r e is a l s o no consensus on "cor rec t" va lues of a x i a l

o r l a t e r a l c o e f f i c i e n t s f o r axi-symmetrical j e t s .

3. EmERIMENTAL MEASUREMENTS I N CROSSING FLOWS

3.1 Purpose and Scope

Measurements of v e l o c i t y time average magnitude and d i r e c t i o n

were aimed a t d e t a i l e d mapping of t h e v e l o c i t y f i e l d i n t h e v i c i n i t y of two

i n t e r s e c t i n g incompressible a i r j e t f lows. I n p a r t i c u l a r , t h e r e was an

i n t e r e s t i n t h e three-dimensional cha rac te r of t h e r e s u l t i n g j e t - l i k e

flows. Figure 1 shows a d e f i n i t i o n ske tch of the va r ious elements of t h e

flow p a t t e r n . Measurements were made holding a a t 90° and the quot ien t

u /ub i n t h e narrow range 1.015 i- 0.001. The discharge through tubes a

A and B was he ld cons tant by monitoring t h e pressure a t and ac ross the

o r i f i c e meters i n t h e i r supply l i n e s (Fig. 2) . The co-ordinate system was

a l igned with t h e x-axis approximately p a r a l l e l t o CD, t h e a x i s of maximum

v e l o c i t y f o r t h e r e s u l t a n t flow, and t h e y-axis p a r a l l e l t o a l i n e through

t h e tube o u t l e t s .

3.2 Experimental Apparatus

The apparatus used t o s tudy the v e l o c i t y d i s t r i b u t i o n i n t h e flow

f i e l d c rea t ed by two cross ing a i r j e t s is i l l u s t r a t e d i n F ig . 2. Two

i d e n t i c a l 3/16 in . (0.475 cm) i n t e r n a l diameter copper tubes were used

a s nozzles and were mounted perpendicular t o each o t h e r on a h o r i z o n t a l

board. Each copper tube was connected t o a 1 112 i n . (3.8 cm) diameter

pipe by means of tygon tubes. I n order t o maintain and monitor cons tant

pressure , a pressure r egu la to r and gauge were i n s t a l l e d i n t h e a i r supply

upstream from the 1 112-in. pipe. A d i f f e r e n t i a l water manometer was used

t o measure t h e p res su re drop ac ross t h e o r i f i c e . The p res su re on t h e

upstream s i d e of t h e p l a t e was measured using a mercury manometer. The

ho r i zon ta l board was l e v e l l e d on a t a b l e top,and a probe t r a v e r s i n g mechanism

LOCATION OF OUTLET

- D

CENTERS

! I I TUBE x , c m y , f t z , i n

A 23.68 0.956 18.77

B 23.68 1.119 18.77

Fig. 1 Defin i t ion sketch

3/16" x 1 1 / 2 " ORFICE METER -', TYGON TUBE

a 1 - I 1 1 1 / 2 " I D P I P E

NEEDLE VALVE

\ - PRESSURE GAUGE

PRESSURE REGULATOR

3/16" I D COPPER

TYGON TUBE

TUBE

Fig. 2 - Schematic representation of crossing air j et apparatus

was mounted on a r i g i d framework independent ly mounted on t h e f l o o r .

Time average v e l o c i t y magnitudes and d i r e c t i o n s were measured

us ing a United Sensor and Control Corporat ion Type DC three-dimensional

d i r e c t i o n a l probe. This had a s ens ing head diameter of 1/8-in. (0.318 cm)

and a l e n g t h of 36-in. (91.4 cm) . It was mounted on a United 'Sensor and

Control Corporat ion manual t r a v e r s e u n i t . This has b 0 t h . a l i n e a r v e r n i e r

t r a v e r s i n g s c a l e f o r d i s t a n c e read ings and a r o t a r y v e r n i e r s c a l e f o r

angle of yaw readings. The read ings p r e c i s i o n on t h e l i n e a r s c a l e was

0.01 i n . (0.025 cm) and 0 . 1 degrees on t h e angu la r v e r n i e r s c a l e .

The manual t r a v e r s e u n i t was mounted on a s t u r d y h o r i z o n t a l

c a r r i a g e running on a l a r g e r h o r i z o n t a l c a r r i a g e . This i n t u r n r a n

pe rpend icu l a r ly on h o r i z o n t a l r a i l s incorpora ted i n a heavy s t e e l frame

and was moved us ing a p o i n t gage set h o r i z o n t a l l y . The v e l o c i t y probe,

thus mounted, could be moved i n t h r e e mutual ly or thogonal d i r e c t i o n s and

r o t a t e d wi thout a l t e r i n g t h e l o c a t i o n of t h e sens ing head. Co-ordinates

w e r e recorded t o 0.01 i n . (0.025 cm), 0.001 f t (0.030 cm) and 0 .1 cm

(0.039 i n . ) , us ing t h e manual t r a v e r s e , po in t gage read ing and main

c a r r i a g e l o c a t i o n s c a l e s r e spec t ive ly .

The three-dimensional d i r e c t i o n a l probe measures t h e yaw and

p i t c h ang le of t h e v e l o c i t y vec to r a s w e l l a s t o t a l and s t a t i c p r e s su re s .

Five sens ing p o r t s a r e l oca t ed on t h e t i p of t h e probe. The c e n t r a l l y

l o c a t e d p o r t senses t h e t o t a l p r e s su re P The two l a t e r a l p o r t s sense 1'

p re s su re s P and P The probe is r o t a t e d us ing t h e manual t r a v e r s e u n i t 2 3'

u n t i l P = P a s i n d i c a t e d on a d i f f e r e n t i a l manometer. The v e r n i e r on 2 3

t h e c i r c u l a r s c a l e of t h e manual t r a v e r s e u n i t then i n d i c a t e s t h e yaw angle .

With t h e probe a l igned along t h e d i r e c t i o n f o r which P = P -P = 0 t h e 23 2 3

d i f f e r e n t i a l p re s su re P = P -P sensed by t h e two p o r t s above and below 45 4 5

t h e t o t a l p re s su re p o r t is read on a d i f f e r e n t i a l manometer. The

c a l i b r a t i o n curve f o r t h e probe can then be used t o determine t h e angle of

p i t ch . This is a func t ion of P /P i n which P = pl-112 (P2 + P3). 45 12' 12

For any p a r t i c u l a r p i t c h angle , B , t h e c a l i b r a t i o n curve of (Pt-P )/.P s 12

may be used t o determine t h e v e l o c i t y . Pt = t r u e t o t a l p re s su re and

P = t r u e s t a t i c pressure . The f l u i d v e l o c i t y is S

= [2(Pt - Ps)/pI 112 (2)

The d i f f e r e n t i a l manometers f l u i d was Meriam 827 Red O i l which

has a s p e c i f i c g r a v i t y of 0.827. The P12 manometer was t i l t e d a t 45'; t h e

'23 and P manometerswere t i l t e d a t 20.5'. For d a t a r educ t ion t h e

45

c a l i b r a t i o n curve f o r p i t c h ang le was approximated by two l i n e a r func t ions ,

one f o r p i t c h ang le s i n t h e range + 10' w i th maximum e r r o r of lo, t h e

o t h e r f o r 2 40' wi th maximum e r r o r of + 2.5'. The p i t c h ang le measurements

wereunreliablewhenvelocities, a n d h e n c e p were low. A l o w e r l i m i t 12'

of 0.8 l b s per square f o o t was t h e r e f o r e s e t on measurements of P12. A

good approximation t o t h e c a l i b r a t i o n curve f o r p i t c h ang le s i n t h e

range + 10' i s t h e cons tan t va lue 0.87 f o r (P -P )/p12. Since t h e v a s t t s

ma jo r i ty of r e l i a b l e readings f e l l w i th in t h i s range t h i s cons tan t va lue

was used f o r d a t a reduct ion .

3 .3 Experimental Measurements

For each measurement s e t t h e atmospheric temperature and p re s su re

were recorded. For t h e mapping of t h e v e l o c i t y v e c t o r f i e l d i n t h e p lane

of t h e nozz les ( z = 18.77 cm) t r a v e r s e s were made a t constant va lues of x ,

wi th y being var ied . The z - se t t i ng w a s found by t r a v e r s i n g t h e p i t o t u n t i l

maximum v e l o c i t y was found. Traverses were repea ted a t x i n t e r v a l s ranging

from 0 .1 cm up t o 0.5 cm, s o a s t o cover t h e incoming j e t s , t h e forward

j e t and t h e back flow j e t . The va lues of P 12 ' Pt , yaw angle and P a s

45 ' w e l l a s t h e coord ina tes (x, y , z ) of t h e probe t i p were recorded a t each

po in t of t h e t r a v e r s e . I n t h e zone nea r t h e s t agna t ion p o i n t , v e l o c i t i e s i n

t h e back f low j e t were very smal l and t h e r e was i n t e r f e r e n c e between t h e

probe and t h e incoming j e t s . The back flow j e t measurements were t h e r e f o r e

conducted wi th cons t an t yaw angle . The yaw ang le was s e t by moving back

i n t o a r eg ion of h ighe r v e l o c i t y back flow. The a p p l i c a b i l i t y of ho ld ing

t h e yaw a n g l e cons tan t i n t h e e n t i r e back flow region was checked from

t i m e t o t i m e where t h e back flow v e l o c i t y was s u f f i c i e n t l y h igh t o permit

it, and proved t o be adequate. S imi l a r d i f f i c u l t i e s were found near t h e

edges of t h e incoming j e t s ad jacent t o t h e backflow j e t and were again

reso lved by s e t t i n g t h e yaw ang le t o i t s va lue i n t h e ad j acen t reg ion of

h ighe r incoming v e l o c i t y . I n a l l o t h e r p o r t i o n s of t h e f low f i e l d t h e

p i t o t was set a t t h e yaw ang le determined by P = 0. 2 3

Because adjustment of t h e yaw ang le was very time-consuming

and considerably more d a t a p o i n t s had t o be c o l l e c t e d f o r mapping of t h e

c ros s - sec t iona l v e l o c i t y f i e l d , t h e yaw ang le was s e t a t a cons t an t va lue

determined i n t h e reg ion of maximum v e l o c i t y f o r t h e forward j e t . Traverses

were made a t cons t an t yaw angle and cons t an t x. For each c ross -sec t ion

t r a v e r s e s were made i n t h e y d i r e c t i o n f o r va r ious va lues of z . Three

c r o s s s e c t i o n s were measured f o r t h e back flow j e t and one f o r t h e

forward j e t . The va lues of P 12' Pt ' P45 and x , y and z were recorded f o r

each p o i n t whi le holding t h e yaw ang le cons tan t .

3.4 Data Reduction

Computer programs were developed t o analyze and present t h e da t a .

Three s e t s of programs were u t i l i z e d : one f o r handl ing raw d a t a ; one f o r

g raph ica l p re sen ta t ion of t h e v e l o c i t y v e c t o r f i e l d i n t h e p lane of t h e

nozz les ; and one f o r g raph ica l p re sen ta t ion of t h e c ros s - sec t iona l da t a .

The program f o r handl ing of raw da ta c a l c u l a t e d p i t c h ang le s

and v e l o c i t y p re s su re c o e f f i c i e n t s by l i n e a r i n t e r p o l a t i o n of t h e

c a l i b r a t i o n curves f o r t he probe. The o u t l e t average v e l o c i t i e s were

ca l cu la t ed using the c a l i b r a t i o n s f o r t h e o r i f i c e meters used i n t h e

supply l i n e s t o determine t h e a i r discharge.

The second program non-dimensionalized t h e raw d a t a and

p l o t t e d t h e v a r i a t i o n of t h e v e l o c i t y , yaw angle , 8 , and p i t c h ang le ,

6 % f o r each t r a v e r s e . A subrout ine was used t o p l o t t h e vec to r f i e l d ,

showing t h e ang le of yaw and t h e length of t h e v e l o c i t y vec to r . The

i n t e r f a c e between t h e back flow j e t and t h e incoming j e t s A and B was no t

w e l l def ined. The most probable explana t ion i s t h a t t h e incoming j e t s

i n t e r f e r e wi th t h e p i t o t tube when t h e backflow j e t i s measured and

the backflow j e t i n t e r f e r e s wi th t h e p i t o t tube when t h e incoming j e t s

a r e measured. Two s e t s of p l o t s were prepared, one g iv ing t h e forward

v e l o c i t i e s readings p r i o r i t y , t h e o t h e r g iv ing p r i o r i t y t o t h e backward

v e l o c i t i e s . The zone where t h e p l o t s d i sag ree i n d i c a t e s t h e reg ion of

i n t e r f e r e n c e .

The program f o r t h e c ros s - sec t iona l d a t a was used t o p l o t contour

o r i s o v e l o c i t y p l o t s and t o i l l u s t r a t e t h r e e dimensional s u r f a c e s viewed

from d i f f e r e n t vantage po in t s .

3.5 Experimental Data

F i g u r e 3 shows a p l o t of t h e v e l o c i t y v e c t o r f i e l d i n t h e p l ane

of t h e j e t nozz l e s . Th i s p l o t is a composite of t h e p l o t s de sc r i bed i n t h e

last s e c t i o n . The p l o t g iv ing backward v e l o c i t i e s p r i o r i t y was l a i d over

t h e p l o t g i v i n g t h e forward v e l o c i t i e s p r i o r i t y . The r e g i o n of disagreement

between t h e s e two is hatched i n F igu re 3, which is b a s i c a l l y t h e backward

p r i o r i t y p l o t . There may b e some c o r r e l a t i o n between t h e f a c t t h a t more

c o n f l i c t i s observed on one s i d e of t h e flow p a t t e r n and t h e f a c t t h a t t h e

probe always p rogressed i n t o t h e f low f i e l d from t h a t s i d e . Note a l s o t h a t

t h e l i n e a r s c a l e is i n d i c a t e d a t t h e t o p of t h e f i g u r e . Some of t h e

measurements were t aken a t a l a t e r t i m e than o the r s , and i t w a s no ted

t h a t t h e maxima of t h e later and earlier p r o f i l e s d i d n o t q u i t e l i n e

up. Th i s w a s a t t r i b u t e d t o s l o p i n t h e c a r r i a g e r a i l system, and an

i n d i c a t i o n of i t s o r d e r of magnitude is no ted on t h e f i g u r e . T h i s problem

d i d no t p r e s e n t i t s e l f dur ing any con t inuous set of measurements and on ly

became e v i d e n t n e a r t h e end of t h e exper imenta l program when some

measurements were made t o f i l l i n gaps i n t h e v e c t o r f i e l d p l o t . It would

appear t o be r ea sonab l e t o s h i f t t h e p r o f i l e s t o a l i g n t h e maxima; however \

t h e d a t a a r e p r e sen t ed a s recorded . F i g u r e 3 is u s e f u l i n a s s e s s i n g t h e

o v e r a l l c h a r a c t e r of t h e flow. However t h e d e t a i l e d t r a v e r s e s upon which

it is based a r e more u s e f u l i n a n a l y s i n g t h e e x i s t e n c e o r no t of

s i m i l a r i t y p r o f i l e s w i t h i n t h e f low and t h e i r d e t a i l e d c h a r a c t e r . Two

c r o s s - s e c t i o n a l l o c a t i o n s are f l agged on Fig. 3 a t x v a l u e s of 25.4 cm and

26.0 cm. The d e t a i l e d t r a v e r s e s f o r t h e s e two l o c a t i o n s a r e p r e sen t ed i n

F ig s . 4 and 5 . Figure 4 shows t h e v a r i a t i o n of v e l o c i t y magnitude, yaw

MAXIMUM VELOCITY 2 2 9 . 3 f p s OUTLES AT X = 2 3 . 6 8 cm

SHIFT DUE TO CARRIAGE SLOP

REGION OF CONFLICTING DATA

TRAVERSE STARTED FROM THIS SIDE

F i g . 3. V e l o c i t y v e c t o r s i n t h e p l a n e o f t h e j e t s .

THE REFERENCE VELOCITY I F 229.3 FBS THE REFERENCE ANGLE I S 180' OUTLET CENTERS AT X a 23.68 CM, Z = 1.564 FT

- YAW ANGLE, 0 +-+ -At

A.

'n 4--+ +-- ' ,,A'-. -3-

- j++ -.+ - +-A jh+-?c -

\

I - -+ -Y -F- ,/ \ . ~ x -- +

\ ./,/ '/ / PITCH ANGLE, B

Fig. 4. Veloc i ty i n the forward f low i n the plane of the nozz les .

5 - . 2 5 +

I : M , E N 1 :S - . 5 * I I

0 ' N , : L - - 7 5 -.- E

I s

S Iv I I I -1 .

-- ---- - -- - - -- - - - -- - - - -

THE X - L g C IS 26.0 CM 1 I T H E Z-LCiC I S 1 . 5 6 4 ~ ~ ! TWE 3,I"E I S 3 i 1 1 9 G 3 i

I

I I t -- 1- - ----+---.-I 0 . 1 . 2 . 3 . 4 .

- 5 1. 5 2 . 5 3 . 5

r-- .i-. . - . - . ,- " .- . .-.----.--...--z.-----.u.-.--.m....

: J . . . / C.

-r ! .THE REFERENCE VELOCITY I S 229.3 FPS

I :.- j r- / , J

THE REFERENCE ANGLE I S 180' , C 1 OUTLET CENTERS AT X - 23.68 CM, Z = 1.564 FT

;I , r i 7-

I j I

/ I T

/ f-:

i ;r . 5 -!- i

> -? > , 1

i I I i A ---6 VELOCITY

4 f

L' .+ -{ ',

-. 2

I i

.1 PITCH ANGLE, B a A.

"A

't" - i3 2 pi t:' C T 13 N (NOZZLE DIMTERS)

Fig. 5. Velocity traverse in the backflow in the plane of the nozzles.

a n g l e and p i t c h a n g l e i n t h e forward f low r e g i o n as t h e two incoming jets

merge. I ts g e n e r a l form sugges t s t h e con junc t i on of two e s s e n t i a l l y

Gaussian p r o f i l e s . F igu re 5, on t h e o t h e r hand, shows t h e same parameters

i n t h e reg ion of backflow. C l e a r l y t h e v e l o c i t y p r o f i l e i n t h a t reg ion i s

non-Gaussian i n c h a r a c t e r .

F igs . 6 through 9 show contours of equa l v e l o c i t y a t f o u r

l o c a t i o n s i n t h e f low f i e l d . Figs . 6 through 8 are l o c a t e d i n t h e r eg ion

of backflow. These i l l u s t r a t e t h a t t h e backflow sp reads much more r a p i d l y

i n t h e z - d i r e c t i o n than i n t h e y -d i r ec t i on . Fig. 9 is i n t h e forward

flow. Note t h a t it i s p l o t t e d t o a d i f f e r e n t l i n e a r s c a l e t h a n t h e t h r e e

p reced ing f i g u r e s . F ig s . 1 0 through 1 3 show t h r e e dimensional s u r f a c e

p r o j e c t i o n s of t h e same d a t a viewed from a p o i n t on a l i n e p a r a l l e l t o

t h e x-axis , w i th t h e l i n e of s i g h t depressed 15' towards t h e yz p l ane and

a t an a n g l e of 45' t o bo th t h e x and y d i r e c t i o n s .

I n o r d e r t o c r e a t e F ig s . 6 through 1 3 m a t r i c e s were formed t o

ho ld d a t a from t r a v e r s e s t aken a t i n t e r v a l s of z . S ince t h e z i n t e r v a l s

were less i n some f low r eg ions t han o t h e r s , i n t e r m e d i a t e p r o f i l e s were

c r e a t e d by l i n e a r i n t e r p o l a t i o n where d a t a d i d n o t e x i s t . Then, t o

c o r r e c t f o r t h a t f a c t t h a t u n i t s and i n t e r v a l s of measurements were

d i f f e r e n t i n t h e y and z d i r e c t i o n s , a new m a t r i x was c r e a t e d u s ing a f o u r

p o i n t i n t e r p o l a t i o n scheme. This l a t te r ma t r i x i s t h a t upon which t h e

p l o t s a r e based. The e lements of t h e ma t r i x are t h u s n o t n e c e s s a r i l y

p h y s i c a l d a t a , b u t a r t i f i c i a l d a t a c r e a t e d by i n t e r p o l a t i o n .

~ i i

(interva

I l l

r I-'.

OP Y

n 0

R 0 z V1

0 M

n, 9

E . P

9 . P 0 0 I-'.

.c" G- l-t 3 n,

'3 PI D 7; M P

2 s X (I

P\) Cn

Cn

p

!- 7 y (interval 0.01 in.)

-r- y (interval 0.01 in.)

'- N

Fig. 9. Contours of equal v e l o c i t y i n forward flow a t x = 26.2 cm.

H M 0

k! rt 1 I-'. n 'd 1 0 LI. (D n rt I-'. 0 3

9 P 0 n P. rt I-'. (D M

4. DATA ANALYSIS

I n o rde r t o develop assumptions as t o t h e cha rac te r of s i m i l a r i t y

p r o f i l e s i n t h e flow, which could b e used as t h e b a s i s f o r development of

a so lu t ion , t h e forward and backward flow p r o f i l e s were examined f o r

s i m i l a r i t y .

Figure 14 shows t h e p r o f i l e s measured i n t h e forward flow

compared wi th a normal d i s t r i b u t i o n . Clear ly they a r e e s s e n t i a l l y

Gaussian i n charac ter . Figure 15, on t h e o t h e r hand,shows t h e v e l o c i t y

p r o f i l e s i n t h e plane of t h e nozzle i n t h e back flow. Since t h e r e is

r e v e r s a l of flow a t t h e edge of t h e j e t , t h e j e t width f o r zero v e l o c i t y

may be c l e a r l y defined. However, s i n c e i n most circumstances such a

d i s t i n c t p r o f i l e edge does not e x i s t , i t has become customary t o work wi th

t h e half-width of t h e veloc2ty p ro f i l e , i . e . t h e width of t he p r o f i l e

when t h e v e l o c i t y is equal t o ha l f t h e maximum value . I n t h i s case

b = half-width i n t h e xy plane and bZ = half-width i n t h e xz plane. Y

Because t h e r e is a d i s t i n c t edge t o t h e j e t a Gaussian p r o f i l e would

not be appropr ia te . F igure 15 has p l o t t e d on i t a cubic curve and

an e l l i p s e a s poss ib l e simple funct2ons. The e l l i p s e f i t s t h e d a t a we l l

i n t h e reg ion of higher v e l o c i t i e s and l e s s we l l i n the region where

v e l o c i t i e s a r e l e s s r e l i a b l e . It i s of course poss ib l e t o a l t e r t h e absc i s sa

s c a l e t o make t h e dimensionless base width of t h e p r o f i l e equal t o one,

i n which case t h e semi-e l l ipse becomes a semi-circle. The equat ion f o r

t h e e l l i p s e i s

The cubic equat ion is given by

'a r-( 0 Ill P. I-' ID m

'a I-' !3 3 (D

3 0 N N I-' (D m

Figure 16 shows t h e corresponding p l o t f o r t h e v e r t i c a l d i s t r i b u t i o n of

v e l o c i t i e s i n t h e back flow. I n t h i s case t h e d a t a is w e l l f i t by a

simple cos ine funct ion

2 8 Az u/um = cos (- -)

3 b Z

Since t h e r e is no c l e a r r e v e r s a l of d i r e c t i o n a t t h e upper and lower edges

of t h i s p r o f i l e i t may a l s o be q u i t e w e l l f i t by the Gaussian d i s t r i b u t i o n

u/u, = exp [-2.77 ( ~ z l b ~ ) ' ]

Thus, t h e p r o f i l e i n t h e reverse flow may be represented by a combination

of Eq. 3 o r 4 w i th Eq. 5 o r 6.

Figure 17 shows t h e measured va lues of b and bZ i n t h e r eve r se Y

flow, and t h e observed va lues of a i n t h e forward flow.

The s t agna t ion poin t obtained by l i n e a r i n t e r p o l a t i o n from t h e

p r o f i l e s shown on Fig. 3, i s indica ted on Fig. 17 f o r re ference . The

da ta suggests t h a t , a f t e r some i n i t i a l d i s t ance back from t h e s t agna t ion

poin t , t h e r e i s n e g l i g i b l e spreading i n t h e plane of t h e nozzles and

approximately l i n e a r spreading normal t o t h i s plane.

b bZ, a o r a Y' Y z

44

5. CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

I n t e r s e c t i n g flow may no t n e c e s s a r i l y be combined us ing vec to r add i t i on

of v e l o c i t i e s o r momentum f l u x d e n s i t i e s . When two perpendicular i n t e r s e c t i n g

axisymmetric submerged tu rbu len t j e t flows of approximately equal s t r e n g t h

combine, a reg ion of backflow i s observed. The backflow spreads much more r a -

p i d l y i n t h e d i r e c t i o n perpendicular t o t h e p l ane o f t h e nozz les than i t does

i n t h e p lane of t h e nozz les . In t h e reg ion of forward flow t h e p r o f i l e s were

e s s e n t i a l l y Gaussian. In t h e reg ion of backflow t h e p r o f i l e s were approximately

e l l i p t i c o r cubic i n t h e p lane of t h e nozz le , and approximately Gaussian o r

c o s i n a l normal t o t h i s p lane . A f t e r some i n i t i a l d i s t a n c e back from t h e s t a g -

n a t i o n p o i n t observed i n t h e flow, spreading i n t h e backflow i n t h e p lane of t h e

nozz les appeared t o be n e g l i g i b l e and approximately l i n e a r normal t o t h i s p lane .

Attempts t o develop an a n a l y t i c s o l u t i o n f o r t h e flow f i e l d have so f a r proved

unsuccessfu l . The s i m i l a r i t y p r o f i l e s may, however, provide t h e b a s i s f o r

u s e f u l assumptions i n developing such a s o l u t i o n . Because o f t h e l i m i t e d amount

of d a t a which could be c o l l e c t e d i n t h i s i n v e s t i g a t i o n , it would be unwise t o

at tempt t o draw any genera l conclusions about t h e magnitudes of empir ica l

c o e f f i c i e n t s used t o f i t mathematical formulat ions t o t h e observed d a t a .

5 .2 . Recommendations on Future Appl ica t ions

The work descr ibed i n t h i s r e p o r t r ep re sen t s an i n i t i a l i n v e s t i g a t i o n

of a phenomenon t h a t , when more f u l l y understood, can lead t o an improvement

i n t h e q u a l i t y of p r e d i c t i v e computational models f o r t h e flow f i e l d s involv ing

zones of chemical, sedimentary o r thermal ly a l t e r e d d ischarges i n t o moving

c u r r e n t s . Present methods a r e gene ra l ly based on t h e no t ion t h a t an accu ra t e

gene ra l d e s c r i p t i o n of t h e flow f i e l d may r e s u l t from v e c t o r combinations of

v e l o c i t i e s o r momentum f luxes on an elementary l e v e l . Such models then have t o

be modified t o t a k e i n t o account wake e f f e c t s by t h e in t roduc t ion of drag coef-

f i c i e n t s . Extension of t h e p re sen t work which might l ead t o improved modeling

of t h e elementary process used t o syn thes i ze t h e o v e r a l l f low p a t t e r n would inc lude

numerical a n a l y t i c i n v e s t i g a t i o n of t h e p re s su re f i e l d t h a t develops when a s imple

j e t i s d i r e c t e d a t an angle toward a f l a t su r f ace , and t h e ex tens ion of t h i s

i n v e s t i g a t i o n t o t h e p re s su re f i e l d wi th in t h e flow c rea t ed by two merging s t reams.

F i n a l l y , a t h e o r e t i c a l b a s i s should be sought t o j u s t i f y t h e combination of small

elements of l a r g e flow f i e l d s , t a k i n g i n t o account backflows (which may be over-

r idden by t h e forward flow i n a proximate element). This would provide t h e

p o s s i b i l i t y of p r e d i c t i n g a flow p a t t e r n involving backflows i n some reg ions

without t h e n e c e s s i t y of in t roducing a r t i f i c i a l concepts such as drag c o e f f i c i e n t s

accounting f o r t h e blockage e f f e c t of t h e i n j e c t e d flow.

LIST OF REFERENCES

1.. Abraham, G . , " J e t D i f f u s i o n i n S tagnan t Ambient F l u i d , " D e l f t Hydrau l ics Labora to ry P u b l i c a t i o n s , No. 29, J u l y , 1963.

2 . A l b e r t s o n , M. L. , Dia, Y. B . , J ensen , R. A . , and Rouse, H . , " D i f f u s i o n o f Submerged J e t s , " T r a n s a c t i o n s , ASCE, Vol. 115, Paper No. 2409, 1950 pp. 639-697.

3. Alexander, L. G . , Baron, T. , and Comings, E. W . , " T r a n s p o r t a t i o n of Momentum, Mass, and Heat i n Turbu len t Jets," B u l l e t i n S e r i e s No. 413, U n i v e r s i t y o f I l l i n o i s Engineer ing Experiment S t a t i o n , Urbana, I l l . , May, 1953.

4. Becher, P . , " L u f t s t r a h l e n a u s Ventilations-tjffnungen, Gesundhei ts i n g e n i e u r , No. 9 /10, Mai, 1950, pp. 139-145.

5. Be tz , A . , "Versuche iiber d i e Ausbrei tung e i n e s f r e i e n S t r a h l e s , " Ergebn isse d e r Aerodynamischen V e r s u c h s a n s t a l t zu Ggt t ingen , 11, 1923. pp. 69-73.

6. Bradbury, L.J .S . , "An I n v e s t i g a t i o n I n t o t h e S t r u c t u r e of a Turbu len t P l a n e Jet," Ph.D. T h e s i s , U n i v e r s i t y of London, 1963.

7. C o r r s i n , S . , " I n v e s t i g a t i o n o f Flow i n a n A x i a l l y Symmetrical J e t of A i r , " N.A.C.A. Wartime Repor t s , W-94, Dec., 1943.

8. C o r r s i n , S . , and Uberoi, M. S . , " F u r t h e r Experiments on t h e Flow and Heat T r a n s f e r i n Heated Turbu len t A i r J e t , " N.A.C.A. T e c h n i c a l Notes , N 1865, A p r i l , 1949.

9. C o r r s i n , S. , and Uberoi, M. S., " F u r t h e r Experiments on t h e Flow and Heat T r a n s f e r i n a Heated Turbu len t A i r Jet . , N.A.C.A. Repor t s , No. 998, 1950.

10. F i s c h e r , H. B . , L i s t , E. J . , Koh, R .C .Y . , Imberger , J . , and Brooks, N .H . , Mixing i n I n l a n d and C o a s t a l Waters, Academic P r e s s , New York, N . Y . ,

1979.

11. F l o r a , J . , and Goldschmidt, V. , " V i r t u a l O r i g i n s o f a F r e e P l a n e Turbu len t Jet," American I n s t i t u t e of Aeronau t ics and A s t r o n a u t i c s J o u r n a l , Vol. 7, 1969, pp. 2344-2346.

12. F o r s t a l l , W . , and Gaylord, E. W . , "Momentum and Mass T r a n s f e r i n a Submerged Water J e t , " J o u r n a l of Appl ied Mechanics, Vol. 22, 1955, pp. 161-164.

13. Fgrthmann, E., "Turbu len t Jet Expansion," N.A.C.A. Techn ica l Memoranda, No. 789: T r a n s l a t e d from Ing. Arch., Vol. 5 , 1934, pp. 42-54.

14. G a r t s h o r e , I. S., "The Streamwise Development o f Two-Dimensional Wall Jets and Other Two-Dimensional Turbu len t Shear Flows," Ph.D. T h e s i s , Mechanical Engineer ing, McGill U n i v e r s i t y , 1965.

Goldschmidt, V. , and Eskinaz i , S. , "Two Phase Turbulent Flow i n a P l ane Jet," Jou rna l of Applied Mechanics, Vol. 33, 1966, pp. 735-747.

Hegge Zi jnen, B. G. van de r , "Measurements of t h e Ve loc i ty D i s t r i b u t i o n i n a P l a n e Turbulent Jet of A i r , " Applied S c i e n t i f i c Research, Vol. 7, Sec t ion A, 1958, pp. 256-276.

Heskestad, G . , "Two Turbulent Shear Flows," Johns Hopkins Un ive r s i t y , Mechanical Engineering Contract AF(638) -248, 1963.

Heskestad, G.,"Hot Wire Measurements i n a P l a n e Turbulent Jet," Jou rna l of Applied Mechanics, Vol. 32, 1965, pp. 721-734 (erratum, Sept. 1966, p. 710).

Hinze, J. O . , and Hegge Zi jnen, B. G. van d e r , "Transfer of Heat and Mat te r i n t h e Turbulent Mixing Zone of an Axia l ly Symmetric ~ e t , " Applied S c i e n t i f i c Research, The Hague, Sec t ion A , Vol. 1, 1949, pp. 435-461.

Jenkins , P. E . , and Goldschmidt, V. , "Mean Temperature and Veloc i ty i n a P l ane Turbulent Jet," Jou rna l of F l u i d s Engineering, Transac t ions ASME, Vol. 95, 1973, pp. 581-584.

Johannesen, N. H . , "Fur ther Resu l t s on t h e Mixing of Free Axial ly- Symmetrical J e t s of Mach Number 1.40;' Aeronaut ica l Research Council Technical Report, R and M No. 3292, 1962.

Keagy, W. R . , and Weller , A. E. , "A Study of F r e e l y Expanding Inhomogeneous J e t s , " Heat T rans fe r F lu id Mechanics I n s t i t u t e , 2nd Berkeley, C a l i f o r n i a , 1949, pp. 89-98.

Keagy, W. R . , Weller , A. E. , Reed, F. A , , and Reid, W. T. , B a t e l l e Memorial I n s t i t u t e , The Rand Corporat ion, Santa Monica, C a l i f o r n i a , Feb. , 1949.

Kizer , K. M . , "Mater ia l and Momentum Transport i n Axisymmetric Turbulent Jets of Water," American I n s t i t u t e of Chemical Engineers J o u r n a l , Vol. 9, 1963, pp. 386-390.

Knystautas , R . , "The Turbulent Jet ,From a S e r i e s of Holes i n Line," Aeronaut ica l Qua r t e r ly , Vol. 15, 1964, pp. 1-28.

Kotsovinos, N. W . , "A Study of t h e Entrainment and Turbulence i n a Plane Turbulent Jet, " W. M. Keck Laboratory Reports , KH-R-32 C a l i f o r n i a I n s t i t u t e of Technology, Pasadena, C a l i f o r n i a , 1975.

Kotsovinos, N. E . , "A Note on t h e Spreading Rate and V i r t u a l Or ig in of a P l ane Turbulent Jet," Jou rna l of F lu id Mechanics, Vol. 77, P a r t 2 , 1976, pp. 305-311.

Maxwell, W. 11. C . , and Snorrason, A . , "Measurements i n I n t e r s e c t i n g Submerged and Induced Jets," U n i v e r s i t y o f I l l i n o i s C i v i l Eng ineer ing S t u d i e s , Hydrau l ic Engineer ing Research S e r i e s , No. 34, Aug. 1979.

Maxwell, W. H. C . , "Cross ing Submerged Jets," J o u r n a l of t h e Hydrau l ics D i v i s i o n , ASCE, Vol. 105, No. HY12, Proc. P a p e r 15016,Dec. 1979, pp. 1557-1560.

Mih, W. C . , and Hoopes, J. A . , "Mean and Turbu len t V e l o c i t i e s f o r P l a n e Jet," J o u r n a l o f Hydrau l ics D i v i s i o n , ASCE, Vol. 98, 1972, pp. 1274-1294.

Miller, D. R., and Comings, E. W . , " S t a t i c P r e s s u r e D i s t r i b u t i o n i n t h e F r e e Turbu len t J e t , " J o u r n a l of F l u i d Mechanics, Vol. 3 , P a r t I, 1957, pp. 1-16.

Nakaguchi, H . , " J e t Along a Curved Wall," U n i v e r s i t y of Tokyo Research Memoranda, No. 4 , 1961.

Newman, B. G . , "Turbu len t J e t s and Wakes i n a P r e s s u r e Grad ien t , " F l u i d Mechanics o f I n t e r n a l Flow, G. Sovran, ed . , E l s e v i e r P u b l i s h i n g Company, The Nether lands , 1967, pp. 170-209.

Olson, R. E., "An A n a l y t i c a l and Exper imental Study of Two-Dimensional Submerged J e t s , " Diamond Ordnance Labs . , P roceed ings of t h e F l u i d A m p l i f i c a t i o n Symposium, 1962, pp. 267-286.

Poreh, M. , and Cermak, J. E., "Flow C h a r a c t e r i s t i c s of a C i r c u l a r Submerged Jet Impinging Normally on a Smooth Boundary," S i x t h Mid- Western Conference on F l u i d Mechanics, U n i v e r s i t y of Texas, 1959, pp. 198-212.

R e i c h a r d t , H. , "Gesetzmiisz igkei ten d e r f r e i e n Turbulenz," V . D . I . Forschungshef t , Vol. 13 , May-June, 1942, pp. 1-22.

R e i c h a r d t , H . , "Gesetzmassigkei ten d e r F r e i e n Turb,ulenz," V . D . I . Forschungshef t , Vol. 414, 1951.

Ricou, F. P . , and Spa ld ing , D. R.,"Measurements of Entra inment by Axisymmetrical Turbu len t Jets," J o u r n a l of F l u i d Mechanics, Vol. 11, 1961, pp. 21-32.

Rosenweig, R. E., H o t t e l , H. C., and W i l l i a m s , C. G . , "Smoke S c a t t e r e d L i g h t Measurement o f Turbu len t Concen t ra t ion F l u c t u a t i o n s , " - Chemical Engineer ing Sc ience , Vol. 1 5 , 1961, pp. 111-129.

Ruden, P. , "Turbu len te Ausbneitrorgijnge i m F r e i s t a h l , " Na turwissenschaf ten , Vol. 21, 1933, pp. 375-378.

41. Tay lor , J. F. , G r i m m e t t , H. L . , and Comings, E. W . , " I so thermal F r e e - -

~ e t s o f A i r Mixing w i t h Ai r , " Chemical Engineer ing P r o g r e s s , Vol. 47, No. 4, A p r i l , 1951, pp. 175-180.

42. Triipel , T., "Uber d i e Einwirkung e i n e s L u f t s t r a h l e s auf d i e umgebende ~ u f t : ' Z e i t s c h r i f t f i i r das gesamte Turbinenwesen, Vol. 1 2 , No. 5 , 1915, pp. 52-66.

43. Uberoi , M. , and Garby, L. C . , " E f f e c t o f D e n s i t y G r a d i e n t on an A i r J e t , " P h y s i c s of F l u i d s , Vol. 10, 1967, pp. 200-202.

44. Wilson, R.A.M., and Danckwerts, P. V., "S tud ies i n Turbu len t Mixing .II. A Hot A i r J e t , " Chemical Engineer ing Sc ience , Vol. 1 9 , 1964, pp. 885-895.


Recommended