+ All Categories
Home > Documents > I3101 · I3101 WORKSHEET . Planned Route: Takeoff: KNPA, ... Amdt 2A 29MAY14 17117 HIRL Rwy 15-33...

I3101 · I3101 WORKSHEET . Planned Route: Takeoff: KNPA, ... Amdt 2A 29MAY14 17117 HIRL Rwy 15-33...

Date post: 30-May-2018
Category:
Upload: tranthu
View: 213 times
Download: 0 times
Share this document with a friend
16
1 I3101 WORKSHEET Planned Route: Takeoff: KNPA, RWY 25R Altitude: 6000’ Route: Radar departure from KNPA BFM (VOR holding) SQWID Approaches: KMOB VOR-A (arcing approach), KMOB RVFAC ILS RWY 15 KMOB RVFAC LOC RWY 15 Prerequisites: -IN1203-4, IN1206-7, IN1209-11, and IN1301-3 (Instruments CAI) -Q4390 (NATOPS check-ride) Syllabus Notes: -IUT shall meet or exceed these approach-type requirements. A minimum of six approaches are required for this block. GCA 1 (PAR or ASR) ILS 1 LOC 1 VOR 2 Special Syllabus Requirements: -None Discuss Items a. UFCP DME HOLD function b. FMS setup Flight plan and approaches may be loaded for training however flight should be conducted PFD Source to VOR/LOC c. Scan Patterns FTI information d. Any emergency procedure
Transcript

1

I3101 WORKSHEET

Planned Route: Takeoff: KNPA, RWY 25R Altitude: 6000’ Route: Radar departure from KNPA BFM (VOR holding) SQWID Approaches: KMOB VOR-A (arcing approach),

KMOB RVFAC ILS RWY 15 KMOB RVFAC LOC RWY 15

Prerequisites: -IN1203-4, IN1206-7, IN1209-11, and IN1301-3 (Instruments CAI) -Q4390 (NATOPS check-ride) Syllabus Notes: -IUT shall meet or exceed these approach-type requirements. A minimum of six approaches are required for this block. GCA 1 (PAR or ASR) ILS 1 LOC 1 VOR 2 Special Syllabus Requirements: -None Discuss Items

a. UFCP DME HOLD function

b. FMS setup Flight plan and approaches may be loaded for training however flight should

be conducted PFD Source to VOR/LOC

c. Scan Patterns FTI information

d. Any emergency procedure

FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
CUBIC
Highlight

CNATRAINST 1552.165B IUT T-6B RADIO INSTRUMENTS I3100 BLOCK

IUT GRADE SHEET DATE __________________ INSTRUCTOR __________________________ MEDIA: OFT/UTD VT- ________ BRIEF TIME: ________ NAME: ________________________________ EVENT:__________

CTS REF

MANEUVER

MIF I3101 I3102 1 GENERAL KNOWLEDGE / PROCEDURES 3+ X X 2 EMERGENCY PROCEDURES 3+ X X 3 HEADWORK / SITUATIONAL AWARENESS 3+ X X 4 BASIC AIRWORK 4+ X X 5 IN-FLIGHT CHECKS / FUEL MANAGEMENT 3+ X X 6 IN-FLIGHT PLANNING /

AREA ORIENTATION 4+ X X

7 TASK MANAGEMENT 3+ X X 8 COMMUNICATION 4+ X X 9 MISSION PLANNING / BRIEFING /

DEBRIEFING 3+ X X

10 GROUND OPERATIONS 4 11 TAKEOFF 4+ X X 12 DEPARTURE 4+ X X 13 INSTRUCTIONAL SKILLS / STUNDENT

MANAGEMENT 3+ X X

41 STEEP TURNS 4+ X 42 IFR UNUSUAL ATTITUDES 4+ X 43 POINT-TO-POINT 3+ X 44 HOLDING 4+ X 45 ENROUTE PROCEDURES 4+ X X 46 ENROUTE DESCENT 4+ X X 47 HIGH-ALTITUDE APPROACH 3 48 TEARDROP APPROACH 4 49 ARCING APPROACH 4 X 50 HILO APPROACH 4 X 51 PROCEDURE TURN APPROACH 4 52 RVFAC APPROACH 4 X X 53 GPS APPROACH 4 54 PAR APPROACH 4 X 55 ASR APPROACH 4 X 56 VOR FINAL 3+ X X 57 ILS FINAL 3+ X 58 LOC FINAL 3+ X 59 GPS FINAL 3 60 BACKUP FLIGHT INSTRUMENT APPROACH 3 61 CIRCLING APPROACH 3 62 MISSED APPROACH 4 63 TRANSITION TO LANDING / LANDING 4+ X X

Syllabus Notes: a. I3101 shall be conducted in the OFT. I3102 should be conducted in the OFT, but it may be conducted in the

UTD. b. IUTs shall meet or exceed the following approach-type requirements:

1 GCA (PAR or ASR),1 ILS,1 LOC, 2 VOR A minimum of six approaches are required for this block.

Discuss 13101: UFCP, FMS Setup, Scan Patterns I3102: Battery Failure, Generator Failure, Backup Flight Instrument

1542.165B Rev 03/16/2017

FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
FTC
Highlight
CUBIC
Highlight
CUBIC
Highlight
CUBIC
Highlight
CUBIC
Highlight
CUBIC
Highlight
CUBIC
Highlight
CUBIC
Highlight
CUBIC
Highlight
CUBIC
Highlight
CUBIC
Highlight

348TWR

310

304

283

271

320

A5

A5

P

P

IAFSEMMES

115.3 SJI

Chan 100

540

321

SJI 7

BFM 9.2

SAINT

1800

(7)

BROOKLEY

112.8 BFM

Chan 75

MSA SJI 25 NM

3100

062°

242°

CATEGORY B C DA

CIRCLING 680-1 461 (500-1)780-2

561 (600-2)

1801501209060Knots

Min:Sec

FAF to MAP 5.6 NM

5:36 3:44 2:48 2:14 1:52

MOBILE, ALABAMA (MOB)

VOR or TACAN-A

ELEV 219

1800

within 10 NM

Remain

1800

5.6 NM

9002000

Chan

APP CRS

219Apt Elev

TDZE

Rwy Idg

115.3

100

MOBILE, ALABAMA

(MOB)

AL-267 (FAA)

ASR

N/AN/A

VORTAC SJIVOR or TACAN-A

SJI 5.6

UBACE

SAINT

MOBILE RGNL

MOBILE RGNL

GND CON UNICOM

122.95119.85

ATIS CLNC DEL

118.5 269.3 (CTAF)124.75 257.85

MOBILE APP CON MOBILE TOWER

118.3 239.0 L 121.9 348.6

480

T

SJI R-140

hdg 200°

373

104°

from FAF

104° 5.6 NM

284°

104°

30°41'N-88°15'W

104°

059°

239°

to SAINT INT/BFM 9.2 DME and hold.

right turn to 2000 on heading 200° and SJI R-140

MISSED APPROACH: Climb to 900, then climbing

C521 (600-1 )

SJI VORTAC

TACCU

(IF)

428

SJI 5.6

UBACE

380

365

744

Amdt 2A 29MAY14

17117

HIRL Rwy 15-33

MIRL Rwy 18-36

348

740-11212

3633

15

18

8502 X 1

50

xx

4376 X 1

50

R-242

R-140

R-284

R-238

1800

No

T

SJI

7Arc

Chan 1

04

R-1

74

115.7 G

CV

(IAF)

SJI 7

SQWID

P

H

HH

SE

-4, 17 AU

G 2017 to 14 S

EP

2017 SE

-4,

17 A

UG

201

7 to

14

SE

P 2

017

348TWR

310

304

283

271

320

A5

A5

P

P

A5

3633

15

18

8502 X 1

50

xx

4376 X 1

50

MOBILE, ALABAMA (MOB)

SEMMES

Chan 100

LOC I-MOB

APP CRS

109.9 145°

MOBILE, ALABAMA

ASR

A

Rwy Idg

TDZE

Apt Elev

from FAF

145° 4.8 NM

BROOKLEY

112.8 BFM

Chan 75

219

8502

AL-267 (FAA)

(MOB)

R-301

T

R-1

74

GC

V 1

15.7

Chan 1

04

061°

241°

R-061

R-1

74

ALTERNATE MISSED APCH FIX

Chan 104

GCV 115.7

BFM

MOBILE RGNL

MOBILE RGNL

R-061

Chan 27GPT

109

Chan 27GPT

109

GND CON UNICOM

122.95119.85

ATIS CLNC DEL

118.5 269.3 (CTAF)124.75 257.85

MOBILE APP CON MOBILE TOWER

L 121.9 348.6

1801501209060Knots

Min:Sec

FAF to MAP 4.8 NM

4:48 3:12 2:24 1:55 1:36

MALSR

30°41'N-88°15'W

ELEV TDZE219 215

Remain

within 10 NM

2000

325°

900 2000

4.8 NM

RADAR

CAYAT INT

1800

SAINT

145°

GS 3.00°

TCH 55

1800Angle 3.00/TCH 50).

not coincident (VGSI

VGSI and ILS glidepath

S-LOC 15

CIRCLING

CATEGORY

S-ILS 15

A

NA

B C D E

200°

hdg

**

700-1 481 (500-1)780-2

561 (600-2)

700/24 700/50

MSA SJI 25 NM

3100

280°

100°

145°

325°

x

(CFLSL)

SAINT

BFM 9.2

321

744

115.3 SJI

LOCALIZER 109.9

I-MOB

RADAR

CAYAT INT

(IAF)

521 (600-1 )

R-140 to SAINT INT/BFM 9.2 DME and hold.

right turn to 2000 on heading 200° and SJI VORTAC

MISSED APPROACH: Climb to 900 then climbing

118.3 239.0

RADAR REQUIREDCat E Procedure Turn NA -

SQWID

GPT 34.8

SQWID

GPT 34.8

R-140

SJI

380

215 ILS or LOC RWY 15

ILS or LOC RWY 15

38

**

4000 and S-LOC 15 Cats C/D/E visibility to 1 mile.

For inop MALSR increase S-ILS 15 Cat E visibility to RVR

RVR 1800 authorized with use of FD or AP or HUD to DA.

C

415/24

485 (500- ) 485 (500-1)

498

(16)

301°

2000 to CAYAT

HIRL Rwy 15-33

MIRL Rwy 18-36

Amdt 31A 29MAY14

17117

540

480

373365

348

200 (200- )12

12

740-11212

H

H

R-242

R-140

R-04

2

242°

062°

042° (3.6)

2000 to CAYAT

H

SE

-4, 17 AU

G 2017 to 14 S

EP

2017 SE

-4,

17 A

UG

201

7 to

14

SE

P 2

017

ILS NAVAID Setup - D LIDS

D LIDS is a useful acronym to help set up for the ILS approach.

• DME Hold (as required)

• Localizer Set ( Set frequency in UFCP )

• Inbound course (set FAC in the CDI )

• Display (set PFD NAV source for LOC)

• Speed Some examples: Radar downwind - 200 Straight-in - cruise speed until 5 nm from FAF Procedure track - 150 until 5 NM from FAF Procedure Turn - 150 until 5 NM from FAF

ILS NAVAID Setup - D LIDS

Lets look at the ILS RWY 13R at KNGP. Prior to turning off the ARC onto the Final Approach course or while being

vectored to final D LIDS would be need to be accomplished.

• DME Hold From the approach plate we can see that the DME for the approach is NOT from the Localizer I-NGP 111.3 but from the TRUAX VORTAC NGP 114.0 114.0 would be entered into the UFCP via W3 on the UFCP’s persistent display page. Once a VHF NAV frequency is loaded, it’s associated DME can be “locked IN” using the DME HOLD function.

ILS NAVAID Setup - D LIDS

On the UFCP press the NAV TUNE button until the DME page is displayed along with the NAVAID frequency you wish to HOLD

ILS NAVAID Setup - D LIDS

On the UFCP press the NAV TUNE button until the DME page is displayed along with the NAVAID frequency you wish to HOLD Press the W2 button to activate the DME Hold function. This will be indicated by an (H) following the frequency. (The (H) can be toggled on/off using the W2 button) Once set, the DME will remain referenced from this NAVAID until the (H) is removed.

ILS NAVAID Setup - D LIDS

•Localizer Set Using the UFCP return to the persistent display page and load the Localizer frequency I-NGP 111.3 into W3.

•Inbound Course Set the FAC into the CDI

ILS NAVAID Setup - D LIDS

•DISPLAY Ensure that PFD Source is set to LOC

ILS NAVAID Setup - D LIDS

•DISPLAY Ensure that PFD Source is set to LOC On the PFD note the Localizer frequency I-NGP 111.3 shown below the PFD SOURCE

ILS NAVAID Setup - D LIDS

•DISPLAY Ensure that PFD Source is set to LOC

On the PFD note the Localizer frequency shown below the PFD SOURCE •Below the Localizer frequency the Distance in NM and the DME hold NAVAID (NGP 114.0) appear in amber colored type.

•SPEED Maintain the speed appropriate for your position along the approach.

CHAPTER TWO PRIMARY INSTRUMENT NAVIGATION T-6B

204. SCAN PATTERNS

Once PAT is accomplished, SCAN to maintain the desired performance.

Scan is the systematic process of monitoring the crosscheck/performance instruments to detect deviation from desired flight parameters (error detection), then applying the proper controls to make an appropriate timely correction.

The goal is:

Early Error Detection and Correction!

In any scan method there are two basic groups of instruments:

Power/Control Instruments: The four basic inputs that the pilot can make in the aircraft are:

1. PITCH

2. ROLL

3. POWER

4. YAW

Initial Power and Attitude inputs are made referencing the Power/Control Instruments:

1. ADI

2. TORQUE

Crosscheck/Performance Instruments: These instruments are used to detect deviations from required performance and inform you of the inputs required to regain the desired flight parameters.

1. ALTIMETER

2. VSI

3. AIRSPEED

4. ANGLE OF BANK (ROLL POINTER)

5. TURN NEEDLE

6. HSI

2-2 FUNDAMENTAL INAV CONCEPTS

CUBIC
Highlight

CHAPTER TWO PRIMARY INSTRUMENT NAVIGATION T-6B

7. SIDESLIP INDICATOR

An active scan will let you know which control needs adjusted, the direction it needs to be moved, and a sense of how much it should be moved.

HUB and SPOKE Method:

The Hub is the Attitude Gyro (ADI). The Spokes are the crosscheck/performance instruments. A basic instrument scan sequence consists of:

GYRO - Set required Attitude for desired performance

NOSE - Crosscheck nose instrument(s)

GYRO - Adjust Pitch to keep or return to desired parameters

WING - Crosscheck wing performance instrument(s)

GYRO - Adjust Roll to keep or return to desired parameters

PERFORMANCE/PROGRESS - Crosscheck aircraft performance/maneuver progress

GYRO - Stabilize attitude

ADDITIONAL - Fine tune the rudder for Yaw (sideslip) and Power for needed changes in torque

NOTE

Approximately 50% of the time the pilot should be looking at the ADI. This will aid in preventing unintended inputs while insuring desired inputs are appropriate and controlled. ADI is big picture, crosscheck/performance instruments are for fine tuning.

The crosscheck/performance instruments for Pitch, Roll, and Power depend upon the maneuver being conducted. The crosscheck for Yaw is always the sideslip indicator.

The following table outlines the different flight maneuvers you will encounter in this stage of training and the appropriate crosscheck/performance instruments.

FUNDAMENTAL INAV CONCEPTS 2-3

CUBIC
Highlight

CHAPTER TWO PRIMARY INSTRUMENT NAVIGATION T-6B

MANEUVER NOSE CROSSCHECK

WING CROSSCHECK

PERFORMANCE/ PROGRESS INSTRUMENT

ADDITIONAL INSTRUMENTS

STRAIGHT AND LEVEL

ALTIMETER, VSI HSI AIRSPEED SIDESLIP, TORQUE

CONSTANT ANGLE OF BANK TURNS

ALTIMETER, VSI AOB HSI

AIRSPEED SIDESLIP, TORQUE

CONSTANT AIRSPEED CLIMBS & DESCENTS AIRSPEED HSI ALTIMETER SIDESLIP, TORQUE

CONSTANT RATE TURNS

ALTIMETER, VSI

TURN NEEDLE AOB

HSI CLOCK AIRSPEED

SIDESLIP, TORQUE

CONSTANT RATE CLIMBS & DESCENTS

AIRSPEED

HSI

ALTIMETER VSI CLOCK

SIDESLIP, TORQUE

CLIMBING OR DESCENDING TURN AT CONSTANT ANGLE OF BANK & AISPEED

AIRSPEED

AOB

HSI AIRSPEED

SIDESLIP, TORQUE

Figure 2-1 Crosscheck/Performance Instruments

205. SPATIAL DISORIENTATION

Spatial disorientation can be defined simply as a body sensation which tells the aviator that his aircraft is in a particular attitude, when the aircraft is actually in an entirely different position relative to the horizon. This false sensation is derived from a number of sources: the inner ear and vestibular stimulation are the most common.

Spatial disorientation usually does not occur when a pilot has visual reference to the horizon, or at least, the pilot pays little attention to his body feelings, since his sight simply overcomes them. Disorientation occurs when there is no reference to the horizon; however, this does not necessarily limit vertigo to flying in the clouds. It can occur when the aircraft is flying in visual meteorological conditions (VMC), on a day when there are large buildups, when flying above a layer of clouds, when flying in and out of a broken layer, or when launching at night with no clear horizon. Vertigo or the disorientation sensation is, and always will be, a factor in aviation, but is dangerous only when the pilot believes and flies his senses instead of the reliable instruments.

The spatial disorientation training in the T-6B will demonstrate and emphasize three specific facts:

1. A pilot’s attitude sensations are generally unreliable.

2. The pilot cannot recover to straight and level flight using these sensations.

3. Instruments are the only way to recognize and recover from unusual attitudes in Instrument Meteorological Conditions (IMC).

2-4 FUNDAMENTAL INAV CONCEPTS


Recommended