+ All Categories
Home > Documents > Ice Sheet Modeldmb53/DaveSTELLA/Glaciers/Ice Sheet Model.pdf · Ice Sheet Modeling In this...

Ice Sheet Modeldmb53/DaveSTELLA/Glaciers/Ice Sheet Model.pdf · Ice Sheet Modeling In this...

Date post: 21-Aug-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
10
Ice Sheet Modeling In this exercise, we will do some experiments with a simple ice sheet model based on a classic paper by Johannes Weertman, from 1976. Our goals are to understand some basic things about how these ice sheets grow and shrink, and how they can respond to sunlight variations caused by orbital changes of the Earth relative to the Sun. Large continental ice sheets such as Greenland (at left) are important components of the global climate system that play a critical role in altering the planetary albedo, which is connected to a potent positive feedback mechanism, and also in controlling the level of global sea level. Their growth and decline has been one of the dominant features of the Pleistocene ice ages, and their current decline is of great importance to the rising global sea level. The timing of the ice ages and intervening warmer periods are largely controlled by orbital changes, and one of the goals of this modeling exercise is to see how this works.
Transcript
Page 1: Ice Sheet Modeldmb53/DaveSTELLA/Glaciers/Ice Sheet Model.pdf · Ice Sheet Modeling In this exercise, we will do some experiments with a simple ice sheet model based on a classic paper

IceSheetModelingInthisexercise,wewilldosomeexperimentswithasimpleicesheetmodelbasedonaclassicpaperbyJohannesWeertman,from1976.Ourgoalsaretounderstandsomebasicthingsabouthowtheseicesheetsgrowandshrink,andhowtheycanrespondtosunlightvariationscausedbyorbitalchangesoftheEarthrelativetotheSun.

LargecontinentalicesheetssuchasGreenland(atleft)areimportantcomponentsoftheglobalclimatesystemthatplayacriticalroleinalteringtheplanetaryalbedo,whichisconnectedtoapotentpositivefeedbackmechanism,andalsoincontrollingthelevelofglobalsealevel.

TheirgrowthanddeclinehasbeenoneofthedominantfeaturesofthePleistoceneiceages,andtheircurrentdeclineisofgreatimportancetotherisingglobalsealevel.Thetimingoftheiceagesandinterveningwarmerperiodsarelargelycontrolledbyorbitalchanges,andoneofthegoalsofthismodelingexerciseistoseehowthisworks.

Page 2: Ice Sheet Modeldmb53/DaveSTELLA/Glaciers/Ice Sheet Model.pdf · Ice Sheet Modeling In this exercise, we will do some experiments with a simple ice sheet model based on a classic paper

Itiscommontoassumethaticebehavesasadeformableplasticmaterial,whichmeansthatthereisacriticalshearstress,τ0,belowwhichnostrain(deformationorflow)willoccur,andabovewhich,thestrainislimitless.Stressisjustaforceactingonanarea,andshearstressisaforceappliedparalleltoasurfaceasopposedtoaforceappliedperpendiculartoasurface,whichiscalledanormalstress.Wetalkaboutstressesratherthanforces,sincestressesarewhatcancausematerialstodeform(whetherbyfloworbyfracture).Theshearstressatthebaseofapileoficeisafunctionofthesurfaceslope,thethickness,gravity,anddensity:

τ b = ρgh sinα where α is the slope angle (1)Thismeansthatwherethethicknessoftheiceisgreater,theslopecanbesmallerandstillachievethecriticalshearstress.Wheretheiceisthinner,youneedahigherslopetogetthecriticalshearstress.Consideringthattheheightorthicknessoftheicemusttaperto0attheedge,youcanseethattheslopeoftheglacierhastobegreatestrightattheedge(whichisillustratedinaschematicwayinthedrawingabove).Iftheslopeistoolow,thebasalshearstresswillnotmatchthecriticalshearstressτ0,butassnowpilesup,creatingmoreice,thethicknesswillincreaseuntilτ0isreached,atwhichpoint,flowwillbegin.Asflowbegins,theslopewilldecrease;thiscausesthebasalshearstresstodropbelowτ0andflowwillstop,butthensnowpilesupagainandτ0ismet.Theresultofthisisthattheglacierevolvestothepointwherethebasalshearstresshoversrightaroundthecriticalshearstressτ0andasteadystateconditionoccurs.Theresultofthisisthataglacierhasanequilibriumprofile,whichisdescribedbythefollowingequation:

How do continental ice sheets flow?

The ice piles up, creating a surface slope (!), which generates a basal shear stress (") that causes the ice to flow. As the ice piles up, the crust subsides to achieve isostatic equilibrium.

!="ghsin#

#

h

Todevelopourmodelofanicesheet,wehavetostartwithafewbasicsofhowiceformsandflows.Glacialicebeginsassnowfallthataccumulatesovertheyears.Asitgetsburiedundermoresnow,thesnowcrystalsundergoakindofmetamorphism,eventuallyturningintosolidice.Ice,asanaturallyoccurringpolycrystallinesolid,isreallyakindofrock,butunlikemostotherrocks,icecanactuallyflowatthesurfacewithoutmelting.Thissolid‐stateflowisquitefastrelativetoothergeologicprocesses,enablingglacierstobeverydynamicfeaturesofthesurface.

Page 3: Ice Sheet Modeldmb53/DaveSTELLA/Glaciers/Ice Sheet Model.pdf · Ice Sheet Modeling In this exercise, we will do some experiments with a simple ice sheet model based on a classic paper

h(x) =2τ 0ρg

L − x( ) = λ L − x( )( )12 where λ =

2τ 0ρg

(2)

Here,histheheightorthicknessoftheiceatvaluesofx,whichisdistancealongthesurface;x=0isthecenteroftheicemassandListhedistancefromthecenteroftheicetotheedge.Theicesheetisconsideredtobeperfectlysymmetricalsoitlooksthesameinthe+xand–xregions.Weertmansaysthattypicalvaluesforλare8‐15.Ifyouintegratethisequation(2)fromx=‐Ltox=L,yougetthecross‐sectionalarea,andyoucanalsoflipthisaroundtogetthelengthfromthecross‐sectionalarea:

AX =43λ12L

32 and conversely, L =

34AX

2

λ

13

(3)

Hereiswhattheshapeoftheglacierlookslike,attwodifferenttimes,withdifferentcross‐sectionalareas:

Alsoshowninthisdiagramisthesnowline,whichseparatescolderareaswheresnowwillaccumulatetoformicefromwarmerregionswherethemeltingexceedssnowfallandtheglacierwillexperiencealossofice.Thesnowlineslopesgentlyuptotherighttowardsthewarmersideofthediagram.Wherethissnowlineintersectsthesurfaceoftheglacier(redcirclesabove),wedividetheglacierintoitsaccumulationzoneanditsmeltingzone.Thegroundingpositionofthesnowline(blackcircleabove)markstheplacewhereitintersectsanelevationofzero.Themodelstartswithaninitialglacierlength,andfromthat,wecancalculatetheprofileoftheglacieranditscross‐sectionalarea.Oncewehavetheprofile,wecanfindtheintersectionwiththesnowline,whichallowsustoseparatetheglacierintotheregionsabovethesnowlinewhereaccumulationcanoccurandbelowthesnowlinewheremeltingwilloccur.Wegetthesnowlinebysettingtheequationforthesnowlineequaltotheequationfortheshapeoftheicesurface,whichleadstoaquadraticequation.Oncewehavethesnowline,wecancalculatethechangeinthecrosssectionalareaasfollows:

Page 4: Ice Sheet Modeldmb53/DaveSTELLA/Glaciers/Ice Sheet Model.pdf · Ice Sheet Modeling In this exercise, we will do some experiments with a simple ice sheet model based on a classic paper

dAX

dt= Lacvac + Labvab (4)

Here,Lacisthelengthoverwhichaccumulationoccurs,andLabisthelengthoverwhichmeltingorablationoccurs.Theselengthsaremultipliedbytheircorrespondingratesvacandvab(theablationrateisnegative)summedtogivethechangeincross‐sectional(AX)overagivenintervaloftime.Thebalanceofaccumulationandablation—thesignofequation4—thendeterminesiftheglacierwillshrinkorgrow;ineithercase,weassumethatitmaintainstheequilibriumprofile.Inthemodel,theaccumulationrate(vac)andablationrate(vab)arerelatedbyaparametercalledepsilon:

ε =vacvab

(5)

Ifwarmingoccurs,thegroundinglinemovestotheleft(‐xisconsideredtobetowardtheNorth),whereascoolingmovesittotheSouth(rightinthediagram).Basedonobservationsofthepresent,Weertmancalculatedthatthegroundingpositionofthesnowlinechangesby17.7kmforeveryW/m2ofmeansummerinsolationchange.Inthisway,wecanmakeaconnectionbetweentheorbitally‐drivenchangesinsummerinsolationtothemodelasawayofforcingtheglaciertogrowandshrink.Hereiswhatthemodellookslike:

Qtisthetime‐varyingsummerinsolation(=incomingsolarradiation)for55°NandQ0isthepresentdaysummerinsolationforthesameregion;dQisjustthedifferencebetweenQtandQ0anddxdQtellshowmuchthegroundinglinemovesgiventhe

Page 5: Ice Sheet Modeldmb53/DaveSTELLA/Glaciers/Ice Sheet Model.pdf · Ice Sheet Modeling In this exercise, we will do some experiments with a simple ice sheet model based on a classic paper

changeininsolation(dQ).QtandQ0areconnectedtothemodelviaaswitchsothatwecandisablethemorenablethem.Theswitchallowsustodoaexperimentswithoutthecomplicationsoforbitalforcing.SPECMAPistheoxygenisotoperecordfromtheoceansthatgivesusasenseofthetimingandmagnitudeoficevolumechangesovertime;thisisjustsomethingwecanplottoseetheextenttowhichourlittleicesheetmodelmimicstheactualrecordoficegrowthandmelting.BothSPECMAPandQtgobackto300kyr.Timebeginsat‐300,000yearsandendsat0.Themodelalsoincludesaconvertercalledseedarea,whichcomesintoplaywhenthereisnoglacierandthegroundinglinemovesintothepositiverealm,indicatingcooling;thisjustallowstheglaciertogetgoingagain.ExperimentsTheseexperimentscaneitherbedonebyconstructingyourownmodelusingSTELLA,orbydownloadingapre‐madeversion,orbyworkingwithaversionthatrunsonline.Tobeginwith,makesurethattheMilankovitchorbitalvariationsofinsolationareturnedoffsotheydonotimpactthemodel.Experiment1:SteadyState?ResponseTime?Inthisfirstexperiment,let’sseewhathappenstotheglacier’slengthovertimewithsomereasonableinitialconditions.TimeSpecs:

Runfrom‐300,000to‐200,000years,withaDTof200andRunge‐Kutta4.ModelParameters:

accumulation_rate=1.2{m/yr}epsilon=.24{ratioofrates}initial_grounding_line=‐400{km}initial_length_km=400{kmstartinglength}lambda=14{icestrengthparameter}slope=0.002

BesurethattheMilankswitchisturnedoffforthisexperiment.a)Beforerunningthemodel,trytopredictwhatwillhappentotheicesheet.Willitfindasteadystate,orwillitjustshrinktonothingorwillitgrowindefinitely?Thenrunthemodelandexplainwhathappens.b)Now,changetheinitiallengthto3000km—averylargeicesheetinthiscase.Willitfindasteadystateagain?Willithavethesamesteadystatelengthasinthefirstcase?Atthestart,doyouthinkthattheaccumulationratetimesaccumulationareawillbegreaterthanorlessthantheablationratetimestheablationarea?c)Howquicklydoestheicesheetgetintoitssteadystate?Howfastcantheglaciergrowandshrink?Insystemsanalysis,thisiscalledtheresponsetime,andisoftendefinedasthetimeittakesasystemtoaccomplishabout2/3ofitschangetotheeventualsteadystate(soitreallyonlyappliestosystemsthattendtowardasteadystate).Inthecaseofourglacier,youcanfindthedifferenceinlengthbetweenthe

Page 6: Ice Sheet Modeldmb53/DaveSTELLA/Glaciers/Ice Sheet Model.pdf · Ice Sheet Modeling In this exercise, we will do some experiments with a simple ice sheet model based on a classic paper

steadystatelengthandthestartinglength—thenfindthepointintimewhenabout2/3ofthischangehasbeenaccomplished;thatisyourresponsetime.Usethemodelset‐upandresultsfromthefirstexperiments(a&b)toestimatetheresponsetime,givingtheresultinkyr.Experiment2:CrossingtheThresholdtoRapidMeltingIntheaboveexperiment,welookedat2initiallengthsandfoundthatinbothcases,theglacierevolvedintoasteadystatelength,wheretheaccumulationareaaddedwasequaltotheablationarearemoved.Now,let’sexploreawiderrangeofinitiallengths,whichwillrevealaninterestingchange.Startwiththesamemodelset‐upasin1a,wheretheinitiallengthwas400km.BesurethattheMilankswitchisturnedoffforthisexperiment.a)Runthemodel,andyoushouldseetheglaciergrowtoalengthofabout2100kmandthenleveloff,havingreachedasteadystate.b)Now,decreasetheinitiallengthto300km.Whatlengthdoestheglacierendupat?c)Now,decreasetheinitiallengthto200km.Whatlengthdoestheglacierendupat?Describe,briefly,whathappenstotheglacierinthiscase.Notethatin(a),theglacierdeceleratesasitapproachesthesteadystate—itgetsthereverygradually.Howdoesthisdecelerationof(a)comparewiththebehaviorinthiscase?d)Nowincreasetheinitiallengthto210km.Whatlengthdoestheglacierendupat?Describe,briefly,whathappenstotheglacierinthiscase.e)Itshouldbecleartoyouthatthereisathresholdintheinitiallengththatseparatestwoverydifferentbehaviorsanddifferentoutcomes.Fiddlearoundwiththeinitiallengthuntilyoufindthethreshold(within1kmisfine).Experiment3:ChangingtheGroundingLineNowlet’sseewhathappensifwechangethepositionofthegroundingline,whichisshowngraphicallybelow,shiftedtotheleft(towardsmorenegativevalues):

Page 7: Ice Sheet Modeldmb53/DaveSTELLA/Glaciers/Ice Sheet Model.pdf · Ice Sheet Modeling In this exercise, we will do some experiments with a simple ice sheet model based on a classic paper

Thisiskindoflikeimposingawarmingontheglacier.Startwiththesamemodelset‐upasin1a:TimeSpecs:

Runfrom‐300,000to‐200,000years,withaDTof200andRunge‐Kutta4.ModelParameters:

accumulation_rate=1.2{m/yr}epsilon=.24{ratioofrates}initial_grounding_line=‐400{km}initial_length_km=400{kmstartinglength}lambda=14{icestrengthparameter}slope=0.002

BesurethattheMilankswitchisturnedoffforthisexperiment.a)Runthismodeltoactasacontrol,takingnoteoftheendinglengthandthegeneralbehavior.Thenshiftthegroundinglineto‐500km.Makeapredictionaboutwhatwillhappen,thenrunthemodelanddescribehowthischangehasaffectedtheglacier.b)Nowshiftthegroundinglineto‐300kmandmakeapredictionabouthowthiswillaffecttheglacier,thenrunthemodelanddescribehowthischangehasaffectedtheglacier.Experiment4:ChangingtheIceStrength(λ)Nowwewillinvestigatetheaffectofchangingtheicestrengthparameter(λ),whichhasasitsmainvariablethecriticalshearstressforflowoftheice.Ifwelowerλ,thenweareeffectivelyloweringthecriticalshearstress,makingiteasierfortheicetoflow.Thiswouldmeanthatwithalesserthicknessand/orashallowerslope,theicewillflow.Tobegin,wewillusethestandardset‐upfromexperiment1a,whereλissettoavalueof14.Runthis“control”modelfirst,andtakenoteoftheendinglengthandmaximumthicknessoftheglacier.BesurethattheMilankswitchisturnedoffforthisexperiment.a)Changeλto12,thusmakingtheiceflowmoreeasily.Makeapredictionaboutwhatthiswilldototheglacierincomparisonwithourcontrol.Willtheglaciergrowtoagreaterorlesserlengthrelativetothecontrol?Willtheheightbelesserorgreater?

Page 8: Ice Sheet Modeldmb53/DaveSTELLA/Glaciers/Ice Sheet Model.pdf · Ice Sheet Modeling In this exercise, we will do some experiments with a simple ice sheet model based on a classic paper

b)Runthemodelanddescribewhathappensandhowtheresultscomparewithyourpredictions.c)Nowchangeto10,andmakeaprediction.Thenrunthemodelanddescribewhathappensandattempttoexplainwhyithappens.Experiment5:RatioofAccumulationandAblation(ε)Howwillchangingtheratioofaccumulationandablation(melting)ratesaffectthegrowthoftheicesheet?Themodelparametercalledepsilon(ε)controlsthisratio.Wewillagainusethemodelset‐upfrom1aasourcontrol;hereεissetat0.24.Firstrunthismodeltorecallwhathappenstothelength.BesurethattheMilankswitchisturnedoffforthisexperiment.a)Nowchangeepsilonto0.28.Rememberthattheablationrateisequaltotheaccumulationratedividedbyepsilon.Whatwillchangingepsilontoalargervaluedototheablationrate—makeitgreaterorlesserthanthecontrol?Predicthowthischangewillaffecttheequilibriumlengthoftheglacier,andexplainyourreasoning.b)Then,runthemodelanddescribewhathappens,andexplainwhytheglacierrespondsthisway.c)Nowchangeepsilonto0.20.Howwillthischangetheablationraterelativetothecontrol,andhowwillthisaffectthegrowthoftheglacier?d)Runthemodelandthendescribewhathappens,andexplainwhytheglacierrespondsthisway.Experiment6:ChangingtheSlopeoftheSnowlineWhatwillhappeniftheslopeofthesnowlineincreases?Itisalreadysettoaverylowvalueof0.002.First,let’svisualizewhatthiswoulddototheglacier:

Youcanseethatitwillshortentheaccumulationlengthandincreasetheablationlength.So,whatwillthisdotothegrowthoftheglacier?

Page 9: Ice Sheet Modeldmb53/DaveSTELLA/Glaciers/Ice Sheet Model.pdf · Ice Sheet Modeling In this exercise, we will do some experiments with a simple ice sheet model based on a classic paper

Asbefore,webeginwiththemodelset‐upfor1a,andthenrunthismodeltoremindourselvesofthecontrolcase.Takenoteofthebeginningablationlengthinthecontrol.a)Changetheslopeslightlyto0.0022.Firstmakeapredictionabouthowthiswillaffectthegrowthoftheglacierrelativetothecontrol.b)Runthemodelandexplainwhathappensandwhyithappens.Howdoesthebeginningablationlengthofthismodelcomparewiththecontrol?Howdidtheresultscomparewithyourprediction?c)Nowincreasetheslopeevenmoreto0.0024.Runthemodelanddescribewhathappensandwhy.Experiment7:OrbitalForcingNow,wewillconnecttheorbitalforcingtothemodelbyturningontheMilankswitch.Fortheweb‐basedversion,wewillnowshifttoadifferentmodelthatrunsforthefull300kyr(we’vejustbeenrunning100kyrsofar).Firstrestorealltheparameterstothewaytheywereforexperiment1a.Now,withtheMilankswitchturnedon,thechangingsummerinsolationduetoorbitalvariationswillforcethegroundinglinepositiontomovebackandforth.Higherinsolationpushesthegroundlinglinepositiontothenorth(towardmorenegativevalues,whileadecreaseininsolationmovesthegroundinglinetothesouth(morepositivevalues).Asyoushouldknowbynow,movingthegroundinglinepositionwillcausetheglaciertoadvanceandretreat.RunthemodelandplotthelengthinkmandQt(theorbitallycontrolledvariationinsummerinsolation),andstudytherelationshipbetweenthepeaksandtroughsinQtandthesizeoftheicesheet.a)Studytherelationshipbetweentheglacier’slengthandQt(theinsolationovertime).Aretheyperfectlyinsync,ordoesoneseemtolagtheother?b)WhatisthelagtimeinkyroftheicesheetrelativetoQt?c)Howconsistentisthislagtime?d)Whatistherangeofvariationinthelengthoftheglacierinkm?Forcomparison,theLaurentideicesheetexpandedandcontractedabout25°oflatitudefromit’scenterofmass(x=0)andthereare111kmperdegreeoflatitude.e)NowcomparetheicesheetlengthwiththeSPECMAPrecordofdel18O,whichispartlyameasureoficevolumeandpartlyameasureoftemperature—highervaluesrepresentmoreiceandcoldertemperatures.Howwelldotheyagree?Howsimilarordissimilararethetimesofthepeaksandtroughs?

Page 10: Ice Sheet Modeldmb53/DaveSTELLA/Glaciers/Ice Sheet Model.pdf · Ice Sheet Modeling In this exercise, we will do some experiments with a simple ice sheet model based on a classic paper

f)Lookatthemostrecent10kyrofthemodel.HowisQtchangingduringthistime,andhowdoesthemodelglacierrespond?WhatdoesthissuggestmightbehappeningatthepresenttimeifwewerenotincreasingthegreenhouseeffectthroughelevatedCO2levels—enteringanothersmallglaciationorholdingsteadyormovingtoawarmerinterglacial?


Recommended