+ All Categories
Home > Documents > Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna....

Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna....

Date post: 08-Aug-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
34
Transcript
Page 1: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Identifying and predicting jumps in �nancial timeseries

Petros Dellaportas, UCL

with Alexopoulos (AUEB, Athens) and Papaspiliopoulos (UPF, Barcelona)

25/11/2016, Vienna

Page 2: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Jump identi�cation from daily close prices for the 600 stocks of theEuroStoxx 600 index (January 8 of 2007 - November 5 of 2014).

2008 2010 2012 2014

stocks

1100

200300

400500

571

Dots denote estimated probability of a jump > 0.5; Bottom graphdepicts the total number of estimated jumps

Page 3: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Observe only returns yt , everything else is unobserved:

yt = exp(ht/2)εt +Nt∑j=1

ξj , εt ∼ N(0, 1)

ht = µ+ φ(ht−1 − µ) + ηt , ηt ∼ N(0, σ2η)

I Nt ∼ Poisson(Λt∆t), ∆t is the distance between twosuccessive observations

I Λt ∼ gamma(1, 50) (informative) so that the probability of nojump at time t is .98

I {ξj}Ntj=1

iid∼ N(µξ, σ2ξ ), µξ ∼ N(0, 5R2), σ2ξ ∼ IG (3,R2/18)

where R is the range of the data.I h0 ∼ N(µ, σ2η/(1− φ2))I µ ∼ N(0, 10)I (φ+ 1)/2 ∼ Beta(20, 1.5) (informative)I σ2η ∼ χ21, does not bound ση away from zero a priori, see

Kastner and Frühwirth-Schnatter (2014) andFrühwirth-Schnatter and Wagner (2010).

Page 4: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Disentangling Volatility from Jumps

Bayesian inference with MCMC: how we sample the full conditionaldensities

I Sample simultaneously the vector of the log-volatility process

I Sample the number of jumps with rejection sampling

I Sample the parameters using interweaving; see Yu and Meng(2011) and Kastner and Frühwirth-Schnatter (2014).

I Contribution: we separate the volatility from the jump processwithout using any approximation of the model as it wasproposed by Chib et al. (2002).

Page 5: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Sampling the volatility process

I Denote Y = (y1, y2, . . . , yT ), θ = (µ, φ, σ2η, µξ, σ2ξ ),

H = (h1, . . . , hT ), N = (N1, . . . ,NT ) and Ξ = (ξ1, . . . , ξT ).

I Conditioning on number of jumps N and integrating out jumpsizes Ξ, sample from

p(H|θ,Y ) ∝ p(Y |H, θ)p(H|θ)

I Prior p(H) = N (H|M,Q−1)

I There are many ways to do this -here we use an idea by Titsiasthat was �rst appeared in the discussion of the RSSBdiscussion paper by Girolami and Calderhead (2011).

I The advantage is that we sample the whole vector H as ablock with one Metropolis move.

Page 6: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Sampling p(H |θ,Y ) ∝ p(Y |H , θ)p(H |θ)

I Current state of H is Hn. Say we wish to use slice Gibbs:

I Introduce auxiliary variables U that live in the same space asH: p(U|Hn) = N (U|Hn + δ

2∇ log p(Y |Hn), δ2 I )

I U injects Gaussian noise into Un and shifts it by(δ/2)∇ log p(Y |Hn)

I We cannot sample from p(H|U) so we use a Metropolis step:Propose H∗ from proposal q:

q(H∗|U) =1

Z(U)N (H∗|U, δ

2I )p(H∗)

= N (H∗|(I +δ

2Q)−1(U +

δ

2QM),

δ

2(I +

δ

2Q)−1).

where Z(U) =∫N (H∗|U, δ2 I )p(H∗)dH∗.

Page 7: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

I Accept H∗ with Metropolis-Hastings probability min(1, r):

r =p(Y |H∗)p(U|H∗)p(H∗)p(Y |Hn)p(U|Hn)p(Hn)

q(Hn|U)

q(H∗|U)

=p(Y |H∗)p(U|H∗)p(H∗)p(Y |Hn)p(U|Hn)p(Hn)

1

Z(U)N (Hn|U, δ

2I )p(Hn)

1

Z(U)N (H∗|U, δ

2I )p(H∗)

=p(Y |H∗)N (U|H∗ + δ

2Gy ,

δ2I )

p(Y |Hn)N (U|Hn + δ2Gt ,

δ2I )

N (Hn|U, δ2I )

N (H∗|U, δ2I )

=p(Y |H∗)p(Y |Hn)

exp

{−(U − Hn)

TGt + (U − H∗)TGy −δ

4(||Gy ||2 − ||Gt ||2)

}where Gt = ∇ log p(Y |Hn), Gy = ∇ log p(Y |H∗) and ||Z || denotes theEuclidean norm of a vector Z .

I The Gaussian prior terms p(Hn) and p(H∗) have been cancelled out from theacceptance probability, so their evaluation is not required: the resulting q(H∗|U)is invariant under the Gaussian prior.

I Tune δ to achieve an acceptance rate of around 50− 60%.

Page 8: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Rejection sampling for the number of jumpsI Target: the discrete log-concave distribution with density

p(Nt |ht ,Λt , yt , θ).I Proposal: Choose as m any point after the mode, use as a

proposal the red-dotted discrete density: it is a geometric afterm.

n

log(p(n))

mode m

Page 9: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Jump identi�cation from daily close prices for the 600 stocks of theEuroStoxx 600 index (January 8 of 2007 - November 5 of 2014).

2008 2010 2012 2014

stocks

1100

200300

400500

571

Dots denote estimated probability of a jump > 0.5; Bottom graphdepicts the total number of estimated jumps

Page 10: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Jumps prediction

I Key idea: Use a Bayesian hierarchical model for alli = 1, , . . . , p = 600 stocks to borrow strength

Nit ∼ Poisson(Λit∆it)

Λit = λ (1 + exp(−bi −WiFt))−1

λ = 0.15 is the maximum intensity of each stock, W is a p × Kmatrix of factor loadings with rows Wi and each Ft areK -dimensional time-varying independent factors

Ft = AFt−1 + et , t = 2, . . . ,T ,

et ∼ NK (0, IK ), A = diag(α1, . . . , αK ).

Page 11: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

The full model

yit = exp(hit/2)εit +

Nit∑j=1

ξij , εit ∼ N(0, 1)

hit = µi + φi (hi ,t−1 − µi ) + ηit , ηit ∼ N(0, σ2iη)

{ξij}Nitj=1

iid∼ N(µiξ, σ2iξ), µiξ ∼ N(0, 5R2

i ), σ2iξ ∼ IG (3,R2i /18)

Nit ∼ Poisson(Λit∆it)

Λit = λ (1 + exp(−bi −WiFt))−1

Ft = AFt−1 + et

Page 12: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

MCMC

I We integrate out the jump sizes Ξ and we target the posteriordistribution

p(θ, h,N,F |Y )

where the parameters and the data correspond to all stocks.

I p(hi |N,F , θ): Metropolis as in the 1-dim

I p(Ni |H,F , θ): rejection sampling as in the 1-dim

I p(F |H,N, θ): Label and sign switching are not taken care ofduring MCMC, see also Aÿmann et al. (2016); we chooseinformative prior distributions for the parameters of the factorprocess such that 2 jumps are expected on average every 100days. We sample all factors simultaneously based on theauxiliary Metropolis algorithm described for the 1-d case.

I p(θ|H,N,F ): we use interweaving

Page 13: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

We choose prior distributions for the parameters b, the factorloadings in the matrix W and for the persistent parameters of thematrix A such that the induced prior (histogram) for the intensityΛit of the ith stock at time t is comparable with the Gamma(1, 50)prior (red line) used in the univariate model.

Λit

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

05

1015

2025

3035

Page 14: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Separating volatility and jumps: simulation resultsSimulated log returns (top) and their volatility path (bottom -blue)for 3 of the p = 300 time series of length T = 1500 with K = 2factors. Bottom, Red: posterior mean of the volatility path. Blackcircles: simulated jumps. Red and green crosses: estimatedprobability of jump greater than 50% and 70%.

Time

y 1t

0 500 1000 1500

−50

5

Time

h 1t

0 500 1000 1500

−2−1

01

Page 15: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Separating volatility and jumpsSimulated log returns (top) and their volatility path (bottom -blue)for 3 of the p = 300 time series of length T = 1500 with K = 2factors. Bottom, Red: posterior mean of the volatility path. Blackcircles: simulated jumps. Red and green crosses: estimatedprobability of jump greater than 50% and 70%.

Time

y 2t

0 500 1000 1500

−50

5

Time

h 2t

0 500 1000 1500

−2−1

0

Page 16: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Separating volatility and jumpsSimulated log returns (top) and their volatility path (bottom -blue)for 3 of the p = 300 time series of length T = 1500 with K = 2factors. Bottom, Red: posterior mean of the volatility path. Blackcircles: simulated jumps. Red and green crosses: estimatedprobability of jump greater than 50% and 70%.

Time

y 3t

0 500 1000 1500

−50

510

Time

h 3t

0 500 1000 1500

−2.5

−1.5

−0.5

0.5

Page 17: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Jump identi�cationBlack circles: simulated jumps for 50 of the p = 300 simulatedtimes series. Red crosses: estimated probability of at least onejump greater than 50%.

Time

stocks

125

50

1 500 1000 1500

Page 18: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Posterior distributions IPosterior (black lines) and prior (orange lines) distributions of thepersistent parameters of the simulated latent factors. The verticallines represent the simulated values.

0.75 0.80 0.85

05

1015

20

α1

Densi

ty

0.20 0.25 0.30 0.35 0.40 0.45

02

46

8

α2

Densi

ty

Page 19: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Posterior distributions for factor loadings (W )

95% credible intervals; red crosses indicate the simulated values.

−3 −2 −1 0 1 2

xx

xxx

xx

xx

xx

xxx

xx

xx

xx

xx

xx

xx

xxx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

x

−3 −2 −1 0 1 2 3

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xxx

xx

xx

xx

xx

x

Page 20: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Posterior distributions for factor loadings (W ) after signswitching

95% credible intervals; red crosses indicate the simulated values.

−3 −2 −1 0 1 2

xx

xxx

xx

xx

xx

xxx

xx

xx

xx

xx

xx

xx

xxx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

x

−3 −2 −1 0 1 2 3

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xxx

x

Page 21: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Centered, Non Centered and Interweaving

I Simulation of p = 150 series and K = 2 factors (λ = 0.15,T = 1500). The table belows ESS per unit of time for α1,α2based on M = 3000 iterations (thinned by 10).

I ESS = M/IF where IF = γ0/s2.

I γ0 estimated spectral density of the Markov chain at zero.I s2 is the sample variance of the MCMC draws.

scheme α1 = 0.8 α2 = 0.8

A : centered 50 70B : Non centered 20 50C : Interw. (Cent.-Non Cent.) 400 200D : Interweaving (Non Cent.- Cent.) 150 60

Page 22: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Results on real data

I Our dataset contains daily close prices for the 600 stocks ofthe EuroStoxx 600 index from the January 8 of 2007 until theNovember 5 of 2014.

I After removing stocks with less than 1500 prices and stockswith more than 10 consecutive zero returns we applied ourMCMC algorithm on the log-returns of each one of the rest571 stocks.

I We only present here results based on subset of this dataset-running in progress! We have used K = 2 factors in theintensity process.

Page 23: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Identi�ed jumps

2008 2010 2012 2014

stocks

1100

200300

400500

571

Page 24: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Posterior (black) and prior (orange) distributions for the persistentparameters of the K = 2 factors and posterior mean of the path ofthe two latent factors (right).

0.72 0.74 0.76 0.78 0.80 0.82

05

1015

2025

α1

Density

2008 2010 2012 2014

−4−2

02

46

8

f 1

−0.60 −0.55 −0.50 −0.45

05

1015

α2

Density

2008 2010 2012 2014

−4−2

02

4

f 2

Page 25: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Factor 1: 95% credible intervals for each stock loading

−0.5 0.0 0.5 1.0 1.5 2.0

Page 26: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Factor 2: 95% credible intervals for each stock loading

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

Page 27: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Posterior correlationsPosterior mean correlations of jump intensities: 175 stocks of theLondon stock exchange.

0.00

0.25

0.50

0.75

1.00cor

Page 28: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Network based on jump intensitiesNodes represent stocks, edges are present when the posterior meancorrelation of jump intensities is > 0.9.

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

17

181920

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4041

4243

44

45

4647

48

49

50

5152

53

54

55

565758

59

60

61

62

63

64

65

66

67

68

69

70

71

7273

74

757677

78

79

80

8182838485

86

87

88

89

90

91

92

93

94

95

96979899100101102103

104

105

106107

108

109

110111112

113

114

115116

117

118119

120

121

122

123124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141142

143

144

145

146

147

148

149

150

151

152153154155156157158

159160

161

162163

164

165

166

167

168

169

170171

172

173

174

175

176

177

178

179

180

181

182

183

184

185186

187

188189

190

191

192

193

194

195

196

197198

199200201202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225226

227

228

229

230231

232

233

234

235

236

237238

239

240

241

242

243

244

245

246

247248

249

250251252

253

254

255

256

257

258

259

260261

262263

264

265

266267

268

269

270

271

272

273

274275276277278279

280

281

282283

284

285

286287

288

289

290

291292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308309310311312

313

314

315

316317

318319

320

321

322

323324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340341

342343

344

345346

347

348

349350351

352

353

354

355

356

357

358

359

360

361

362

363

364

365366

367

368

369370

371

372

373

374

375

376

377

378

379

380381

382383

384

385386

387

388

389

390

391

392

393

394

395

396

397398

399

400

401

402

403404

405

406

407

408

409

410

411412

413

414

415

416

417418

419420

421

422423424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445446

447448

449

450

451

452453

454

455

456457458

459

460461

462

463

464465466467

468

469

470471472473474

475

476477478

479

480

481

482483

484

485

486487

488

489490

491492493494

495

496

497

498499500

501

502503

504

505

506

507

508

509

510

511512

513514

515

516

517

518

519

520

521

522

523

524

525

526527528

529

530

531

532

533

534

535

536

537538

539

540

541

542543544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563564

565

566567

568

569

570

571

southIMF

central

London

North

southIMF

central

London

North

Page 29: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Model comparison

For two competing models M1 and M2 and out of sampleobservations yT+1, . . . , yT+n we compute the sequence of Bayesfactors

p(yT+1|y1:T ,M1)

p(yT+1|y1:T ,M2), . . . ,

p(yT+1, yT+2, . . . , yT+n|y1:T ,M1)

p(yT+1, yT+2, . . . , yT+n|y1:T ,M2),

where for every model M and j = 1, . . . , n

p(yT+1, yT+2, . . . , yT+j |y1:T ,M) =

T+j∏t=T+1

p(yt |y1:t−1,M).

Page 30: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Problem

Assume θ is known and equal with the posterior mean. For eacht = T + 1, . . . ,T + n, we need to compute the likelihoodincrements

p(yt |y1:t−1,M) =∫p(h0:t−1,F1:t−1|y1:t−1)p(yt |Ft , ht)p(ht |ht−1)p(Ft |Ft−1)dh0:tdF1:t

Typically the above integral is computed using SMC methods butsince in our case the likelihood function is the product of the termsp(yit |Ft , hit) it contains a lot of information for the latent state Ftresulting in poor MC estimation of the integral (Beskos et al.,2014).

Page 31: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Solution

By observing that for each t = T + 1, . . . ,T + n, the marginallikelihood increment p(yit |y1:t−1) of the ith stock is given by∫

p(hi(0:t−1),F1:t−1|y1:t−1)p(yit |Ft , hit)p(hit |hi(t−1))p(Ft |Ft−1)dhi(0:t)dF1:t

we use annealed importance sampling (Neal, 2001) to obtainestimates of the marginal likelihoods

p(yi(T+1)|y1:T ,M), . . . , p(yi(T+1), yi(T+2), . . . , yi(T+n)|y1:T ,M)

and we compute the predictive Bayes factors

p(yi(T+1)|y1:T ,M1)

p(yi(T+1)|y1:T ,M2), . . . ,

p(yi(T+1), yi(T+2), . . . , yi(T+n)|y1:T ,M1)

p(yi(T+1), yi(T+2), . . . , yi(T+n)|y1:T ,M2),

to compare the competing models M1 and M2.

Page 32: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Log-Bayes factor of the univariate SV model with jumps against aunivariate SV model without jumps for 16 stocks of London. HereT = 1967 and out of sample size is n = 50. For each stock wereport estimated in-sample and out-of-sample (red circles) jumps.

8 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−0.5

0.00.5

1.0

5 , 1

Time

log. of

Bayes

factor

0 10 20 30 40 50

01

23

4

23 , 1

Time

log. of

Bayes

factor

0 10 20 30 40 50

−20

24

6

9 , 1

Time

log. of

Bayes

factor

0 10 20 30 40 50

050

100150

21 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

0.51.0

1.5

9 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−0.6

−0.2

0.00.2

15 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

02

46

8

4 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−0.1

0.00.1

0.20.3

6 , 2

Time

log. of

Bayes

factor

0 10 20 30 40 50

0.00.5

1.01.5

14 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−2−1

01

10 , 2

Time

log. of

Bayes

factor

0 10 20 30 40 50

01

23

45

6

11 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−2.5

−1.5

−0.5

13 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−0.6

−0.2

0.20.6

16 , 1

Time

log. of

Bayes

factor

0 10 20 30 40 50

−10

12

34

17 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−1.0

−0.5

0.00.5

9 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−2.5

−1.5

−0.5

0.5

Page 33: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Log-Bayes factor of the factor SV model with jumps against a SVmodel with jumps for 16 stocks of London. Here T = 1967 and outof sample size is n = 50. For each stock we report estimatedin-sample and out-of-sample jumps.

8 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−0.4

0.00.2

0.40.6

5 , 1

Time

log. of

Bayes

factor

0 10 20 30 40 50

0.00.2

0.40.6

0.81.0

23 , 1

Time

log. of

Bayes

factor

0 10 20 30 40 50

−0.4

0.00.2

0.4

9 , 1

Time

log. of

Bayes

factor

0 10 20 30 40 50

01

23

45

21 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

0.00.4

0.81.2

9 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−0.05

0.05

0.15

0.25

15 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−0.2

0.00.1

0.2

4 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−0.35

−0.25

−0.15

−0.05

6 , 2

Time

log. of

Bayes

factor

0 10 20 30 40 50

−0.6

−0.4

−0.2

0.0

14 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

0.00.5

1.01.5

2.0

10 , 2

Time

log. of

Bayes

factor

0 10 20 30 40 50

0.00.4

0.81.2

11 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

0.01.0

2.03.0

13 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−0.2

0.00.1

0.20.3

16 , 1

Time

log. of

Bayes

factor

0 10 20 30 40 50

−0.4

−0.2

0.00.2

17 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

0.00.5

1.01.5

2.0

9 , 0

Time

log. of

Bayes

factor

0 10 20 30 40 50

−0.2

0.00.2

0.40.6

Page 34: Identifying and predicting jumps in financial time series · 2016-11-24 · 25/11/2016, Vienna. Jump identi cation from daily close prices for the 600 stocks of the EuroStoxx 600

Discussion

we have presented:

I A new algorithm for univariate SV with jumps

I A way to forecasting of jump intensities through jointmodelling of many stocks

I Evidence for better predictive performance


Recommended