+ All Categories
Home > Documents > IEEE 81 Comentarios 04312115

IEEE 81 Comentarios 04312115

Date post: 27-Apr-2015
Category:
Upload: carlos-andres-ruiz-hernandez
View: 118 times
Download: 2 times
Share this document with a friend
3
Soil Resistivity Measurement: Two-Layer Model, Proposed Revisions to IEEE Standard 80-2000 and IEEE Standard 81-1983 P Calixto Author Affiliation: Electrical Department of ABB Lummus Global B.V., The Netherlands Abstract: Some simplification to Sunde's procedure, shown in IEEE Standard 80-2000 13.4.2.2, two-layer soil model by graphical method is proposed, with the introduction of a modified Sunde's curve. Comments on Appendix B of IEEE Standard 81-1983 are offered to correct some formula and improve concepts. Keywords: Soil resistivity measurement, two-layer model. Introduction: IEEE Standard 80-2000 offers a graphical method for determining a two-layer model. Sunde's curves are used, for exam- ple, for soil type 1 (Table E2 in Annex E). The Sunde's curve can be re- placed by a table (or a graph, if a graphical solution is desired) where the apparent resistivity is represented by (pa / pl) = (p2 / pl/'m with m varying from 0.1 to 0.9. This will limit the representation to the range of useful values of(pa / pl), for the determination of the layer depth h. If a graphical method is to be used, the ordinate will then be m in uniform scale versus a/H in logarithmic scale, with parameters (p2 / pl). The ta- ble (see Table 1) has the advantage of facilitating interpolation and be- ing more accurate. The set of pl, p2 and H calculated in this manner can be used for more sophisticated calculations such as the steepest descent method, described in IEEE Standard 81-1983, Appendix B. For this, the formu- las of Equations B8 have to be corrected. Modified Sunde's Method: The parameters pl and p2 are obtained by inspection of resistivity measurements. Only h is obtained by Sunde's method as follows: a) Plot a graph of apparent resistivity pa on the y-axis versus pin spacing on the x-axis. b) Estimate pl and p2 from the graph plotted in a). The pa corre- sponding to a smaller spacing is pl and the larger spacing is p2. Extend the apparent resistivity graph at both ends to obtain these extreme resis- tivity values if the field data is insufficient. c) Determine p2 / pl from Table 1 and read the corresponding value for (a/h), or interpolate them if the ratio (p2 / pl)is not shown. The most - .., 5.89 5 3 5 34 5.10 - 494 4.79 4.50 4.37 4.24 4.17 4.12 4.18 4.32 4.48 4.68 4.87 5.06 0.81 0.9 m+>p2/pl= 0.001 0.002 0.003 0 005 0.007 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 06 1.7 1.8 1.9 2 3 -5 7 10 15 20 30 40 50 1.00 1.62 1248 1.65 60 70 [ 1.04 1.71 2.71 4.27 6.81 11.1 80 11.05 1.75 2.81 4.48 7.22 11.9 1.79 90 100 1.08 [1.83 2.99 .48 i 7.98 13.4 120 1.10 1.90 3.14 5.18 8.66 14.8 170 [1.14 2.04 13.46 Js 5.90 110.2 117.9 132.7 64.6 150 200 300 [1.21 2.28 14.07 J 7.30 113.2 j24.5 47.1 97.1 400 56 306~~~~~~~~~~~~~~~ 2.52-i-1- -- I-. . -- 500 IEEE Power Engineering Review, April 2002 0.98 1.02 1.06 1.12 1.16 1.25 1.28 1.04 1.05 1.07 1.12 1.17 1.23 1.31 1.7 1.86 1.38 1.98 1.48 1.56 2.11 2.41 2.18 2.34 2.60 2.90 3.63 4.42 4.72 4.04 4.67 5.63 6.27 8.15 8.88 6.36 7.61 9.59 11.0 15.2 16.9 12.7 16.7 19.6 28.8 32.7 36.3 59.1 72.5 120 141 Table 1. Modified Sunde curve 600 1.30 2.61 4.97 9.53 18.4 36.3 73.8 161 426 700 1.33 2.69 5.20 10.1 19.8 39.6 81.6 181 483 800 1.34 2.76 5.41 10.7 21.2 42.7 89.1 200 540 900 1.36 2.82 5.60 11.6 22.4 45.7 096.4 219 594 1000 11.38 2.88 15.78 . _111.6 23.6 148.6 103 237 649 l-- --T i, -.-- -.-, - -- . .. 1.99 3.34 730.3 400 F56.7 7306 2.52 675.5 368 66 0272-17241021$17.00(02002 IEEE
Transcript
Page 1: IEEE 81 Comentarios 04312115

Soil Resistivity Measurement:Two-Layer Model, Proposed Revisions to IEEEStandard 80-2000 and IEEE Standard 81-1983

P Calixto

Author Affiliation: Electrical Department of ABB LummusGlobal B.V., The Netherlands

Abstract: Some simplification to Sunde's procedure, shown inIEEE Standard 80-2000 13.4.2.2, two-layer soil model by graphicalmethod is proposed, with the introduction of a modified Sunde's curve.

Comments on Appendix B of IEEE Standard 81-1983 are offered tocorrect some formula and improve concepts.

Keywords: Soil resistivity measurement, two-layer model.Introduction: IEEE Standard 80-2000 offers a graphical method

for determining a two-layer model. Sunde's curves are used, for exam-ple, for soil type 1 (Table E2 in Annex E). The Sunde's curve can be re-

placed by a table (or a graph, if a graphical solution is desired) wherethe apparent resistivity is represented by (pa / pl) = (p2 / pl/'m with mvarying from 0.1 to 0.9. This will limit the representation to the range of

useful values of(pa / pl), for the determination of the layer depth h. If agraphical method is to be used, the ordinate will then be m in uniformscale versus a/H in logarithmic scale, with parameters (p2 / pl). The ta-ble (see Table 1) has the advantage of facilitating interpolation and be-ing more accurate.

The set of pl, p2 and H calculated in this manner can be used formore sophisticated calculations such as the steepest descent method,described in IEEE Standard 81-1983, Appendix B. For this, the formu-las of Equations B8 have to be corrected.

Modified Sunde's Method: The parameters pl and p2 are obtainedby inspection of resistivity measurements. Only h is obtained bySunde's method as follows:

a) Plot a graph of apparent resistivity pa on the y-axis versus pinspacing on the x-axis.

b) Estimate pl and p2 from the graph plotted in a). The pa corre-

sponding to a smaller spacing is pl and the larger spacing is p2. Extendthe apparent resistivity graph at both ends to obtain these extreme resis-tivity values if the field data is insufficient.

c) Determine p2 / pl from Table 1 and read the corresponding valuefor (a/h), or interpolate them if the ratio (p2 / pl)is not shown. The most

- ..,

5.895 3

5 34

5.10-4944.794.504.374.244.174.124.184.324.484.684.875.06

0.81 0.9m+>p2/pl=

0.001

0.0020.0030 0050.0070.010.020.030.050.070.10.20.30.40.50.6070.80.91

1.1

1.2

1.31.41.5061.71.81.92

3

-57101520

304050 1.00 1.62 1248

1.656070 [ 1.04 1.71 2.71 4.27 6.81 11.180 11.05 1.75 2.81 4.48 7.22 11.9

1.7990100 1.08 [1.83 2.99 .48 i 7.98 13.4120 1.10 1.90 3.14 5.18 8.66 14.8

170 [1.14 2.04 13.46 Js5.90 110.2 117.9 132.7 64.6150

200

300 [ 1.212.28 14.07 J 7.30 113.2 j24.547.1 97.1400 56 306~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2.52-i-1- -- I-..

--

500

IEEE Power Engineering Review, April 2002

0.98

1.02

1.06

1.12

1.16

1.25

1.28

1.041.051.071.12

1.171.231.31

1.71.86

1.38 1.981.481.56

2.11

2.41

2.18

2.34

2.60

2.90

3.63

4.424.72

4.04

4.67

5.63

6.27

8.158.88

6.36

7.61

9.59

11.0

15.216.9

12.7

16.7

19.6

28.832.7

36.3

59.1

72.5

120

141

Table 1. Modified Sunde curve

600 1.30 2.61 4.97 9.53 18.4 36.3 73.8 161 426700 1.33 2.69 5.20 10.1 19.8 39.6 81.6 181 483800 1.34 2.76 5.41 10.7 21.2 42.7 89.1 200 540900 1.36 2.82 5.60 11.6 22.4 45.7 096.4 219 5941000 11.38 2.88 15.78 . _111.6 23.6 148.6 103 237 649

l----T

i,

-.---.-,

- -- . ..

1.99 3.34 730.3

400 F56.7 73062.52 675.5 368

66 0272-17241021$17.00(02002 IEEE

Page 2: IEEE 81 Comentarios 04312115

PI1 100p2= 300 M=> 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

________ ~~~~~~p2pl= 3 aH= > 0.76 1.07 1.40 1.78 2.25 2.89 3.84 5.44 9.09

A(ft) 6.096A(m) RHO for example in IEEE Standard 80-2000 Table E-2 Interpolation auxiliary values

Soil Type 1 pa/pl= displaced M= (papp1) in= Y1 Y2 xi X2 A(m) H(m)1 0.305 56.94 0.5694 0 0.1 1.116123174 4.572 6.096 1.107 1.208 4.70 6.204837915

3 0.914 88.07 0.8807 0.305 0.2 1.24573094 6.096 9.144 1.208 1.431 6.57 6.1243686445 1.524 95.48 0.9548 0.914 0.3 1.39038917 6.096 9.144 1.208 1.431 8.54 6.1064187515 4.572 110.71 1.1071 1.524 0.4 1L551845574 9.144 15.240 1.431 1 817 10.88 6.10989168420 6.096 1206 2076 4.572 0.5 1.732050808 9.144 15.240 1.431 1.817 13.76 6.10471906930 9.144, 143.1 1.431 6.096 0.6 1.933182045 15.240 21-336 1.817 2.088 17.71 6.12863625550 15.240 181.7 1.817 9.144 0.7 2.15766928 21-336 27.432 2.088 2.278 23.47 6.11693948270 21-336 208.78 2.0878 15.240 0.8 2.408224685 27.432 33.528 2.278 2.415 33.22 6.10217961990 27 432 227.75 2.2775 21-336 0.9 2.68787538 45.720 45.720 2.598 2.598 #DI7T 0! #DIW 0'

0 33333110 33.528 241.48 2.4148 27.432 p2pl= 0.3 0.4 3333

H= 206f130 39.624 25177 2.5177 33.528 0.9 4.32 4.48 4.38 EPRI > (6.096m)150 45.720 259.76 2.5976 39.624

ni=> 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9p1= 300 aH= > 0.79 1.07 1.33 1.62 1.91 225_ 2.66 3.24 4.32p2= 100 aH= > 0.77 1.06 1.31 1.60 1.89 2.24 2.67 3.29 4.48p2pl= -0333333333 aH= > 0.78 1.07 1.33 1.61 1.90 2.24 2.66 3.26 4.38

A(ft) A(m) RHO for examnple in IEEE Standard 80-2000 Table E-2 Interpolation auxiliary values

Soil Type 2 pa/pi= displaced in= (pa/p1) m Y1 12 xi X2 A(m) H(mi)1 0.305 170-14 -05671 0 0.1 -089595846 4.572 6.096 -0899 -0825 4.62 5.9160688433 0.914 263.46 -08782 0.305 0.2 -0802741562 6.096 9.144 -0825 0o674 6.44 6.041850702

5 1.524 283.06 0o9435 0.914 0.3 -0.719223093 6.096 9.144 -0825 -0674 8.02 6.05340561815 4.572 269.67 -0.8989 1.524 0.4 -0644394015 9.144 15.240 -0674 -0480 9.78 6.06896024620 6.096 247-57 -08252 4.572 0.5 -0.577350269 9.144 15.240 -0674 -0480 11.54 6.06766529230 9 144 202.12 -0.6737 6.096 0.6 -0.517281858 9.144 15.240 -0674 -0480 13.62 6.07542380450 15.240 144.05 -04802 9.144 0.7 -0.463463057 15.240 21.336 -0480 -0401 16.28 4.24408690670 21-336 120.28 -0.4009 15.240 0.8 -0415243647 #N/A #N/A #N/A #N/A #N/A #N/A90 27.432 110.68 -03689 21-336 0.9 -0372041058 #N/A #N/A #N/A #N/A #N/A #N/A110 33528 106.41 -03547 27.432

H= 206f130 39 624 104-34 -0 3478 33.528 EPRI=> (6.096m)

Table 3. Steepest descent method

IEEE Standard 81 1983 Appendix B

RHO for Example in IEEE Standard 80-2000 Table 8.2 Soil Type 1

0.01 x,o,"y 0.005 0.005 -0 005 Initial values= => 100 300 7

a(m) p poX( SpSpI 8pS8p2 SpS8h Ap Ap2 AS p p2 h

0 3048 56.94 57.92 1.0002147 0.0000089 0.0125984 -0289526 -256642 -0020512 57.615378 516.64922 4.0086689 -0009976

0.9144 88.07 88.79 1.0005592 0,0002451 0.0627096 -0443335 -1683824 -003178 88.221776 338.18418 6.189248 -0.00734

1.524 95 41 90 04 1 0012589 0.0010898 0.1996335 0.47974 -1.702803 -0034323 95.110412 31378357 006794735 -0.005739

4.572 110.71 109.54 1.0139351 0.0237252 3.0207405 0.505137 1.527179 -0035063 101.51455 303-12498 6.8298843 -0.0093276.096 120.76 119.47 1.025761 0.0486734 5.5043031 0.5102581 1.5406318 -0034243 102.53825 306.26018 6.6897576 -0008771

9.144 143.1 141.72 1.0440078 0.1131851 9.662053 0.5128183 1.5454603 -0033333 103.0603 307.91628 6.5363374 -000751

15.24 181.7 181.09 1.0261829 0.2475768 12.689283 0.5123912 1.5424182 -0032699 103.05137 308.08418 6.4366989 -000333421 336 208 78 207.40 0.9590563 0 3593614 12.453769 0.5092271 1.5334525 -0 032782 102.50399 306.6775 6.4637889 -0.008358

27.432 227.75 226.87 0.8744943 0.4513083 11-560631 0.5086011 1.5327861 -0032861 102.45943 306.79194 6.4862106 -0005862

33.528 241.48 241.00 0.789564 0.5260392 10.505809 0.5080274 1.5323724 -0032987 102.41412 306.88884 6.5162235 -000340939.624 251.77 251.63 0.7105731 0.5872803 9.4761023 0.507516 1.532085 -0033122 102-37173 306.97092 6.5471494 -0001068

45.72 259.76 259.94 0.6394377 0.6379529 8.5307172 0.5070644 1.5318703 -0033252 102-3335 307-04063 6.576511 0.0014192

RHO for Example in IEEE Standard 80-2000 Table E-2 Soil Type 2

0.01 -0.005 -0005 0 005 initial values= 300 100 7

a(m) Ip/8Sp Sp/Sp2 Ap2 p2 h i

0.3048 170.14 171 12 0 9999903 0.0000123 -0000245 -0.855611 -0.284753 0.0586229 170.26658 57.50504 12.074289 -0.009868

0.9144 263.46 263-19 0.9990747 0.0011531 -0.053456 -1316738 -0435512 0.0385639 262.02725 87-939328 7.9412581 0.0026649

1.524 283.06 283.06 0.9947847 0.0064872 -0 343312 -1.419676 -0.46911 0 0358056 282.49424 94.697161 7.3699854 0.0000164

41572 260.67 269061 0.8814601 0.14640 -6856415 1,451418 -0470256 0.0341303 288 47001 96.474615 60904642 0.00076136.096 247-57 248.15 0.7707824 0.2811817 -11.4653 -1439753 -0474934 0.0337692 285.6643 95.438262 6.9022641 -0.0076679.144 202.12 202-53 0.535353 0.5604483 -16.55398 -1410243 -0463965 0.0337416 278-93035 92.951122 6.8641056 -000633615.24 144.05 144.64 0.2356138 0.8886303 -13.94835 -1377657 -0451184 0.0353098 271.00264 90.05903 7.136936 -0009956

21-336 120.28 120-89 0.0933919 1.014555 -9.082716 -1427199 -0.465594 0.0355166 279.45714= 92.750073 7.1456353 -0009394

IEEE Power Engineering Review, April 2002

Table 2. Method with modified Sunde curves

27.432 110.68 111.34 0.0365977 1.0436481 5 .404728 -1.483501 -0.482589 0.0351272 289.59204 96.048244 7.0464104 -0.008861

33.528 106.41 109.19 0.0167244 1 .0413746 -3.320728 -0.025087 -0.520687 -0.116225 299.97491 99.479313 6.8837745 -0.00819639.624 104.34 104.94 0.0084651 1.0340634 -2.077845 -151971 j 0.495052 0.0349242 297.04144 98.490626 6.9949353 -0.00692145.72 103.16 103.76 0.0050375 1.0269131 -1.417293 -1.445282 -0.497361 0.034254 298.54688 98.989109 6.9839328 -0.006585

67

Page 3: IEEE 81 Comentarios 04312115

important values of a/h is m = 0.5, which corresponds to the inflexion ofSunde's curve, i.e., values most sensitive to h.

d) From the graph in a) read the probe spacing a corresponding to pa= (pl * p2), i.e., the geometric mean of pl and p2.

e) Divide the probe spacing a by a/h found in c; this will be depth ofthe upper layer h.

Using the soil data from soil type 1 in Table E.2 of Appendix E, aplot of resistivity versus spacing can be drawn. See Figure 22 of theStandard. Both p 1 and p2 can be determined by visual inspection. As-suming pl = 1002.m and p2 = 300Q.m, the following example illus-trates the modified Sunde's graphical method:

a) Plot Figure 22.b) Choose pl = 100l.m and p2 = 300Q2.m.c) p2/pl=300/100 = 3. Read in Table 1 the corresponding value for

m = 0.5, a/h = 2.25.d) Read the probe spacing corresponding to (100+*300) = 173

Q.m, h = 13.8 m.e) The depth of upper layer is 13.8/2.25 = 6.13 m or 20.1 ft.

This compares favorably with the 6.1 m (20 ft.) using EPRI TR-100622[B63].

Extended Calculation with Modified Sunde's Method: Insteadof using only m = 0.5 in Table 1, it is possible to use all values from 0.1up to 0.9. The result will give a more thorough examination of the mea-sured resistivity to locate possible irregularities. Table 2 exemplifies theapplication of this method via spreadsheet, the graphic was replaced bylogarithmic interpolation, i.e., y = yl *(y2/yl)A(ln(x/xl)/ln(x2/xl)). Thesoil 2 is shown as well.

Steepest Descent Method: This method is described by IEEE Stan-dard 81-1983, Appendix B. All three parameters pl, p2, and h can becalculated, starting with assumed initial values that can be obtained asdescribed above. Table 3 shows the results of this method for soils type1 and 2.

The following comments apply:Equations (1) and (2) should be used for only one average value of

apparent resistivity (N = 1). The equations imply harmonic mean of themeasured values. It is more common practice to use arithmetic or geo-metric mean (harmonic mean is the smallest of all three). The decisionon what average to be used is left then to the engineer.

The convergence factors (t, y, and y ) should be more clearly de-fined; presently they are implied to be 0.005/(68/6p).

We need to obtain the (6P/6p) value for the next iteration, based onits value on the previous iteration. The expression for the derivatives(Eq. B8) should be corrected as follows:

For 6p / 5p2 the term (1I-KA2) should read (1-K)A2.For 5p / h the term in the summation (KAn) should read (nA2*KAn).The signs of(t, ¢r, and y) should be reversed sometimes to reach con-

vergence, minus to decrease the initial value and plus to increase it.References:[ 1 ] IEEE Guidefor Safety in AC Substation Grounding, IEEE Stan-

dard 80-2000, 2000.[2] IEEE Guide for Measuring Earth Resistivity, Ground Imped-

ance and Earth Surface Potentials ofa Ground System, IEEE Standard81-1983, 1983.

Copyright Statement: ISSN 0282-1724/02/$17.00 ( 2002 IEEE.Manuscript received 12 August 2001. This paper is published herein inits entirety.

A New Method for Determining ReferenceCompensating Currents of Three-PhaseShunt Active Power Filters

Gary W ChangAuthor Affiliation: Department of Electrical Engineering, Na-

tional Chung Cheng University, Taiwan.Abstract: Using a shunt active power filter (SAPF) has been proved

as an effective method to compensate reactive power and to mitigateharmonic currents of nonlinear loads. When designing a SAPF, it iscrucial to generate reference currents for determining actual compen-sating current injections to the point ofcommon coupling. In contrast tothe conventional instantaneous reactive power theory, which needs co-ordinate transformations, the new method proposed in this letter is todetermine reference compensating currents based on the balance of theinstantaneous reactive and active power generated in the SAPF. It isshown that the proposed method is suitable for reactive and harmonicpower compensation by using a SAPF. In addition, to maintain the sinu-soidal source currents this method also eliminates the need for install-ing energy storage devices for reactive power compensation as well asthe dc source for the harmonic compensation in the active power filter.Therefore, a simpler design of the SAPF with minimal line losses canbe expected.

Keywords: Active power filter, reference compensating current, in-stantaneous reactive power theory, coordinate transformation, instanta-neous power balance.

Introduction: The concept of using the SAPF for reactive and har-monic power compensation was introduced more than two decadesago. By measuring load currents and voltages, the SAPF can injectcompensating currents as well as absorb or generate reactive power atthe point of common coupling for controlling harmonics and compen-sating reactive power of the connected load.

In 1983, Akagi et al. proposed an innovative approach based on in-stantaneous reactive power theory (i.e., p - q theory) to compute SAPFreference compensating currents. This approach inspired the develop-ment of many other p - q theory-based methods for realizing the SAPF[I],[2]. Willems indicated that the p - q theory is complete only inthree-phase systems without zero-sequence component, however [3].Also, the instantaneous reactive power theory-based method requirescoordinate transformations between the a - b - c coordinates and thep - q coordinates, which increases the complexity of designing theSAPF controller. More recently, Peng et al. proposed a theory that gavea generalized definition of the instantaneous reactive power in thea - b - c coordinate [4]. Although Peng's approach does not need thecoordinate transformation, it requires an additional function for instan-taneous reactive power vector calculation in the SAPF controller.Based on the instantaneous reactive power space vector defined in [4]

Figure 1. Schematic diagram of the three-phase SAPF compensation

IEEE Power Engineering Review, April 2002

PES Web Sitehttp.//www.ieee.org/power

The PES Web site (http://www.ieee.org/power) containscurrent information on PES Meetings, Chapters, and Tech-nical Activities. The home page contains links to the follow-ing items to which we call your attention:* 2002 PES Organization Manual & Committee Directory* PES Author's Kit and Presentation Guidelines. WW W w W W W W W W = = = . = ... ................ ..... .. . . .. _

68 0272-17241021$17.00(02002 IEEE


Recommended