+ All Categories
Home > Engineering > IEEE Motor Presentation

IEEE Motor Presentation

Date post: 11-Aug-2015
Category:
Upload: vincent-wedelich-pe-mba
View: 149 times
Download: 5 times
Share this document with a friend
152
IEEE Houston Section C ti i Ed ti O D d Continuing Education On Demand Seminar Presentation Code: 620 April 3-4, 2007 Motor Starting Equivalent Circuits, Starter Types, Load Types, and Dynamics
Transcript

IEEE Houston SectionC ti i Ed ti O D dContinuing Education On Demand

Seminar

Presentation Code: 620

April 3-4, 2007

Motor StartingEquivalent Circuits, Starter Types, Load

Types, and Dynamics

Review of induction and synchronous motor design,equivalent circuits for start and operation; starting,

operating and breaking operating characteristics, loadtypes. Review starting techniques, calculations, and

comparison.

Agenda

Induction MotorInduction Motor Synchronous MotorSynchronous Motoryy Mechanical Train SystemMechanical Train System Starting, Operation and Breaking MethodsStarting, Operation and Breaking Methodsg, p gg, p g Special ConsiderationSpecial Consideration Calculations, Simulation, ApplicationsCalculations, Simulation, ApplicationsCalculations, Simulation, ApplicationsCalculations, Simulation, Applications

Agenda

Induction MotorInduction Motor Basics, characteristics, and modeling

Synchronous MotorSynchronous Motor Basics, characteristics, and modeling

M h i l T i S tM h i l T i S tMechanical Train SystemMechanical Train System Load characteristics Inertia Torque Consideration Train Acceleration Time

St ti O ti d B ki M th dSt ti O ti d B ki M th dStarting, Operation and Breaking MethodsStarting, Operation and Breaking Methods Induction and Synchronous Motor Synchronous Motor Onlyy y

Agenda

Special ConsiderationSpecial Consideration Harmonic Torques

H i Fl Harmonic Flux Rotor Slots Design

Calculations Simulation ApplicationsCalculations Simulation ApplicationsCalculations, Simulation, ApplicationsCalculations, Simulation, Applications Software Methodology

Induction Motor

Induction Motor

Basics, type characteristics, load characteristics, and modeling • Induction motor - General data, principle of

operation and nameplate information describing motormotor

• Motor types and characteristics, application consideration

• Load types and characteristics, application consideration

• Motor model• Motor model• Equivalent motor parameters• Other considerationOther consideration

Induction MotorInduction Motor

Induction MotorInduction Motor

General-Non-linear Model

Induction MotorInduction Motor

Clark’s Transform

Induction MotorInduction Motor

Steady State Us=const

Induction MotorInduction Motor

Induction MotorInduction Motor

Induction MotorInduction Motor

Induction MotorInduction Motor

Induction Motor

General data Motor electro-mechanical characteristics are described

bby:• Nominal Voltage• Nominal frequency• Nominal Current• Number of phases• Number of poles• Number of poles• Design class• Code letter

M f i i• Moment of inertia• All others (rated power factor, efficiency, excitation current etc.)

Induction Motor

General data

Induction Motor

General data

Induction Motor

Type of TorquesCurrent Curve

Break-

Motor Torque CurvePull-up Torque

Down/Critical Torque

Locked Rotor/ Breakaway

Torque

Full Load Operating

Full Load Operating Current

Load Torque Curve

p gTorque

Full Load Operating Critical Load Torque CurveSpeed/SlipSpeed/Slip

Induction MotorType of Torques Locked Rotor or Starting or Breakaway Torque

• The Locked Rotor Torque or Starting Torque is the torque the electrical motor develop when its starts at rest or zero speed.

• A high Starting Torque is more important for application or machines hard to start - as positive displacement pumps, cranes etc. A lower Starting Torque can be accepted in applications as centrifugal fans or pumps where the start load is low or close to zero.

Pull-up Torque• The Pull-up Torque is the minimum torque developed by the electrical motor when it runs from zero to full-

load speed (before it reaches the break-down torque point)• When the motor starts and begins to accelerate the torque in general decrease until it reach a low point at a

certain speed - the pull-up torque - before the torque increases until it reach the highest torque at a higher speed - the break-down torque - point.

• The pull-up torque may be critical for applications that needs power to go through some temporary barriers hi i h ki di iachieving the working conditions.

Break-down Torque• The Break-down Torque is the highest torque available before the torque decreases when the machine

continues to accelerate to the working conditions.

Full-load Torque or Braking Torque• The Full-load Torque is the torque required to produce the rated power of the electrical motor at full-load

speed.

Induction Motor

Code letters

Induction Motor

Code letters• In general it is accepted that small motors requires higher

starting KVA than larger motors Standard 3 phase motors oftenstarting KVA than larger motors. Standard 3 phase motors often have these locked rotor codes:

o less than 1 hp: Locked Rotor Code L, 9.0-9.99 KVAo 1 1/2 to 2 hp: Locked Rotor Code L or M 9 0 11 19o 1 1/2 to 2 hp: Locked Rotor Code L or M, 9.0-11.19o 3 hp : Locked Rotor Code K, 8.0-8.99o 5 hp : Locked Rotor Code J, 7.1-7.99o 7.5 to 10 hp : Locked Rotor Code H, 6.3-7.09o more than 15 hp : Locked Rotor Code G, 5.6-6.29

Induction Motor Design Type

Different motors of the same nominal horsepower can have varying starting current torquevarying starting current, torque curves, speeds, and other variables. Selection of a particular motor for an intended task must take all engineering parameters i t tinto account.The four NEMA designs have unique speed-torque-slip relationships making them suitable to different type of applications:to different type of applications:

• NEMA design A

• NEMA design B

• NEMA design C

• NEMA design D

Induction MotorDesign Type

• NEMA design Ao maximum 5% slipo high to medium starting current o normal starting torque (150-170% of rated)o normal locked rotor torqueo normal locked rotor torqueo high breakdown torqueo suited for a broad variety of applications - as fans and pumps

• NEMA design Bo maximum 5% slipo low starting currento high locked rotor torqueo high locked rotor torqueo normal breakdown torqueo suited for a broad variety of applications, normal starting torque -

common in HVAC application with fans, blowers and pumps

Induction MotorDesign Type

• NEMA design Co maximum 5% slipo low starting currento high locked rotor torqueo normal breakdown torqueo normal breakdown torqueo can’t sustain overload as design A or Bo suited for equipment with high inertia starts - as positive

displacement pumps

• NEMA design Do maximum 5-13% slipo low starting currentgo very high locked rotor torqueo Usually special ordero suited for equipment with very high inertia starts - as cranes, hoists

etc.etc.

Induction Motor

Induction Motor

Ref: Donner at al. “Motor Primer”, Industry Application Transaction

Induction Motor

Ref: GE-3239A, “Comparison of IEC and NEMA/IEEE Motor Standards

Induction MotorTorque

Induction MotorTorque

Induction MotorInertia

SynchronousSynchronous Motor

Synchronous MotorSynchronous Motor

Synchronous MotorSynchronous Motor

General-Non-linear Model

Synchronous MotorSynchronous Motor

Park’s Transform

Synchronous MotorSynchronous Motor

Steady State Us=const

Synchronous MotorSynchronous Motor

Synchronous MotorSynchronous Motor

Synchronous MotorSynchronous Motor

Synchronous MotorSynchronous Motor

Synchronous MotorSynchronous Motor

High-Starting Torque Medium-Starting Torque

Synchronous Synchronous Motor

General data Motor electro-mechanical characteristics are described

bby:• Nominal Voltage• Nominal frequency• Nominal Current• Number of phases• Number of poles• Number of poles• Design class• Code letter

M f i i• Moment of inertia• All others (rated power factor, efficiency, excitation current etc.)

Synchronous Synchronous Motor

General data

Mechanical Train SystemMechanical Train System

Load Load Types

TORQUE TORQUE

SPEED SPEED

TL s( ) TLRT Ta ns 1 s( ) k

TL n( ) TLRT Ta n( )k

k 1 2 3

Load Load Types

TORQUE TORQUE

SPEED SPEED

TL n( ) Ao B n C n2 D n3

Load Load Types

TORQUE

SPEED SPEED

Load ASD Application of Standard Motors

Thermal RatingRating

Speed

Load Load Types

Breakaway Accelerating Peak Running

Blowers centrifugal:

Load Torque as a Minimum Percent Drive TorqueApplication

Blowers, centrifugal:Valve closed 30 50 40Valve open 40 110 100

Blowers, positive displacement, rotary, bypass 40 40 100Centrifuges 40 60 125Compressors, axial-vane, loaded 40 100 100Compressors, reciprocating, start unloaded 100 50 100Conveyors belt (loaded) 150 130 100Conveyors, belt (loaded) 150 130 100Conveyors, screw (loaded) 175 100 100Conveyors, shaker-type (vibrating) 150 150 75Fans, centrifugal, ambient:

Valve closed 25 60 50Valve open 25 110 100

Fans, centrifugal, hot:Valve closed 25 60 100Valve closed 25 60 100Valve open 25 200 175

Fans, propeller, axial-flow 40 110 100Mixers, chemical 175 75 100Mixers, slurry 150 125 100Pumps, adjustable-blade, vertical 150 200 200Pumps, centrifugal, discharge open 40 150 150Pumps oil field flywheel 40 150 150Pumps, oil-field, flywheel 40 150 150Pumps, oil, lubricating 40 150 150Pumps, oil, fuel 40 150 150Pumps, propeller 40 100 100Pumps, reciprocating, positive displacement 175 30 175Pumps, screw-type, primed, discharge open 150 100 100Pumps, slurry-handling, discharge open 150 100 100P t bi t if l d ll 50 100 100Pumps, turbine, centrifugal, deep-well 50 100 100Pumps, vacuum (paper mill service) 60 100 150Pumps, vacuum (other applications) 40 60 100Pumps, vane-type positive displacement 150 150 175

Inertia Inertia

Jz

wJi

nin1

2

p

miVin1

2

1i

n1 1i

n1

w - numer rotating elementsb li i lp - number linera motion elements

Inertia

Inertia

Jz J1 J2 J3 n1n1

2

J4 J5 n2n1

2

J6 J7 n3n1

2

m1V1n1

2

Induction MotorTorque, Speed, Inertia

Tm TL JL Im tnm

dd

B nm

Inertia

Torque, Speed, Inertia

TTL

JL I N2

nd

n BL B N2

N - gear ratioJ - inertia

Tm NJL Im N t

nmd

nm BL Bm N

B - dumping

Mechanical Train Acceleration

Mechanical Train Acceleration

Graphical Method

Mechanical Train Acceleration

Mechanical Train Acceleration

Mechanical Train Acceleration

Mechanical Train Acceleration

Torque Unit = S1Torque Unit S1

Speed Unit = S2

Time Unit = S3

Mechanical Train Acceleration

S1 - scale of speed acceleration

S2 - scale of torque acceleration

S3 - scale of time required to accelerate train with acceleration torque from one speed toS3 - scale of time required to accelerate train with acceleration torque from one speed to another

S4 - scale of dynamic energy needed for acceleration

S2 S4S1 S3

S1 100RPMdiv1

S 20N·m

S2 20div2

S30.1secdiv3

S4S2 S3

k S4 0.04S4 S1k S4 0.04

Jtrain 0.431 kg m2

OA Jtrain

30 S4 OA 1.128m2 kg

Mechanical Train Acceleration

Accelerating EnergyAccelerating Energy Unit = S4

Mechanical Train Acceleration

Mechanical Train Acceleration

Mechanical Train Acceleration

Starting Time ~ 1.5 sec

Mechanical Train Acceleration

Calculations Method

Mechanical Train Acceleration

Mechanical Train Acceleration

t

i

Ji

30 ns

1

sn

s1

Te s( ) TL s( )

d

Mechanical Train Acceleration

t1 Js Jm

30 ns

sn

s1

Me s fn U2 Mo s( )

d t1 1.37

1

Mechanical Train Acceleration

In Between Method

Mechanical Train Acceleration

Mechanical Train Acceleration

48.25

28

35.25

43

36

12

tacc JiRPMjtacc

i

Jij

Tavg j

Mechanical Train Acceleration

tacc Jload

30

20028

20035.25

20043

200

48.25

10036

5012

tacc 1.289

Starting, Operation and Breaking MethodsStarting, Operation and Breaking Methods

Motor Starting

Direct On Line Starter (or DOL or FVNR)

Motor Starting

Direct On Line Starter (or DOL or FVNR)

Motor Starting

Reduce Voltage Resistor/Reactor Starter

Motor Starting

Reduce Voltage Resistor/Reactor Starter

Motor Starting

Reduce Voltage Autotransformer Starter (RVAT or Korndörfer Starter)

Motor Starting

Reduce Voltage Autotransformer Starter (RVAT or Korndörfer Starter)

Motor Starting

Reduce Voltage Autotransformer Starter (RVAT or Korndörfer Starter)

Motor Starting

Y / ∆ Starter

Motor Starting

Y / ∆ Starter

Motor Starting

Captive Transformer Starter

Motor Starting

Wound-rotor Resistance Starter (Slip-Ring Starter)

Motor Starting

Wound-rotor ResistanceStarter (Slip-Ring Starter)

Motor Starting

Reduce Voltage Solid State Starter with V=var, f=const (or RVSS)

Motor Starting

Reduce Voltage Solid State Starter with V=var, f=const (or RVSS)

Motor Starting

Reduce Voltage Solid State Starter with V/f=const, Thermal Limitation

Motor Starting

Variable Frequency Drive Starting and Control

Motor Starting and Operating Variable Frequency Drive Starting and Control

Motor Starting and Operating

Synchronous Transfer System

Synchronous Motor Starting

Synchronous Motor Starting

Synchronous Motor Starting

High-Starting Torque Medium-Starting Torque

Synchronous Motor Starting

Starting Torque Control via Discharge ResistorDischarge Resistor

Synchronous Motor Starting

Breaking

Induction Machine Modes Of Operation

MotorTransformerBreak GeneratorSynchronous Speed

Breaking

Regeneration with Active Load

Breaking

Opposite Connection with Switching

Breaking

Dynamic

Special ConsiderationSpecial Consideration

Special Consideration

Harmonic Flux

Special Consideration

Harmonic Torques

Special Consideration

Typical Slot Design

Special Consideration

Typical Slot Design

Special Consideration

Losses and Usable Energy Separation

Stator

Rotor

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Software ETAP, SKM/PTW

• Sufficient for DOL starting and reduce voltage discrete calculations; not applicable for RVSS starters analysis

SPICE, MATLAB, EMTP-ATPSPICE, MATLAB, EMTP ATP• Applicable for motor starting analysis with control loops

considerations, can predict waveforms and effect on power systemsystem

Custom Software• Write own software utilizing Compilers or high level language

(i M tl b Vi Si )(i.e. Matlab or VisSim)

Hand Calculations• Utilize MathCad or other mathematical analysis package; must y p g ;

understand electrometrical theory

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Equivalent Schematic Parameters – CalculationsMotor Data

Pn 1200 Hp fn 60 Hz fs fn p 2

Pn 895 2kWPn 895.2kW

Un 4kV mkr 1.8

PF 0 87 n 1789 RPMPFn 0.87 nn 1789 RPM

n 0.9595

ir 5.0

mr 0.7

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Equivalent Schematic Parameters – CalculationsNominal Parameters

InPn

n 3 Un PFn In 154.79A

PTn

Pn

nn

30

Tn 4778.38N m Tn 3524.36ft·lbf

2 fs 60 fs -1s

s

p ns

s

p s 188.5s 1

ns 1800RPM

snns nn

sn 0.0061n nnn

ZzUn

3 ir In Zz 2.98

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Equivalent Schematic Parameters – Calculations

rr XaX 2' SXSR aII r

2' SI

'R

rR'

XR1V

oI

FeI mISRa

SR rr

2'OR

)1( SS

R r mXFeR

21 aEE

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Iteration starting parameters:

Equivalent Schematic Parameters – Calculations

Rz 0.001 Xz 0.2

Given { From motor equivalent diagram }

Zz Rz2 Xz

2z z z

mr Tn3s

Un

3

2

Rz

2

Rz2 Xz

2

Rz

Xz

Find Rz Xz Rz 0.7 Xz 2.9

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Equivalent Schematic Parameters – CalculationsRs Rz

510

Rs 0.35

5Xs Xz

510

Xs 1.45

R'r Rs X'r Xs

1 nPn Pn

n

n Pn 37.79kW

Pun32

In2 Rz Pun 25.22kW

Pm 0.01Pn Pm 8.952kW

Pfen Pn Pun Pm Pfen 3.61kW

RfeUn

2

Pfen Rfe 4426.97

UIfe

Un

3 Rfe Ife 0.52A

I0 20% In I0 30.96A

I I 2 I 2 I 30 95AIm I0 Ife Im 30.95A

XmUn

3 Im Xm 74.61

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Equivalent Schematic Parameters – CalculationsZs f( ) Rs

ff

j Xs Change "f" only when analysis with VSDfn

Z'r s f( )R'rs

ffn

j X'r

ZmRfe Xm j

R X j Zm f( )

ffn

0.7Rfe

ffn

Xm j

m Rfe Xm jm( )

ffn

0.7Rfe

ffn

Xm j

Z s f( ) Zs f( )Z'r s f( ) Zm f( )

Z'r s f( ) Zm f( )

fU f( ) Un

ffn

n s f( )60 f

p1 s( )

Is s f( )U f( )

3 Z s f( ) I'r s f( ) Is s f( )

Zm f( )

Z'r s f( ) Zm f( )

T s f( )3 p

I' s f( ) 2 Re Z' s f( ) Te s f( )2 f

I r s f( ) Re Z r s f( )

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Equivalent Schematic Parameters – CalculationsNominal Slip Calcs

s 0.0100

Given

Te s fn n s fn

30 Pn Pm

30sn Find s( ) sn 0.0228

In Is sn fn In 147.59A

T T f T 4908 38NTn Te sn fn Tn 4908.38N m

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Equivalent Schematic Parameters –IEEE 112

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Equivalent Schematic Parameters – Sensitivity Calculations

Basis for ETAP Motor Estimating Calcs

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Equivalent Schematic Parameters – Sensitivity Calculations

EMTP ATP G S ftEMTP-ATP Group Software

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Equivalent Schematic Parameters – Sensitivity Calculations

EMTP ATP G S ftEMTP-ATP Group Software

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

U1Isc 3P 150.0 MVAIsc SLG 36.0 MVA

B113800 V

S

P TR1Size 3250.00 kVAPri Delta Sec Wye-Ground yPriTap -2.50 %%Z 5.7500 %X/R 11.0

B24160 V

CB-001

CBL-00012- #4/0 MV EPR 150.0 MetersAmpacity 560.0 A

B34160 V

M12500.000 hpLoad Factor 1.00 X"d 0.17 pu

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

U1Isc 3P 150.0 MVAIsc SLG 36.0 MVA

G18750 kVAX"d 0.2 pu

B113800 V

S

P TR1Size 3250.00 kVAPri Delta Sec Wye-GroundSec Wye Ground PriTap -2.50 %%Z 5.7500 %X/R 11.0

B24160 V

CB-001

CBL-00012- #4/0 MV EPR 150.0 MetersAmpacity 560.0 A

B34160 V

M12500.000 hpLoad Factor 1.00 X"d 0.17 pu

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

1.1

Ub 1Gen KCR

0.9

1

Ub_1Gen_KCRUb 2Gen KCR 0 9

1

Ub_1Gen_KCR

Ub_2Gen_KCR

Ub_1Gen_DECS

Ub_2Gen_DECS

0 5 10 15 200.8

0.9 Ub_2Gen_KCRUb_1Gen_DECSUb_2Gen_DECS

0.9

Time

2000 1 2

1500

2000

1800

RPM 0 9

1

1.1

1.2Ub [pu]

1.0

0 9

500

1000

Mot RPMMot Amp

Amp

0.6

0.7

0.8

0.9 0.9Ub

0 10 20 30 400

Mot Amp

Time0 20 40 60

0.5

Time

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

1

1.2

1Ub 1Gen KCR

0.8

1

Ub_1Gen_KCRUb 2Gen KCR

0.9

1Ub_1Gen_KCR

Ub_2Gen_KCR

Ub_1Gen_DECS

Ub_2Gen_DECS

0 5 10 15 200.6

Ub_2Gen_KCRUb_1Gen_DECSUb_2Gen_DECS

Time

2000

1500

2000

1800

RPM 0 9

1

1.1

1.2Ub [pu]

1.0

0 9

500

1000

Mot RPMMot Amp

RPM

Amp

0 6

0.7

0.8

0.9 0.9Ub

0 10 20 30 400

Mot Amp

Time0 20 40 60

0.5

0.6

Time

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

3500

5000

Pfpso

2000

3500fpso

Q fpso

Ptlp

Q tlp

0 20 40 601000

500p

Time

1500

2000Mot RPMMot Amp

1.1

1.2Ub_fpso [pu]Ub_tlp [pu]

500

1000RPM

Amp

0.9

1

0.9

1

Ubfpso

Ubtlp

0 10 20 30 400

Time

0 20 40 600.8

Time

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

PARKs equations for this machnie:

Motor Simulation

ps s r j s s vspr r s j s m r

T Tpm n

Te Tr

J

State variable assigment: x0 = s (stator) , x1 = r (rotor), x2 = m (angular speed)

32

Veff x0 x1 j x0

f x t( ) x1 x0 j x2 x1

n MLk L Im x0 x1

k

x2n

2

Lk Lr n J

n

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Coeficients for Runge-Kutta (R-K) interation 4th degree:

Motor Simulationg ( ) g

k1 x t( ) h f x t( ) k2 x t( ) h f x k1 x t( )2

t h2

k3 x t( ) h f x k2 x t( )

2 t h

2

k4 x t( ) h f x k3 x t( ) t h( )( )2 2

k4 x t( ) h f x k3 x t( ) t h( )

Final equation for R-K calcualtions:

x i 1 x i 1 k1 x i i h 2 k2 x i i h 2 k3 x i i h k4 x i i h x x6

k1 x i h 2 k2 x i h 2 k3 x i h k4 x i h

is

i

1L L

Lr

M

M

L

s

Equations for current in stator:

ir Lk Lr M Ls r

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Conversion Park reference frame to phase domain:Motor Simulation

i( ) h i

cos i( ) cos i( ) 23

cos i( ) 43

TP i( ) 23

( )

sin i( )

( )3

sin i( ) 23

( )3

sin i( ) 43

12

12

12

if i( ) TP i( ) 1

isdi

isq

Pase currentsif i( ) TP i( ) isqi

0

Pase currents

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

100

Angular Speed vs. time

125

Motor Simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

50

0

i

0.80 h i

100

600

Torque vs. time

700

400

T.ei

550

Average, dynamical and load torques

T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7400

400

0.80 h i

450

50

Tei

Tci

Tri

0 20 40 60 80 100 120450

i

Calculations, Simulation, ApplicationsCalculations, Simulation, Applications

Phase A, B, C Current

Motor Simulation

150

50

250350

350

i.f i( )0

i.f i( )1

i.f i( )2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7350

350

0.80 h i

50

250

Phase A, B, C Current

350

i.f i( )0

i.f i( )1

i i( )

0 0.05 0.1 0.15 0.2 0.25350

150

350

i.f i( )2

0.30 h i

Testing/ProtectionTesting/Protection

Testing/ProtectionTesting/Protection

Testing/ProtectionTesting/Protection

6000

7000

8000

70

80

90

100

Avg Phase Current (A) Ground Current (A)

3000

4000

5000

30

40

50

60 Avg Line Volt (V) kW Power (kW) kvar Power (kvar) T. C. Used (%) Hottest Stator RTD (° C)

0

1000

2000

0 200 400 600 800 1000 12000

10

20 Motor Load (x FLA)

Testing/ProtectionTesting/Protection

6000

7000

8000

80

100

120

Avg Phase Current (A) Avg Line Volt (V)

3000

4000

5000

40

60

80 Current U/b (%) kW Power (kW) kvar Power (kvar) Hottest Stator RTD (° C) T. C. Used (%)

0

1000

2000

0 200 400 600 800 1000 1200 14000

20 Ground Current (A)

Testing/ProtectionTesting/Protection

120

9

10

80

100

7

8

60

4

5

6

Hottest Stator RTD (° C)

T. C. Used (%)

Motor Load (x FLA)

20

40

2

3

00 1000 2000 3000 4000 5000 6000 7000

0

1

Testing/ProtectionTesting/ProtectionLAST "BLOW" - Phase A Current (Amps)

2000

3000

4000

LAST "BLOW" Phase B Current (Amps)

2000

3000

4000

-2000

-1000

0

1000

Tim

e

-47.

91

22.9

1

93.7

3

164.

56

235.

38

306.

2

377.

02

447.

84

518.

66

589.

49

660.

31

731.

13

801.

95

872.

77

943.

59

1014

.41

1085

.24

1156

.06

1226

.88

1297

.7

1368

.52

1439

.34

1510

.17

1580

.99

1651

.81

1722

.63

1793

.45

1864

.27

1935

.09

2005

.92

CU

RR

ENT

( A

Phase A Current (Amps)

-2000

-1000

0

1000

Tim

e

-47.

91

22.9

1

93.7

3

164.

56

235.

38

306.

2

377.

02

447.

84

518.

66

589.

49

660.

31

731.

13

801.

95

872.

77

943.

59

1014

.41

1085

.24

1156

.06

1226

.88

1297

.7

1368

.52

1439

.34

1510

.17

1580

.99

1651

.81

1722

.63

1793

.45

1864

.27

1935

.09

2005

.92

CU

RR

ENT

( A

Phase B Current (Amps)

-4000

-3000

TIME (ms)

-4000

-3000

TIME (ms)

LAST "BLOW" Phase C Current (Amps) LAST "BLOW" AN(AB) Voltage (V)

1000

2000

3000

4000

ENT

(A

2000

4000

6000

8000

GE

(V)

-4000

-3000

-2000

-1000

0

Tim

e

-47.

91

22.9

1

93.7

3

164.

56

235.

38

306.

2

377.

02

447.

84

518.

66

589.

49

660.

31

731.

13

801.

95

872.

77

943.

59

1014

.41

1085

.24

1156

.06

1226

.88

1297

.7

1368

.52

1439

.34

1510

.17

1580

.99

1651

.81

1722

.63

1793

.45

1864

.27

1935

.09

2005

.92

CU

RR

E Phase C Current (Amps)

-8000

-6000

-4000

-2000

0Ti

me

-49.

99

18.7

5

87.4

9

156.

22

224.

96

293.

7

362.

44

431.

18

499.

92

568.

66

637.

39

706.

13

774.

87

843.

61

912.

35

981.

09

1049

.83

1118

.56

1187

.3

1256

.04

1324

.78

1393

.52

1462

.26

1530

.99

1599

.73

1668

.47

1737

.21

1805

.95

1874

.69

1943

.43

2012

.16

VOLT

AG AN(AB) Voltage (V)

TIME (ms) TIME (ms)

Testing/ProtectionTesting/Protection

2.5

3

3.5

0.5

1

1.5

2

LINE

2 5

3

3.5

-0.5

00 100 200 300 400 500 600

0 5

1

1.5

2

2.5

Series1Series2

3.5

-0.5

0

0.5

0 100 200 300 400 500 600

1.5

2

2.5

3

3.5

Series1

-0.5

0

0.5

1

1.5

0 100 200 300 400 500 600

Series2

Questions?Questions?

ReferencesReferences

ReferencesReferences

ReferencesReferences

ReferencesReferences

• Fitzgerald & Kingsley, Electric Machinery, McGraw-Hill, 1961• Liwschitz-Garik, Whipple, A-C Machines, Van Nostrand, 1961• Say, M.G., Alternating Current Machines, John Wiley & Sons, 1976

Gra Electrical Machines and Dri e S stems John Wile & Sons 1989• Gray, Electrical Machines and Drive Systems, John Wiley & Sons, 1989• Leonhard, Control of Electrical Drives, Spinger-Verlag, 1985• Maxwell, James Clerk, A Treatise on Electricity and Magnetism, third edition, 1891• IEEE Standard 519-1992 “IEEE Recommended Practices and Requirements

for Harmonic Control in Electrical Power Systems”, IEEE Press SH15453, New York, 1993• Hammond, P. Power Factor Correction of Current Source Inverter Drives with Pump

Load 1980 IEEE/IAS Conference Record pp 520-529.• Osman R A Novel Medium Voltage drive Topology with Superior Input and• Osman, R., A Novel Medium-Voltage drive Topology with Superior Input and

Output Power Quality, VI Seminario de Electronica de Potencia, 1996.• Hammond, P., A New Approach to Enhance Power Quality for Medium Voltage Drives,

1995 IEEE/PCIC Conference Record pp231-235.• Ferrier, R., McClear, P. Developments and Applications in High-Power Drives Proceedings,

Advanced Adjustable Speed Drive R&D Planning Forum, EPRI-CU-6279 NC, USA, Nov 87.• Bin Wu, DeWinter, F. Voltage stress on induction motors in medium voltage (2300 to 6900V)

PWM GTO CSI drives PESC 95 Record 26th Annual IEEE Power Electronics SpecialistsPWM GTO CSI drives, PESC 95 Record. 26th Annual IEEE Power Electronics Specialists Conference (Cat. No. 95CH35818) Part vol.2 p.1128-32 vol.2; IEEE, New York, NY, USA, 1995.


Recommended