+ All Categories
Home > Documents > [IEEE PESC '91 Record 22nd Annual IEEE Power Electronics Specialists Conference - Cambridge, MA, USA...

[IEEE PESC '91 Record 22nd Annual IEEE Power Electronics Specialists Conference - Cambridge, MA, USA...

Date post: 20-Jan-2017
Category:
Upload: mic
View: 218 times
Download: 2 times
Share this document with a friend
7
POWER MOSFETS REVERSE CONDUCTION REVISITED A. Fmrrmir8 urd M. I. C18trO Sima8 SMEEP - DEEC - INSTITUTO SUPERIOR TPCNICO 1 CENTRO DE ELECTR6NICA APLICADA DA UNIVERSIDADE TOCNICA DE LISBOA - INIC 1096 LISBOA CODEX, PORTUGAL PHONE: 351-1-800637/805064 FAX: 351-1-8472001 Abstract In this paper a contribution to the characterization of power MOS transistor under optimized switching behaviour is presented, aimed at the new high frequency power process- ing topologies. Reverse conduction through the channel resistance is imposed, avoiding the problem of integral diode recovery time without using external diodes. Control circuit design is discussed. Performance and drawbacks are defined and tested in a series resonant converter. The ever increasing switching frequency required by new power processing topologies calls for an optimized switching behaviour of power devices. New power devices are being designed to achieve both high power handling and optimized switching, within safe operating area and with reduced power losses [11-[41. Also new achievements in Smart Power are expected to enable the easy merging of power devices with hphisticated control and protection circuitry. This permits to optimize power devices performance according to the stresses imposed by the power circuit in which they are embedded [SI. Other approaches must consider reverse current flow requirements of specific topolo- gies. In the past, these requirements have ap- plied to the body diode conduction. However, for high frequencies in bridge configurations, this parasitic effect is no longer useful since its large recovery time presents a risk of de- s t r u c t i v e l a t c h u p o f MOSFETs [61. Fig. l shows two possible solutions to overcome this risks: a two MOSFET b i d i r e c t i o n a l c o n f i g u r a t i o n ( f i g . la)) and a MOSFET w i t h two e x t e r n a l d i o d e s (fig. lb)), the design of which is aimed at the disablement of the conduction through the in- trinsic diode while assuring reverse conduc- tion. This can only be achieved at the expense of increased forward conduction drop. These ap- proaches are widely used for high frequency configurations utilized either in conventional PWM or resonant converters. Half and full bridge configurations are those which more easily originate power devices failure conditions under apparently low stress. In fact, in spite of MOSFETs high ruggedness to dv/dt related failures, they become quits frag- ile when their intrinsic diode conducts. Since this parasitic is a minority carrier device, it presents a behaviour which is dependent on stored charge and thus it has forward and re- verse recovery times. During reverse recovery time, the fast removal of charge may increase the base-emitter voltage of the parasitic bipo- lar transistor thu8 provoking latchup of the structure. Furthermore, the fast removal of charge increases critical current densities enabling a short circuit t o the power supply through the opposite leg transistor during turn-on. The turn-on of the transistor in the opposite leg also reinforces these failure con- ditions due to the reverse high voltage reap- plied to the body diode during reverse recov- ery. n a) b) Fig. 1 Power switching structures for bridge configurations : a) two power MOSFET bidirec- tional structure, b) one power MOSFET and two external diodes Recent experiments using reverse opera- tion of power MOSFETs through the channel, that attempt to increase system efficiency while de- creasing, volume, weight and cost, have been reported [7], [8]. The optimized use of power MOSFET's in this reverse conduction state requires an accu- rate characterization of their static and dy- namic reverse behaviour. This paper addresses the problem of power MOS transistor reverse operation using channel resistance modulation, and also dis- cusses related control requirements. In order to show the applicability of MOSFET reverse conduction through the channel we have chosen a bridge configuration as test case due to its exigent requirements on the switching capabilities of the devices. Ex- perimental results, obtained on a series res- onant converter prototype, using either the channel resistance or the structures shown in fig. 1, as alternative reverse paths, will be compared. tor C e - s The physical structure of a power MOSFET c e l l a n d its equivalent circuit are shown in fig. 2. Both switching behaviour at high fre- quency and reverse conduction controlled by the load are deeply affected by the parasitic ele- in fiq. 2, which were already in- ments shown troduced in ever, their our present (vDS<o) - O-7803-oO90~/91/07oO-O4 16$01 .oO 0199 IIEEE 1 11-n I I I II a precious contribution [9] .-How- revision becomes necessary due to concern in reverse bias conditions
Transcript
Page 1: [IEEE PESC '91 Record 22nd Annual IEEE Power Electronics Specialists Conference - Cambridge, MA, USA (24-27 June 1991)] PESC '91 Record 22nd Annual IEEE Power Electronics Specialists

POWER MOSFETS REVERSE CONDUCTION REVISITED

A. Fmrrmir8 urd M. I. C18trO Sima8

SMEEP - DEEC - INSTITUTO SUPERIOR TPCNICO 1 CENTRO DE ELECTR6NICA APLICADA DA UNIVERSIDADE TOCNICA DE LISBOA - I N I C

1096 LISBOA CODEX, PORTUGAL PHONE: 351-1-800637/805064 FAX: 351-1-8472001

Abstract

In t h i s pape r a c o n t r i b u t i o n t o t h e c h a r a c t e r i z a t i o n of power MOS t r a n s i s t o r under op t imized s w i t c h i n g behav iour i s p r e s e n t e d , aimed a t t h e new h igh frequency power process- i ng topo log ie s . Reverse conduction through t h e channel r e s i s t a n c e i s imposed, avo id ing t h e problem of i n t e g r a l diode recovery t ime without u s ing e x t e r n a l d iodes .

Con t ro l c i r c u i t des ign i s d i s c u s s e d . Performance and drawbacks are d e f i n e d and tested i n a series re sonan t conve r t e r .

The eve r i nc reas ing switching frequency r e q u i r e d by new power p r o c e s s i n g t o p o l o g i e s c a l l s f o r an op t imized swi t ch ing behaviour of power dev ices .

N e w p o w e r devices a r e being designed t o achieve both h igh p o w e r handl ing and opt imized switching, w i th in s a f e ope ra t ing a r e a and with reduced power l o s s e s [11-[41.

Also new achievements i n Smart Power a r e expec ted t o e n a b l e t h e e a s y merging of power d e v i c e s w i t h h p h i s t i c a t e d c o n t r o l and p r o t e c t i o n circuitry. This permits t o opt imize power d e v i c e s performance acco rd ing t o t h e stresses imposed by t h e power c i r c u i t i n which they a r e embedded [SI.

Other approaches must cons ide r r eve r se c u r r e n t f low requirements of s p e c i f i c topolo- g i e s . In t h e p a s t , t h e s e requirements have ap- p l i e d t o t h e body d i o d e conduct ion. However, f o r high f r equenc ie s i n b r idge conf igu ra t ions , t h i s parasitic e f f e c t i s no longer use fu l s i n c e i t s l a r g e recovery t i m e p r e s e n t s a r i s k of de- s t r u c t i v e l a t c h u p of MOSFETs [61. Fig . l shows two p o s s i b l e s o l u t i o n s t o overcome t h i s r i s k s : a two MOSFET b i d i r e c t i o n a l conf igu ra t ion ( f i g . l a ) ) and a MOSFET w i t h two e x t e r n a l d i o d e s ( f i g . l b ) ) , t h e design of which i s aimed a t t h e disablement of t h e conduct ion through t h e in - t r i n s i c d iode while a s s u r i n g r e v e r s e conduc- t i o n . This can only be achieved a t t h e expense of i nc reased forward conduction drop. These ap- proaches a r e widely used f o r h igh frequency conf igu ra t ions u t i l i z e d e i t h e r i n convent ional PWM or r e sonan t c o n v e r t e r s .

Half and f u l l b r idge conf igu ra t ions a r e those which more e a s i l y o r i g i n a t e power devices f a i l u r e cond i t ions under apparent ly low stress. In f a c t , i n s p i t e of MOSFETs high ruggedness t o dv/dt related f a i l u r e s , t h e y become q u i t s f rag- i l e when t h e i r i n t r i n s i c d iode conducts. Since t h i s parasitic is a minori ty carrier device, it p r e s e n t s a behav iour which i s dependent on s t o r e d charge and t h u s it h a s forward and re- v e r s e recovery t i m e s . During r e v e r s e recovery t i m e , t h e f a s t removal of charge may i n c r e a s e t h e base-emitter vo l t age of t h e p a r a s i t i c bipo- l a r t r a n s i s t o r t h u 8 provoking l a t c h u p of t h e s t r u c t u r e . Furthermore, t h e f a s t removal of cha rge i n c r e a s e s c r i t i c a l c u r r e n t d e n s i t i e s enab l ing a s h o r t c i r c u i t t o t h e power supply th rough t h e o p p o s i t e l e g t r a n s i s t o r d u r i n g turn-on.

The turn-on o f t h e t r a n s i s t o r i n t h e opposi te l e g a l s o r e i n f o r c e s t h e s e f a i l u r e con- d i t i o n s due t o t h e r e v e r s e h igh v o l t a g e reap- p l i e d t o t h e body d iode d u r i n g r e v e r s e recov- e ry .

n

a ) b)

Fig. 1 Power swi t ch ing s t r u c t u r e s f o r b r idge c o n f i g u r a t i o n s : a ) two power MOSFET b i d i r e c - t i o n a l s t r u c t u r e , b) one power MOSFET and two

e x t e r n a l d iodes

Recent experiments u s ing r eve r se opera- t i o n of power MOSFETs through t h e channel, t h a t attempt t o inc rease system e f f i c i e n c y while de- c r e a s i n g , volume, weight and c o s t , have been r e p o r t e d [7], [ 8 ] .

The opt imized u s e of power MOSFET's i n t h i s r eve r se conduction s t a t e r e q u i r e s an accu- r a t e c h a r a c t e r i z a t i o n of t h e i r s t a t i c and dy- namic r e v e r s e behaviour .

Th i s pape r a d d r e s s e s t h e problem of power MOS t r a n s i s t o r r e v e r s e o p e r a t i o n us ing channel r e s i s t a n c e modulat ion, and a l s o d i s - cusses r e l a t e d c o n t r o l requirements .

In o r d e r t o show t h e a p p l i c a b i l i t y of MOSFET r e v e r s e conduct ion through t h e channel w e have chosen a b r i d g e c o n f i g u r a t i o n as tes t c a s e due t o i t s e x i g e n t r equ i r emen t s on t h e s w i t c h i n g c a p a b i l i t i e s of t h e d e v i c e s . Ex- per imental r e s u l t s , ob ta ined on a series res- onant c o n v e r t e r p r o t o t y p e , u s i n g e i t h e r t h e channel r e s i s t a n c e o r t h e s t r u c t u r e s shown i n f i g . 1, a s a l t e r n a t i v e r e v e r s e p a t h s , w i l l be compared.

t o r Ce-s

The p h y s i c a l s t r u c t u r e o f a power MOSFET c e l l and i t s e q u i v a l e n t c i r c u i t are shown i n f i g . 2.

Both swi t ch ing behaviour a t h igh f r e - quency and r eve r se conduction c o n t r o l l e d by t h e load a r e deeply a f f e c t e d by t h e p a r a s i t i c ele-

i n f i q . 2, which were a l r e a d y in - ments shown troduced i n e v e r , t h e i r our p re sen t (vDS<o) -

O-7803-oO90~/91/07oO-O4 16$01 .oO 0199 IIEEE

1 1 1 - n I I I I I

a p rec ious c o n t r i b u t i o n [9] .-How- r e v i s i o n becomes necessa ry due t o concern i n r e v e r s e b i a s cond i t ions

Page 2: [IEEE PESC '91 Record 22nd Annual IEEE Power Electronics Specialists Conference - Cambridge, MA, USA (24-27 June 1991)] PESC '91 Record 22nd Annual IEEE Power Electronics Specialists

I t I I I

a- rplanh

n* dnin I I

S - B

b)

Fig.2 Cross s e c t i o n of a VDMOS t r a n s i s t o r cell (a) and i t s e q u i v a l e n t c i r c u i t (b)

The g a t e - s o u r c e , g a t e - e p i d r a i n and ga te - subs t r a t e ove r l ap capaci tances represented by cons t an t v a l u e s CGSO, CGDO and CGBO, respec- t i v e l y , are independent from b i a s c o n d i t i o n s s i n c e t h e y a r e e l e c t r o s t a t i c a l l y de f ined . The capac i t ance i n h e r e n t t o t h e pn- junc t ion , sub- s t r a t e bulk-epidrain, r ep resen ted by Cdsl , i s a h igh ly non-l inear f u n c t i o n of t h e s u b s t r a t e bu lk -ep id ra in v o l t a g e VBE. I n t h e e q u i v a l e n t c i r c u i t of f i g . 2 b ) , t h e behav iour of t h i s j u n c t i o n i s modeled by a pn d i o d e c l a s s i c a l model: a non- l inea r c a p a c i t i v e e f f e c t C d s i n p a r a l l e l with a non-linear r e s i s t a n c e F&. When t h i s j unc t ion i s forward o r quasi-forward bi- ased, a s it happens f o r VDS<O, t h e e f f e c t of t h i s capac i t ance can be neg lec t ed .

The c a p a c i t a n c e s C d e p i and Cd a r e a s s o c i a t e d w i t h induced d e p l e t i o n r e g i o n s , which a r e formed between t h e s i l i c o n s u r f a c e and t h e b u l k . These r e g i o n s may be assumed i d e n t i c a l t o t h a t which i s formed i n a one- s ided pn junc t ion and a r e modeled accordingly. It must be stressed t h a t , under r e v e r s e b i a s ( v ~ s < O ) , t h e c a p a c i t a n c e Cdapi becomes ve ry h i g h and may b e n e g l e c t e d i n i t s series a s s o c i a t i o n with %DO. This a s s o c i a t i o n a c t s a s a MOS capac i t ance (ga t e -ep id ra in ) [9].

The c h a r a c t e r i z a t i o n of t h e remaining elements i n t h e model i s s i m i l a r t o t h a t a l - ready desc r ibed f o r forward b i a s ope ra t ion .

~

lWe assign upper use rubraipu to u p . C i m w associated with the MOS MIctule, which ue elccrroruciully dcfincd, urd lower u 8 c rubscripu Io up.ci-8 UraiUcd with h e dcpldon regions of pn juntions or induced by gate voh.ger, bawecn silicon surface and bulk.

However, some comments about t h e cur- r e n t source i D are on o r d e r . For r e v e r s e b i a s , two d i f f e r e n t r e g i o n s o f o p e r a t i o n may occur , acco rd ing t o t h e v a l u e of t h e a p p l i e d v o l t a g e VGS :

Channel OFF r eg ion

For VGS+VSA<~T and VGS-T, no channel is formed and i D = O . Thus, CGD-CGS-O, and t h e sub- s t r a t e r eg ion under t h e g a t e e i t h e r i s unde- p l e t e d o r it h a s a narrow d e p l e t i o n r eg ion , which means t h a t cd i s h igh and CGBO i s domi- nan t i n t h e series. S i n c e under r e v e r s e bias VGE>VTEPI*, an accumulat ion l a y e r e x i s t s under t h e oxide and CGDO dominates over cdepi.

When t h e s u b s t r a t e bu lk -ep id ra in v o l t - age VEB i s h igh enough t o fo rward bias t h i s j u n c t i o n , i t s c u r r e n t becomes impor t an t and equa l s t h e d r a i n c u r r e n t which i s dependent on t h e r e s i s t i v e e f f e c t s F& and RD.

Reverse Triode Region

For VGS+VSA>VT, an i n v e r s i o n r eg ion i s formed a t t h e s u b s t r a t e s u r f a c e - t h e t r a n s i s - t o r channel - which i s a low r e s i s t i v i t y pa th f o r c u r r e n t f low no matter i t s d i r e c t i o n .

The channel c o n d u c t i v i t y i s a func t ion of t h e vo l t ages app l i ed t o i t s t e rmina l s and t o t h e g a t e , and w e may w r i t e :

where v l~~=vGA-VT, i s t h e gate-access region e f - f e c t i v e vo l t age , Bo i s a c o n s t a n t , func t ion of t h e MOS p h y s i c a l and g e o m e t r i c a l s t r u c t u r e (Do-~o.Cox.W/L) , and e and VLO are t h e carrier m o b i l i t y r e d u c t i o n c o e f f i c i e n t s , due t o t h e t r a n s v e r s e and l o n g i t u d i n a l e l e c t r i c f i e l d s , r e s p e c t i v e l y . For high va lues of VSA, t h e sub- s t r a t e bu lk -ep id ra in j u n c t i o n may become f o r - ward b i a s e d even b e f o r e t h e s a t u r a t i o n of t h e charge c a r r i e r s d r i f t v e l o c i t y occur s a t t h e source end. In t h e s e cond i t ions , t h e body diode c u r r e n t becomes an impor t an t f r a c t i o n of t h e d r a i n c u r r e n t .

&ver se C " J h d e - o f f s

There a r e w e l l known and widely used t o p o l o g i e s which u t i l i z e r e v e r s e conduct ion through t h e i n t r i n s i c diode. However, t h i s re- v e r s e conduc t ion depends on t h e s u b s t r a t e - e p i d r a i n j u n c t i o n forward b i a s . An impor t an t drawback of t h i s t e c h n i q u e d e r i v e s from t h e l a r g e recovery t i m e of t h e diode. Although many a t t empt s have been made t o reduce t h i s t i m e by means of e l e c t r o n i r r a d i a t i o n [lo], t h e r e i s always a compromise wi th r e s p e c t t o RDSON mini- mizat ion, because t h i s t echn ique dec reases mi- n o r i t y c a r r i e r l i f e t i m e which i n t u r n inc reases s i l i c o n r e s i s t i v i t y .

O the r s o l u t i o n s , e i t h e r t h a n techno- l o g i c a l , a r e b e i n g used t o overcome des t ruc - t i v e l a t c h u p problems when e n a b l i n g t h e body diode conduction i n br idge conf igu ra t ions , such a s power MOSFET i n b i d i r e c t i o n a l s t r u c t u r e s ( f i g . l a ) o r u s i n g an e x t e r n a l f ree-wheel ing d iode and a d iode i n series wi th t h e MOSFET [ 6 ] , t o prevent c u r r e n t f low th rough t h e body d iode ( f i g . l b ) . For some a p p l i c a t i o n s , when us ing a free-wheeling Schottky diode, t h e r e i s no need f o r t h e series diode, s i n c e t h e f r e e - wheeling d iode s h o r t - c i r c u i t s t h e body d iode which t h e r e f o r e remains d i s a b l e d .

2 V ~ n - Epidrain invasion threshold voltage.

417

Page 3: [IEEE PESC '91 Record 22nd Annual IEEE Power Electronics Specialists Conference - Cambridge, MA, USA (24-27 June 1991)] PESC '91 Record 22nd Annual IEEE Power Electronics Specialists

. .. .. I I .

-. ? t

-.-. _ _ . . - - . - - .. . - ~

VDS (10V/div) 'i, - i -

+.-&4.-. J,--.FI.V"1 - . i~(0.5V/div)

...-"--=- -_c- -----f-.*x*&--A'

With t h e s e techniques , a reduct ion of t h e OFF switching l o s s e s by a f ac to r of two may be achieved [ll]. On t h e o the r hand, conduction losses and device count a r e increased .

Another a l t e r n a t i v e pa th t o r e v e r s e conduct ion r e s i d e s a t t h e MOSFET i n t e r n a l s t r u c t u r e , and i s provided by channel resis- t ance modulation through proper d r i v e condi- t i o n s . This so lu t ion doesn ' t r equ i r e any e x t r a p o w e r device t o implement switching ope ra t ion .

In f a c t , it i s poss ib l e t o enforce re- verse conduction through t h e reverse t r i o d e re- gion applying a gate-source vol tage higher than VT. In t h i s c i rcuns tances , VGA'VGS+VSA i s higher than VT, and t h e channel i s formed a t t h e sub- strate region under t h e oxide. While t h e resis- t i v i t y of t h i s c u r r e n t pa th i s lower than t h e body d iode r e s i s t i v i t y , and t h i s happens f o r t h e most app l i ca t ions and most common p o w e r MOS t r a n s i s t o r s [12], r eve r se conduction w i l l be assured by t h e t r a n s i s t o r channel.

Fig. 3 shows t h e dra in-source vo l t age f o r a power MOS t r a n s i s t o r under reverse bias, when a .gate-source v o l t a g e h ighe r t h a o t h e t h r e s h o l d vo l t age VT, i s fo rced by cons t an t c u r r e n t d r i v e a t g a t e and d r a i n t e r m i n a l s . Thus, t h e body d iode i s shor t - c i r cu i t ed by t h e channel (vBE<vDdsoN) . These waveforms a l s o per- m i t t o conclude t h a t d r i v i n g i n t o conduction power MOS t r a n s i s t o r s under r e v e r s e d ra in - source b i a s r e q u i r e s a h igher dynamic cu r ren t l e v e l than under forward b i a s ope ra t ion . This i s i n accordance with t h e t h e o r e t i c a l ana lys i s of t h e e q u i v a l e n t c i r c u i t p r e s e n t e d above, which shows t h e importance of t h e e l e c t r o s t a t i c ga te -ep idra in capac i tance , CGDO, over t h e de- p l e t i o n capac i t ance of t h e e p i d r a i n , C d e p i , when an accumulation l aye r e x i s t s under t h e ox- i d e due t o a nega t ive drain-source vol tage .

SINGLE BIDIRECTIONAL MOSFET AND MOSFET MOSFET DIODES

t R I 1 9 O L S 6 9 0 ~ s 2 3 0 ~ s

, t f I 160bs 6 2 0 ~ s 22OFS

Fig. 3 MOSFET Gate-Source and Source-Drain vo l t ages v ~ s (t) and VSD (t) , under cons tan t

g a t e and source cu r ren t s , i n r eve r se conduction.

As a matter of f a c t , appl ica t ions which r equ i r e r eve r se conduction through a f a s t re- covery pa th normally have a l r eady presented a forward conduction through t h e same device, t h e capacitances are then charged near ly t o t h e f i - na l va lue of t h e r eve r se s teady s t a t e vo l tage .

MOSFETs swi tch ing behaviour has addi- t i o n a l l y been tested i n t h r e e d i f f e r e n t con- f igura t ions a t t h e same cons tan t ga t e and d ra in cur ren t d r iv ing condi t ions , i n o rde r t o evalu- a t e turn-on and turn-of f t i m e s s t r e s s i n g ca- p a c i t i v e e f f ec t s3 . These conf igu ra t ions were:

3lt should be d. hat IIIC purpoter of such a low spccd drive is to compare dynmic "mu driie rquiranenls of the thrce switch configurations under test.

Table I

W e can conclude t h a t t h e b i d i r e c t i o n a l MOSFET swi tch ing s t r u c t u r e r e q u i r e s a h ighe r dynamic cu r ren t t han t h e o t h e r two configura- t i o n s t o achieve t h e same switching t i m e s , be- cause capac i tances are h igher . Switching t i m e s a r e t h e lowest f o r t h e s i n g l e MOSFET configura- t i o n .

418

1 i r n I T

Page 4: [IEEE PESC '91 Record 22nd Annual IEEE Power Electronics Specialists Conference - Cambridge, MA, USA (24-27 June 1991)] PESC '91 Record 22nd Annual IEEE Power Electronics Specialists

Reverse conduction through t h e channel F ig . 7 d e p i c t s t h e r e sponse o f t h e r e s i s t ance can be optimized i f gate-source and p o w e r c i r c u i t under t h e above condi t ions . d ra in -ga te v o l t a g e s are ma in ta ined a lmos t equal. The dra in-source vo l t age must be kept low and t h e opera t ing poin t must be kept wi th in t h e reg ion s i g n a l e d wi th dots i n t h e output c h a r a c t e r i s t i c s ( f i g . 5 ) t o avo id i n t r i n s i c d iode conduct '

5

YO: o a m iosouwvoLr.ct

es C o n v e r t e r - w s

Fig . 5 Output c h a r a c t e r i s t i c s cons ider ing r eve r se conduction.

In order t o test t h e performance of re- verse conduction through t h e channel, t h e most demanding exper imenta l c o n d i t i o n s have been considered: a series resonant conver te r which uses a h a l f b r idge topology.

S e r i e s resonant conver te rs t h a t switch a t f requencies which a r e h ighe r t han resonant frequency do no t r e q u i r e f a s t recovery f r ee - wheeling d iodes s ince r eve r se conduction turn- o f f occurs f o r ze ro c u r r e n t va lues . Problems emerge f o r swi tch ing f r equenc ie s lower than resonant frequency.

Fig. 6 shows t h e series resonant c i r - c u i t used t o tes t t h e performance of fou r d i f -

F ig . 7 Responses of t h e series resonant conver t er

F ig . 0 shows experimental diagrams of gate-source and dra in-source vo l t ages , vGs (t) 1 - a p o w e r MOSFET with body diode con- and VDs(t) , and d r a i n c u r r e n t i D ( t ) , f o r t h e duc t ion

2 -a power MOSFET wi th two e x t e r n a l diodes aforementioned implementations.

3 -a b i d i r e c t i o n a l two power MOSFET The comparison between e f f i c i e n c y val- s t r u c t u r e ues ca lcu la ted from experimental r e s u l t s , shows

4 - a power MOSFET us ing channel re- b e t t e r r e s u l t s u s i n g c h a n n e l r e v e r s e ve r se conduction, conduct ion . Body d i o d e performance i s t h e

worst , aheaded by free-wheeling d iode imple- menta t ion and t h e two MOSFET b i d i r e c t i o n a l s t ruc tu res . These performances are confirmed by t h e zoom of drain-source vo l t age VDS and d ra in

f e r e n t switch Si and S; implementations,

The fo l lowing tes t cond i t ions were imposed: i npu t vo l t age vs-20V and swi tch ing frequency fs-47KHz.

cur ren t i o shown i n f i g . 9, f o r - the - fou r switch implementations under test . In t h i s f i gu re , t h e o p p o s i t e l e g d e v i c e s o v e r l a p c u r r e n t s and reverse conduction drop are a l s o c l e a r l y seen. Higher dra in-source vo l t age va lues w e r e found f o r h igher c u r r e n t l e v e l s . However, power MOS t r a n s i s t o r s are expected t o be a v a i l a b l e , f o r each a p p l i c a t i o n , i n o r d e r t o p rov ide l o w enouah conduction l o s s e s throuah t h e channel t hus -d i sab l ing body d iode conduction.

To s tudy t h e op t imiza t ion of t h e con- t r o l o f bo th switches, a s p e c i a l d r i v e w a s de- signed i n o rde r t o provide t h e same TI turn-on and T2 tu rn-of f t i m e s and vice-versa, and si- mul t aneous ly p r o v i d e s c o n t r o l o v e r t h e s e switching t i m e s ( f i g .10 ) . To avoid a low resis- t i v i t y pa th f o r cu r ren t flow between t h e p o w e r supply t e rmina l s , t h e t r a n s i s t o r s were dr iven i n t o and ou t o f conduction a t cons t an t g a t e c u r r e n t s . Th i s d r i v e p r o v i d e s c o n t r o l l e d switching t i m e s and allows an almost simultane- ous change of state between MOSFETs i n opposite

Fig. 6 S e r i e s resonant conver te r c i r c u i t l e g s of t h e power conve r t e r , wi thout ove r l ap

fo= 82.35KHz L = 32.3pH 3

I, = 76.33 KHz C = 115.6 n F RL = 12.55KHz CF= 50pF

used f o r t h e test cu r ren t s or inductor cu r ren t d i s c o n t i n u i t i e s .

419

Page 5: [IEEE PESC '91 Record 22nd Annual IEEE Power Electronics Specialists Conference - Cambridge, MA, USA (24-27 June 1991)] PESC '91 Record 22nd Annual IEEE Power Electronics Specialists

d)

Fig . 0 Experimental r e s u l t s wi th f o u r d i f f e r e n t swi tch implementations: a ) one power MOSFET wi th body diode conduction b)one power MOSFET wi th t w o e x t e r n a l diodes c) two power MOSFET b i d i r e c t i o n a l s t r u c t u r e d )one power

MOSFET w i t h channel r eve r se conduction

420

Fig . 9 Zoom of drain-source vo l t age diagram: a ) o n e power MOSFET wi th body diode conduction b)one power MOSFET wi th t w o e x t e r n a l diodes c) two power MOSFET b i d i r e c t i o n a l s t r u c t u r e

d)one power MOSFET wi th channel r eve r se conduction

Page 6: [IEEE PESC '91 Record 22nd Annual IEEE Power Electronics Specialists Conference - Cambridge, MA, USA (24-27 June 1991)] PESC '91 Record 22nd Annual IEEE Power Electronics Specialists

....

I i r r

1

A

1 - I I

.V. -*.

A

Fig. 10 Drive circuit for optimized performance

For comparison purposes, fig. 11 shows drain-source voltage, drain current and oppo- site leg snubber current for non optimized drive conditions (is (lA/div) ) .

Fig. 11 Series resonant converter experimental results using a non optimized channel reverse

conduction

Fig. 12 shows the optimized performance of reverse conduction through the MOSFET chan- nel, in the considered series resonant con- verter. In order to emphasize optimized perfor- mance,one of the turn-off pulses was slightly advanced in time, thus enabling a brief conduc- tion of MOSFET T2 body diode. This technique is aimed at comparison purposes only.

At the switching edge corresponding to conduction change between T2 ( S z ) and TI (SI), an overlap current is to be found (fig. lla)), as well as current spikes in the opposite leg snubber (TI) (fig. llb), i,(POOmA/div)). On the other hand, at the opposite switching edge, fig. loa) clearly shows no significant overlap current; additionally no current is practically detected in the opposite snubber ( T p ) (fig. llc) , is (4OmA/div) ) .

Thus, since channel switching times can be controlled, an optimized design opens new possibilities for snubber discarding, while en- abling an increase in power factor.

42 1

C)

Fig. 12 Channel reverse conduction experimental performance in a series resonant converter

under semi-optimized drive

The reverse conduction through the power MOS transistor has been revisited with the purpose of a more complete characterization of the channel bidirectional current flow path.

The more relevant effects were analysed based on the physical structure of the MOSFET.

Experimental results using a most de- manding topology were shown for different switch implementations, for comparison pur- poses.

Experiments proved the highly perfor- mant behaviour of reverse conduction through the channel compared to other switching cells reverse paths.

I

Page 7: [IEEE PESC '91 Record 22nd Annual IEEE Power Electronics Specialists Conference - Cambridge, MA, USA (24-27 June 1991)] PESC '91 Record 22nd Annual IEEE Power Electronics Specialists

A more efficient and with lower power device count solution, for power circuits re- quiring reverse conduction,was discussed.

Summing up, the optimized reverse con- duction in MOSFETs associated with appropriate control and drive circuitry appears as a promising direction to achieve high power den- sity.

Nevertheless a deeper insight into MOSFET reverse conduction modelling is still necessary, to provide more accurate tools for CAD aimed at power electronic converters using channel reverse conduction. Preliminary and en- couraging results were already obtained and will be the subject of a future contribution [I31 -

Acknowledaements

The authors wish to acknowledge their gratitude to Prof. M. LanCa and Prof. J. Costa Freire for their helpful comments on the manuscript.

References [l] B. J. Baliga et al., "The Insulated

Gate Transistor, a New Three- Terminal MOS Controlled Bipolar Power Device",

ic Device& vol. ED-31, pp. 821-828, 1984.

(21 Y. Natamra et al.,"Very High Speed Static Induction Thyristor", m s . Ind. A D D L vol.IA-22, pp 1 00 0- 10 0 6, Nov/ Dec, 1 98 6.

131 J. Nishizawa et al.,"Performance Trade-off For The Static Induction Transistor", Devices, vol. ED-25 p.314, 1988.

[4] F. Goodenough, "MOS - Controlled Thyristor Turns Off 1MW in 2ps"

D e s h , pp. 57-66, Nov. 10, 1988.

[SI M. I. Castro Simas, "Trends on Electronic Power Conversion using MOS Technologies", power Electro- x u c s -01. W C ' g Q , pp.505-509, Budapest, Hungary, Oct. 1990.

[61 Ned Mohan, Tore Undeland and W. Robbins "power Electronic s-Conv- Lers. -oris and Desi= ' 0 , , John Wiley and Sons, 1989.

. .

[7] I. Barbi, D. Cruz Martins and F. Soares dos Reis, "Using the Ohmic Resistance Reverse Conduction Capability of MOSFETs in Quasi- Resonant Converters",-

CA, USA 1990. Electrmics confezewe. BPEC'90,

[8] M. Case and W. Van Wyk, "A MOSFET Driver of Optimum Half Bridge Performance",

Cow-, pp.720- 722, Budapest, Hungary, 1990.

[9] M. I. Castro Simas, Moisbs Simi3es Piedade and J. Costa Freire "Ex- perimental Characterization of Pow- er VDMOS Transistors in Commutation and a Derived Model for Computer Aided Design" p . R E w s . on Pow- -, vol. 4, No.3, pp 371- 378, July 1989.

[10]B. Baliga, P. Walden, "Improving the Reverse Recovery of Power MOSFET Internal Diodes by Electron Irradiation"

m ' l 9 8 1 , pp. 763-716, USA.

[lllJ. P. Berry, "Synthesis of a Diode by a controlled MOS" U S - C K g S

Toulouse, France, June 1989. BeOort - NP 09/91 , (in French),

[12]A. Ferreira, H. Velez and M. I. Castro Simas "Contribution for an Accurate Caracterization of Power MOSFET Reverse Conduction", JNIC ReDort - LlA-II/= (in Portuguese), IST, Lisbon, Portugal, February 1991.

[131A.. Ferreira, and M. I. Castro Simas, "On The Optimum Switching Operation of Power MOSFETs", to be presented at the SvmDosium M

Electronics, M W E P ' 91, Florence, Italy, September 1991.

422

17 IT r


Recommended