+ All Categories
Home > Documents > IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols#...

IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols#...

Date post: 19-Apr-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
76
IEEE 802.11 WiFi Paal E. Engelstad
Transcript
Page 1: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

IEEE  802.11  WiFi  

Paal  E.  Engelstad  

Page 2: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

•  Overview  •  History  

– Ethernet  -­‐>  WiFi  

•  Physical  layer  •  MAC  layer  •  Security  

Page 3: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

A look at network structure •  network edge:

–  hosts: clients and servers –  servers often in data centers

v  access networks: § Wired (e.g. Ethernet) § Wireless (e.g. LTE and WiFi)

v  network core: §  interconnected routers §  network of networks

mobile network

global ISP

regional ISP

home network

institutional network

Page 4: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Some Wireless Access networks

v  access networks: § Wired (e.g. Ethernet) § Wireless (e.g. LTE and WiFi)

Page 5: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

WiFi (and Ethernet) in home networks

to/from headend or central office

cable or DSL modem

router, firewall, NAT

wired Ethernet (100 Mbps)

wireless access point (54 Mbps)

wireless devices

often combined in single box

Page 6: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

WiFi (and Ethernet) in Enterprise networks

v  Typically used in companies, universities, etc v  10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates v  Today, end systems typically connect into Ethernet switch

Ethernet switch

institutional mail, web servers

institutional router

institutional link to ISP (Internet)

Page 7: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

WLAN vs. WWAN •  shared wireless access network connects end system to router

–  via base station aka “access point”

Wireless LANs (WLANs): §  within building (100 ft) §  802.11b/g (WiFi): 11, 54 Mbps

transmission rate

Wireless wide-area netwoks (WWAN) §  provided by telco (cellular)

operator, 10’s km §  between 1 and 10 Mbps §  3G, 4G: LTE

to Internet 1-7

to Internet

Page 8: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

WLAN vs. WWAN

to Internet 1-8

WLAN/WiFI  (802.11)  

WWAN  (1G,  2G,  3G,...)   Range  

 (m)  

Capacity    (BW)   Wireless  Networking  

Page 9: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Wireless  sta0on  Access  point  (AP)  

Connects  mul0ple  wireless  sta0ons  to  the  wired  network  

WLAN components

Page 10: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Basic  Service  Set  (BSS)  -­‐  One  access  point  

Extended  Service  Set  (ESS)  -­‐  Mul0ple  cells,              Two  or  more  BSSs  

WLAN operating modes: Infrastructure mode

Page 11: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Independent  Basic  Service  Set  (IBSS)  

WLAN operating modes: Ad hoc mode

Page 12: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

IBSS Independent BSS BSS

(Infrastructure BSS)

EBSS (Extended BSS)

DS (Distribution System)

BSS (Infrastructure BSS) BSS

(Infrastructure BSS)

“Portal”

Access Point (AP)

ID: BSSID

ID: SSID

Station (STA)

WLAN operating modes: Summary

Page 13: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

•  Overview  •  History  

– Ethernet  -­‐>  WiFi  

•  Physical  layer  •  MAC  layer  •  Security  

Page 14: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

History:  Fixed  networking  

LAN  (Ethernet)  

Telco-­‐network   Range    (m)  

Capacity    (BW)   Fixed  Networking  

Page 15: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

History:  Fixed  networking  

LAN  (Ethernet)  

Telco-­‐  network   Range  

 (m)  

Capacity    (BW)   Fixed  Networking  

Internet  IEEE  

IETF  

ITU  (U.N.)  ETSI  (industry)  

Page 16: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

History:  Going  wireless...  

LAN  (Ethernet)  

Telco-­‐  network   Range  

 (m)  

Capacity    (BW)   Fixed  Networking  

WLAN  ?  

WAN  (1G,  2G,  3G,...)   Range  

 (m)  

Capacity    (BW)   Wireless  Networking  

IEEE  Internet  

Page 17: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

History:  HyperLAN  vs  802.11  

•  Ethernet  as  a  starWng  point...  

LAN  (Ethernet)  

Teleco-­‐network   Range    (m)  

Capacity    (BW)   Fixed  Networking  

?  WAN  

(1G,  2G,  3G,...)   Range    (m)  

Capacity    (BW)   Wireless  Networking  

IEEE  

802.11  

ETSI  

Page 18: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

HyperLAN  (ETSI)  vs  802.11  (IEEE/WiFi)  

•  Market  race  in  late  1990ies  •  Layering  principles  well  established  •  Telecom:  Top-­‐down  approach,  include  all  

–  Telecom  wireless  guys  trying  to  datacom  (Ethernet)  •  Datacom:  Bo[om  up,  modular  

– Data  com  (Ethernet)  guys  trying  to  do  wireless    –  RFC  1925  The  Twelve  Networking  Truths,  1  april  !  1996  

•  (12)  In  protocol  design,  perfecWon  has  been  reached  not  when  there  is  nothing  le`  to  add,  but  when  there  is  nothing  le`  to  take  away.    

•  (Originally  from  the  French  writer  Antoine  de  Saint-­‐Exupery)  

Page 19: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Why  IEEE  won  the  market  race  

•  Faster  to  market,  partly  due  to  datacom  design  philosophy,  e.g.:  •  RFC  1958  Architectural  Principles  of  the  Internet  June  1996  

–  ...  –  3.4  Performance  and  cost  must  be  considered  as  well  as  funcWonality.    –  3.5  Keep  it  simple.  When  in  doubt  during  design,  choose  the  simplest  

soluWon.    –  3.6  Modularity  is  good.  If  you  can  keep  things  separate,  do  so  –  3.7  In  many  cases  it  is  be[er  to  adopt  an  almost  complete  soluWon  

now,  rather  than  to  wait  unWl  a  perfect  soluWon  can  be  found.  –  3.8  Avoid  opWons  and  parameters  whenever  possible.  Any  opWons  and  

parameters  should  be  configured  or  negoWated  dynamically  rather  than  manually.  

–  ...  etc  ...  

•  This  also  explains  the  “alphabet  soup”  of  802.11  

Page 20: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Learning  from  history  

•  You  should  understand  the  starWng  point:  – Ethernet  

•  They  faced  3  main  challenges:  – New  physical  layer  (PHY)  

•  Radio  techniques,  modulaWon  etc  

– Changes  to  MAC-­‐layer  •  Due  to  radio  features:  CDMA/CD  -­‐>  CDMA/CA  

– Security  •  From  wired  network  to  open  broadcast  

Page 21: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Then  keep  on  improving  

•  You  should  understand  the  starWng  point:  – Ethernet  

•  They  faced  3  main  challenges:  – New  physical  layer  (PHY)  

•  New  PHYs  with  higher  BW  (eg  802.11a  from  HyperLAN)  

– Changes  to  MAC-­‐layer  •  CDMA/CA  +  new  features  (some  from  HyperLAN)  

– Security  •  Replacing  the  original  WEP  with  802.1X  

Page 22: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

This  is  our  OUTLINE:  

•  You  should  understand  the  starWng  point:  – Ethernet  

•  They  faced  3  main  challenges:  – New  physical  layer  (PHY)  

•  New  PHYs  with  higher  BW  (e.g.  802.11a  from  HiperLAN)  

– Changes  to  MAC-­‐layer  •  CDMA/CA  +  new  features  (some  from  HyperLAN)  

– Security  •  Replacing  the  original  WEP  with  802.1X  

Page 23: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

OUTLINE  

•  You  should  understand  the  starWng  point:  – Ethernet  

•  They  faced  3  main  challenges:  – New  physical  layer  (PHY)  

•  New  PHYs  with  higher  BW  (802.11a  from  HiperLAN)  

– Changes  to  MAC-­‐layer  •  CDMA/CA  +  new  features  (some  from  HyperLAN)  

– Security  •  Replacing  the  original  WEP  with  802.1X  

Page 24: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

De-Facto Ethernet today •  LAN Switching and Full Duplex physical layer

– No collision detection in devices

•  Optimized implementation of original Ethernet –  Ethernet specification fits well as a WLAN starting

point ....

   

Switch

   

Switch

Same broadcast domain

Page 25: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Ethernet: Multiple-access links

•  broadcast (shared wire or medium) –  Old-fashioned Ethernet

•  With old-fashioned bus (e.g. 10Mb 10Base-2 Coax) •  Ethernet with a Hub-topology

–  802.11 wireless LAN

Shared wire (e.g.,

old-fasioned Ethernet) Shared Radio / Wireless

(e.g., 802.11 WiFi)

humans at a cocktail party

(shared air, acoustical)

HUB

Star-topology with hub or repeater (e.g. Ethernet)

Page 26: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

MulWple  access  protocols  •  single shared broadcast channel •  two or more simultaneous transmissions by nodes: interference

– collision if node receives two or more signals at the same time

multiple access protocol •  distributed algorithm that determines how nodes share

channel, i.e., determines when node can transmit •  communication about channel sharing must use channel itself!

–  no out-of-band channel for coordination

Page 27: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

3 classes of multiple access protocols

•  channel partitioning –  divide channel into smaller “pieces” (e.g. with time slots/TDMA,

frequency/FDMA, code/CDMA) –  allocate piece to node for exclusive use

•  “taking turns” –  nodes take turns, but nodes with more to send can take longer

turns –  Example1: Polling with a Master/Slave topology (e.g. Bluetooth) –  Example2: Token passing with a Ring topology (e.g. IEEE 802.5)

•  random access –  channel not divided, allow collisions –  Need to detect collisions and “recover” from collisions –  Examples: Aloha, CSMA/CD (Ethernet), CSMA/CA (WLAN)

Page 28: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Ethernet designed for multiple access

•  Designed for bus-topology and broadcast •  Allows also use of star topology with hub •  Each station must examine every frame to determine

whether the frame is destined for it or not •  All stations see all frames placed on the network

–  i.e. Broadcast domain = Collision Domain

Shared wire (e.g., old-fasioned Ethernet)

HUB

Star-topology with hub or repeater (e.g. Ethernet)

   

   

Page 29: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Ethernet uses CSMA/CD to control access to the transmission medium

–  CSMA: Listen before sending, and do not send if channel is busy (Human analogy: don’t interrupt others!)

–  CD: Listen while sending, •  Not easy on wireless: 802.11 WiFi uses frame exchange (e.g. DATA/ACK) instead

–  WiFi uses Collision Avoidance (CA) in addition

–  Back off if collision is detected (Human analogy: the polite conversationalist)

•  Exponential back-off

Shared wire (e.g., old-fasioned Ethernet)

HUB

Star-topology with hub or repeater (e.g. Ethernet)

   

   

Page 30: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

OUTLINE  

•  You  should  understand  the  starWng  point:  – Ethernet  

•  They  faced  3  main  challenges:  – New  physical  layer  (PHY)  

•  New  PHYs  with  higher  BW  (802.11a  from  HiperLAN)  

– Changes  to  MAC-­‐layer  •  CDMA/CA  +  new  features  (some  from  HyperLAN)  

– Security  •  Replacing  the  original  WEP  with  802.1X  

Page 31: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

1997  

31  

…..  

Standardiza0on  of  WLAN:  IEEE  approved  802.11,  2.4  GHz,  1-­‐2  Mbps  

2003  

802.11g:  2.4  GHz,  upto  54Mbps;  Performance  similar  to  802.11a;  Compa0ble  with  802.11b  devices      

1999  

802.11b:  2.4GHz,  upto  11  Mbps;  802.11a:  5GHz,  upto  54Mbps  

2007-­‐2009  

IEEE  approved  802.11n,    upto  600  Mbps    Op0mizes  modula0on;    Uses  mul0ple  antennas  

Brief history of the 802.11 PHYs

Page 32: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

PHYs  •  802.11-­‐1997  (802.11  legacy  ”Standard”)  

–  2.4  GHz,  1  Mbit/s  or  2  Mbit/s.  

•  802.11b-­‐1999  (”Amendment”)  –  2.4  GHz,  11  Mbps  –  On  market:  year  2000  

•  802.11a-­‐1999  (OFDM)  –  5  GHz,  1.5  –  54  Mbps  –  Very  slow  market  adopWon  

•  802.11g-­‐2003    –  2.4  GHz,  1.5  –  54  Mbps  –  On  market:  2003  (hindered  growth  of  802.11a)  

•  802.11-­‐2007  (”Standard”)  –  Included  amendments  802.11a,  b,  d,  e,  g,  h,  i,  j    

•  802.11n-­‐2009    (MIMO)  –  Both  2.4  GHz  and  5  GHz  bands    54  –  600  Mbps  –  On  market  from  2007/2008  (based  on  dra`  version)  

•  802.11-­‐2012  (”Standard”)  –  Included  amendments  802.11k,  r,  y,  n,  w,  p,  z,  v,  u,  s  

•  802.11ac-­‐2013    (MulW-­‐user  MIMO)  –  5  GHz  bands    1.3  Gbps  –  Products  available  on  the  market  now  

Page 33: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Physical layers: Example: 802.11

TODO: UPDATE

IEEE std Type/modulat. Year Max rate (Mbps)

Band (GHz)

802.11 FHSS (QPSK)

1997 2 2,4

802.11 DSSS (GFSK) 1997 2 2,4

802.11b HS-DSSS (CCK) 1999 11 2,4

802.11a OFDM 1999 54 5.0

802.11g OFDM/DSSS 2003 54 2,4

802.11j OFDM 54 4,9

802.11n OFDM 2009 350 2.4/5.0

802.11ac OFDM 2014? 1690 5.0

802.11ad OFDM 2012 7000 60 (LOS 10m)

Link Layer 5-33

Page 34: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Physical layers: Example: 802.11

TODO: UPDATE

IEEE std Type/modulat. Year Max rate (Mbps)

Band (GHz)

802.11 FHSS (QPSK)

1997 2 2,4

802.11 DSSS (GFSK) 1997 2 2,4

802.11b HS-DSSS (CCK) 1999 11 2,4

802.11a OFDM 1999 54 5.0

802.11g OFDM/DSSS 2003 54 2,4

802.11j OFDM 54 4,9

802.11n OFDM 2009 350 2.4/5.0

802.11ac OFDM 2014? 1690 5.0

802.11ad OFDM 2012 7000 60 (LOS 10m)

Link Layer 5-34

Page 35: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

35  

FHSS  rapidly  switches  a  carrier  among  many  frequency  channels  

Highly  resistant  to  narrowband  interference  

u FSK  modula0on  u 79  channels  (2.4GHz-­‐2.438  GHz)  u 1  MHz  Channel  spacing  

Frequency Hopping Spread Spectrum (FHSS)

Page 36: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

36  

System  performance  metrics  used  commonly  used  for  TPC  

FHSS Interference avoidance

Page 37: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

FHSS: Concept of spread spectrum

Page 38: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Physical layers: Example: 802.11

TODO: UPDATE

IEEE std Type/modulat. Year Max rate (Mbps)

Band (GHz)

802.11 FHSS (QPSK)

1997 2 2,4

802.11 DSSS (GFSK) 1997 2 2,4

802.11b HS-DSSS (CCK) 1999 11 2,4

802.11a OFDM 1999 54 5.0

802.11g OFDM/DSSS 2003 54 2,4

802.11j OFDM 54 4,9

802.11n OFDM 2009 350 2.4/5.0

802.11ac OFDM 2014? 1690 5.0

802.11ad OFDM 2012 7000 60 (LOS 10m)

Link Layer 5-38

Page 39: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

39  

DSSS  is  a  modula0on  technique  that  transmits  the  message  signal  using  a  wide(r)  bandwidth  

DSSS  is  more  robust  to  interference  and  noise/jamming  

Direct Sequence Spread Spectrum (DSSS)

Page 40: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

DSSS: Concept of spread spectrum

Below  the  noise  level!    (Analogy  from  technical  museum)  

Page 41: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

DSSS: Analogy

Sound  waves  

Speak!  Listen!  

Below  noise  level  

Page 42: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

DSSS: Concept of spread spectrum

Tradi0onal  way  of  sharing  the  spectrum  would  be  like  this  (FDM)  

Page 43: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

DSSS: Concept of spread spectrum

The  DSSS  way  of  sharing  the  spectrum  would  be  like  this...  

Page 44: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

44  

The  message  signal  modulates  a  pseudorandom  noise/code  (PRN)  

source.:  Siemens  

Direct Sequence Spread Spectrum (DSSS)

Page 45: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

45  

Graphical  representa0on  of  WiFi  Channels  in  2.4  GHz  band  

Non-­‐overlapping  DSSS  Channels  in  the  ISM  band  

DSSS Channels

Page 46: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Physical layers: Example: 802.11

TODO: UPDATE

IEEE std Type/modulat. Year Max rate (Mbps)

Band (GHz)

802.11 FHSS (QPSK)

1997 2 2,4

802.11 DSSS (GFSK) 1997 2 2,4

802.11b HS-DSSS (CCK) 1999 11 2,4

802.11a OFDM 1999 54 5.0

802.11g OFDM/DSSS 2003 54 2,4

802.11j OFDM 54 4,9

802.11n OFDM 2009 350 2.4/5.0

802.11ac OFDM 2014? 1690 5.0

802.11ad OFDM 2012 7000 60 (LOS 10m)

Link Layer 5-46

Page 47: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

47  

Each  RF  carries  a  small  part  of  the  data  

The  carriers  are  very  close  to  each  other  but  are    orthogonal  

The  data  is  divided  into  a  large  number  of  radio  frequencies  (RFs)  

OFDM  is  highly  robust  to  frequency  selec0ve  interference  and  fading,  but  it  requires  high  processing  power    

Orthogonal Frequency Division Multiplexing (OFDM)

Page 48: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

The  Protocol  Stack  

•  Mostly  focusing  on  the  MAC  layer  here.  

•  More  management  funcWons  on  the  MAC-­‐layer,  than  in  other  ”Wired”  IEEE  802-­‐standarder  802.11 Protokol Arkitektur

Note:

- FHSS is historic - IR not implemented (IrDA isteden) - 802.11b, 802.11a and 802.11g PHYs - 802.11n is the upcoming PHY

802.2 !!!

Page 49: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

PHY  –  Below  the  MAC  

•  Three  main  funcWons:  1.  Wrap  in  the  MAC  frames  (PLCP)  2.  Transmit  and  receive  over  the  radio  channel  (PMD)  

•  E.g.  the  modulaWon  presented  in  previous  slides  

3.  Indicate  to  the  MAC  layer  whether  the  channel  is  available  or  not  (CCA)  

   PHY    

PLCP  Phys.  Layer  Convergence  Proc.  

PMD  Phys.  Medium  Dependent  

CCA is based on: -  energy level -  decoding over time -  combination

CCA  Clear  Channel    Assessment  

Page 50: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

PLCP  –  Allowing  different  BWs  

•  PLCP  has  its  own  header:  

   PHY    

PLCP  Phys.  Layer  Convergence  Proc.  

PMD  Phys.  Medium  Dependent  

Signal bits: Indicate the modulation used in the remaining part of the frame [Service bits (reserved in DSSS, but used in 802.11b): 1 bit increases the length, 1bit for symbol clock locked to transmit frequency, and 1 bit for the type of coding (CCK vs PBCC...)]

Page 51: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

LLC:  Above  the  MAC  

•  802.11  uses  802.2  for  logic  link  control,  for  encapsulaWon  of  IP  and  ARP  

•  802.2  header  appears  between  MAC  header  and  e.g.  the  IP-­‐packet:  

Ne[verkslaget  (IP)  

Log.  Link  Ctrl.  (802.2)  

MAC-­‐laget  (802.11  MAC)  

Fysisk  lag  (802.11  PHY)  

802.11 MAC hdr

SNAP DSAP

SNAP SSAP Control Vendor

ID Type

(IP/ARP) IP Pakke FCS

24/30 1 1 1 3 2 4 0-2306 bytes

Like for Ethernet II

“SNAP-header“ 802.2 LLC header

3 0 OxAA OxAA

LLC  specifies  the  general  interface  between    the  network  layer  (IP,  IPX,  etc)  and  the  data    link  layer  (Ethernet,  Token  Ring,  etc).    

SNAP  header  added  for  Ethernet  II  compaMbility.  The  protocol  Types  for  IP/ARP  etc  >  1500,  and  there  is  not    sufficient  space  for  this  within  the  1-­‐Byte  SAP  fields.    

Page 52: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

OUTLINE  

•  You  should  understand  the  starWng  point:  – Ethernet  

•  They  faced  3  main  challenges:  – New  physical  layer  (PHY)  

•  New  PHYs  with  higher  BW  (802.11a  from  HiperLAN)  

– Changes  to  MAC-­‐layer  •  CDMA/CA  +  new  features  (some  from  HyperLAN)  

– Security  •  Replacing  the  original  WEP  with  802.1X  

Page 53: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Main  funcWon  of  the  MAC-­‐layer  •  Reliable  transmission  =>  2-­‐way  &  4.way  handshake:  

–  ACK  of  each  unicast  data  frame    •  2  way  /  ”Minimal  Frame  Exchange”  

–  RTS/CTS  handshake  to  avoid  ”Hidden  Node  Problem”  •  4  way  

•  Fair  access  to  the  channel  –  PCF  (/HCF)  –  Polling-­‐based,  not  treated  here    –  DCF  (Distributed  CoordinaWon  FuncWon)  

•  CSMA/CA  •  Timing  Intervals  

•  ProtecWon  of  the  data  sent  – WEP  – WPA  /  WPA2  /  801.11i  

Page 54: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Hidden  Node  Problem  

Data Data

A B

Page 55: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

SoluWon:  CTS/RTS  

•  Before  each  data  frame  is  sent,  short  RTS  /CTS  frames  are  exchanged  –  RTS  =  ”Request  To  Send”,  CTS  =  ”Clear  To  Send”  

•  ”dot11RTSThreshold”  set  in  MIB:    –  no  CTS/RTS  for  frames  shorter  than  the  Threshold  

•  CTS  also  used  for  802.11b/802.11g  interoperability  –  To  clear  the  channel  

Data Data

RTS RTS

A B

CTS (A) CTS (A)

A B

Data ACK

Page 56: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Fair  access  to  the  channel  –  CSMA/CA  

•  CSMA  =  ”Listen  before  Talk”

•  CA  =  “Collision  Avoidance”  –  Less  greedy:  waiWng  a  random  Wme  before  retransmission  

•  p-­‐persistent  –  Physical  Carrier  Sense  (Clear  Channel  Assessment)  –  ”Virtual”  Carrier  Sense  

•  Each  frame  contains  ”DuraWon”  informaWon  •  Each  node  maintains  a  NAV  

–  Network  AllocaWon  Vector  updated  by  the  ”DuraWon”  info  –  Says  how  long  the  channel  will  be  busy  

•  Every  node  must  listen  to  every  frame  on  the  network  –  (or  in  Power  Save  Mode:  must  synch  with  Beacon  from  the  AP)  

Page 57: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Binary  exponenWal  backoff  -­‐  1  1.  MAC  layer  receives  packet  to  be  transmi[ed  2.  MAC  do  a  physical  and  virtual  ”carrier  sense”  3.  The  frame  is  transmi[ed  if  the  channel  is  idle  4.  Otherwise  (i.e.  if  channel  is  busy):  

a)  MAC  selects  a  random  number  of  backoff  slots  (=Backoff  Value)  within  the  give  ”ContenWon  Window”  interval  

b)  MAC  increments  the  Retry  Counter  c)  Then  the  Backoff  value  is  decremented  for  each  idle  Wmeslot  

MAC  observed  on  the  channel.  The  MAC  transmits  the  frame  when  the  Backoff  Value  =  0  

d)  If  no  ACK  is  received,  the  ContenWon  Window  is  doubled;  GOTO  4a)  

Page 58: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Binary  exponenWal  backoff  -­‐  1  5.  Abort  if  ACK  received  (i.e.  success)  or  if  Retry  Counter  

exceeds  the  Retry  Limit  (i.e.  give  up)  a)  Retry  Counter  reset  tp  0  b)  ContenWon  Window  reset  to  its  start  value  ”CWmin”  

6.  Post-­‐Backoff:  One  backoff  (with  CWmin)  must  be  carried  out,  before  a  new  frame  can  be  transmi[ed.  

 

Note:  The  Post-­‐backoff  ensures  fair  access  to  the  channel  –  Allows  other  STAs  to  enter  the  channel  –  Fairness  is  thus  on  a  per-­‐staWon  and  per-­‐frame  basis  –  This  mechanism  is  tweaked  in  802.11e  in  order  to  provide  

differenWated  QoS  (EDCA)  

Page 59: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Priority  by  the  Timing  Intervals  •  Short  Inter-­‐Frame  Space  (SIFS)  

–  The  shortest  Inter-­‐Frame  Space  (IFS)  interval  –  Used  for  “atomic”  handshakes,  etc.  

•  ACK,  CTS,  Poll-­‐Response  (PCF),  Data  •  Priority  IFS  (PIFS  =  SIFS  +  1  0meslot)  

–  AP  uses  PIFS  to  seize  the  channel  under  the  contenWon-­‐free  period  (CFP),  and  SIFS  (+NAV)  to  withhold  it  

•  Distributed  IFS  (DIFS  =  SIFS  +  2  0meslots)  –  Minimum  delay  for  the  contenWon  period  (CP)  

DIFS Contention Window

Slot time

Defer Access

Backoff-Window Next Frame

Select Slot and Decrement Backoff as long as medium is idle.

SIFS

PIFS DIFS

Free access when medium is free longer than DIFS

Busy Medium

(EIFS  is  not  menWoned…)  

Page 60: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Timing  and  NAV  with  ”Minimal  Frame  Exchange”  

”Atomic”  transmission  unit  where  channel  is  busy  

Page 61: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Timing  and  NAV  with  4-­‐way  handshake  

”Atomic”  transmission  unit  

Page 62: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Timing  and  NAV  with  PCF  

Page 63: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Frame  format  

•  Frame  Control  –  Type:  –  Data  

•  8  types:  Data  /  Null    med  CF-­‐Poll  and/or  CF-­‐ACK  –  Control  

•  RTS,  CTS,  ACK,  PS-­‐Poll  (power  save),  CF-­‐End,  CF-­‐End+ACK  – Management  

•  Beacon,  Probe  Request/Response,    •  AuthenWcaWon,  De-­‐AuthenWcaWon  •  AssociaWon/Re-­‐associaWon  Request/Response,  DisassociaWon  •  Announcement  Traffic  IndicaWon  Map  (ATIM)  

Frame Control

Duration/ ID

Address 1

Address 2

Address 3

Sequence Control

Address 4 Data CRC

2 2 6 6 6 6 2 4 0-2312 bytes

Protocol version Type Subtype To

DS More Frag Retry Power

Mgmt More Data WEP

2 2 4 1 From DS

1

Order

bits 1 1 1 1 1 1

Page 64: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Some  frame  formats  •  Common  frame  format,  e.g.  for  data  in  BSS:  

•  Special  frame  formats  

Frame Control Duration Receiver

Address Transmitter

Address CRC

2 2 6 6 4 bytes

Frame Control Duration Receiver

Address CRC

2 2 6 4 bytes

Frame Control Duration Receiver

Address CRC

2 2 6 4 bytes

ACK

RTS

CTS

Frame Control

Duration/ ID

Address 1

Address 2

Address 3

Sequence Control Data CRC

2 2 6 6 6 2 4 0-2312 bytes

From  AP:                  DA                      BSSID              SA  To  AP:                      BSSID                  SA                      DA  

Page 65: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

OUTLINE  

•  You  should  understand  the  starWng  point:  – Ethernet  

•  They  faced  3  main  challenges:  – New  physical  layer  (PHY)  

•  New  PHYs  with  higher  BW  (802.11a  from  HiperLAN)  

– Changes  to  MAC-­‐layer  •  CDMA/CA  +  new  features  (some  from  HyperLAN)  

– Security  •  Replacing  the  original  WEP  with  802.1X  

Page 66: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

1.  Probe_Request(SSID=’/0’,  STA_rates)  2.  Probe_Response(Timestamp,  beacon_interval,  AP_capabiliWes,  SSID=”This-­‐SSID”,  

AP_rates,  PHY-­‐parameters)  3.  AuthenWcaWon(Algorithm_no=1,  sequence_no=0)  4.  AuthenWcaWon(Algorithm_no=1,  sequence_no=1,  Challenge=”abcdefgh”)  5.  AuthenWcaWon(Algorithm_no=1,  sequence_no=2,  Challenge=RC4(key,  ”abcdefgh”))  6.  AuthenWcaWon(Algorithm_no=1,  sequence_no=3,  Status_code=Success)  7.  AssociaWon_Request(STA_capabiliWes,  listen_interval,  SSID=”This-­‐SSID”,  STA_rates)  8.  AssociaWon_Response(AP_capabiliWes,  Status_code  =  ”Success”,  AssociaWon_ID,  

AP_rates)  9.  DATA  TRANSMISSIONS  ?  ?  ?  ?  ?  ?  ?  ?  

Typical  scenario  -­‐  I  

ID: This-SSID ID: BSSID1 ID: BSSID2

?  

i.  Merk  utvekslingen  av  kapabiliteter  and  supporterte  data  rater  mellom  STA  and  AP  ii.  Kun  ensidig  autenMsering  av  STA,  dvs.  STA  kan  ikke  autenMsere  AP  iii.  Punkt  4.  and  5.  uXøres  ikke  ved  ”Open  AuthenMcaMon”  uten  WEP.  Da  kjøres  Null-­‐algoritmen  iv.  Listen_interval  =  n  betyr  at  STA  vil  ly_e  Ml  hvert  n’te  Beacon  (i.e.  i  Power  Save  Mode)  v.  AssociaMon_ID  (AID)  brukes  for  polling  

Page 67: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

?  ?  ?  ?  ?  ?  ?  

1.  DATA  TRANSMISSIONS  2.  Beacon(Timestamp,  beacon_interval,  AP_capabiliWes,  SSID=”This-­‐SSID”,  AP_rates,  PHY-­‐

parameters,  etc...)  3.  AuthenWcaWon(Algorithm_no=1,  sequence_no=0)  4.  AuthenWcaWon(Algorithm_no=1,  sequence_no=1,  Challenge=”abcdefgh”)  5.  AuthenWcaWon(Algorithm_no=1,  sequence_no=2,  Challenge=RC4(key,  ”abcdefgh”))  6.  AuthenWcaWon(Algorithm_no=1,  sequence_no=3,  Status_code=Success)  7.  Re-­‐AssociaWon_Request(STA_capabiliWes,  listen_interval,  SSID=”This-­‐SSID”,  STA_rates,  

Current_AP_Address)  8.  ReassociaWon  message  sent  to  Current_AP_Address  using  IAPP  or  proprietary  protocol  9.  Re-­‐AssociaWon_Response(AP_capabiliWes,  Status_code  =  ”Success”,  AssociaWon_ID,  

AP_rates)  10.  DATA  TRANSMISSIONS  

?  ?  ?  

Typical  scenario  -­‐  II  

ID: This-SSID

i.  På  forrige  slide  brukte  STA  akMv  scanning,  Her  viser  vi  eksempelet  med  passiv  scanning.  

ii.  STA  kan  pre-­‐autenMsere  seg  i  god  Md  med  mange  APer  for  sikkerhets  skyld  uten  å  må_e  (re-­‐)assosiere  seg  

iii.  Noen  implementasjoner  vil  ikke  kreve  ny  authenMserMng,  når  STA  allerede  har  authenMsert  med  et  annet  AP  

Page 68: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

?  ?  1.  DisassociaWon  (Reason_code  =  4  (i.e.  ”Disassociated  due  to  inacWvity”))  

2.  DeauthenWcaWon(Reason_code  =  3  (i.e.  ”DeauthenWcated  because  STA  is  leaving”))  

Typical  scenario  -­‐  III  

ID: This-SSID

Page 69: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Power  Saving  -­‐  Principle  

•  STA  synchronizes  using  the  Beacon  from  the  AP  •  AP  buffers  incoming  packets  for  the  STA  •  AP  sends  a  Traffic  IndicaWon  Map  (TIM)  in  Beacon  •  STA  ”wakes  up”  for  every  n’th  Beacon  

–  Checks  TIM  for  buffered  packets  waiWng  at  the  AP  –  Might  send  a  PS-­‐Poll  to  receive  buffered  packets  

•  If  the  AP  sends  the  buffered  frame  with  a  ”more  data”-­‐bit  =  1,  then  the  STA  conWnues  polling  the  AP  for  more  buffered  packets  

•  For  mulW-­‐/broad-­‐cast  frames  the  AP  uses  a  Delivery  TIM  (DTIM)  

 All  this  requires  synchronizaWon  between  the  AP  and  the  

STA...  

Page 70: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

SynchronizaWon:  TSF  

•  The  Timing  SynchronizaWon  FuncWon  (TSF)    •  AP  is  responsible  for  maintaining  the  TSF  •  AP  announces  its  Wme  (TSF)  periodically  in  Beacons  •  STAs  adapt  its  locale  Wme  (TSF)  to  the  TSF  of  the  AP  •  Beacon  also  contains  the  Beacon  interval  

–  STA  can  predict  when  the  next  Beacon  will  arrive  •  This  point  in  Wme  is  referred  to  as  the  “Target  Beacon  Transmission  Time”  (TBTT)  

–  STA  can  therefore  maintain  the  synchronizaWon,  even  if  it  misses  some  Beacons  

•  AP  announces  its  Wme  (TSF)  also  in  Probe  Responses  –  Scanning  STAs  can  also  synchronize  

Page 71: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

Other  MAC-­‐funcWons  

•  FragmentaWon  •  Scanning  •  …  

Not  dealt  w

ith  in  this  l

ecture  

Page 72: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

OUTLINE  

•  You  should  understand  the  starWng  point:  – Ethernet  

•  They  faced  3  main  challenges:  – New  physical  layer  (PHY)  

•  New  PHYs  with  higher  BW  (802.11a  from  HiperLAN)  

– Changes  to  MAC-­‐layer  •  CDMA/CA  +  new  features  (some  from  HyperLAN)  

– Security  •  Replacing  the  original  WEP  with  802.1X  

Page 73: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

73  

BSS:  Shared  key  is  used  between  all  sta0ons  and  the  APs  

ESS:  All  APs  have  the  same  shared  key  

No  key  management    Shared  key  is  manually  entered  into  sta0ons  and  APs  

Scalability  issues  are  cri0cal  

WEP  is  the  original  security  model  (1999),  but  has  dis0nct  weaknesses    and  is  outdated  

WLAN  Security:    Wired  Equivalent  Privacy  (WEP)  Model  

Page 74: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

74  

WPA  (2003)  employs  Temporary  Key  Integrity  Protocol  (TKIP)  to  enhance  security  of  the  keys  used  with  WEP  

WPA  also  uses  RC4  stream  cipher  

WPA  changes  the  way  keys  are  derived  and  rotates  keys  more  ogen  for  improved  security  

WPA  has  an  addi0onal  func0on  called  message  integrity  check  func0on  to  prevent  packet  forgeries  

WLAN  Security  Enhancement:    Wi-­‐Fi  Protected  Access  (WPA)  

Page 75: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

75  

The  WLAN  security  model  currently  in  use  is  WPA2  (802.11i)  

WPA2  uses  Advanced  Encryp0on  Standard  (AES)  block  cipher  

WPA2  uses  an  encryp0on  device  that  encrypts  the  network  with  a  256-­‐bit  key  

WLAN  Security  Enhancement:      WPA2  

Page 76: IEEE#802.11#WiFi#heim.ifi.uio.no/~infpri/Presentasjoner/8022016.pdf · MulWple#access#protocols# • single shared broadcast channel • two or more simultaneous transmissions by

OUTLINE  

•  You  should  understand  the  starWng  point:  – Ethernet  

•  They  faced  3  main  challenges:  – New  physical  layer  (PHY)  

•  New  PHYs  with  higher  BW  (802.11a  from  HiperLAN)  

– Changes  to  MAC-­‐layer  •  CDMA/CA  +  new  features  (some  from  HyperLAN)  

– Security  •  Replacing  the  original  WEP  with  802.1X  


Recommended