+ All Categories
Home > Documents > IGCAR FEM , syllabus

IGCAR FEM , syllabus

Date post: 13-Apr-2018
Category:
Upload: sudhakar-tpgit
View: 227 times
Download: 0 times
Share this document with a friend

of 91

Transcript
  • 7/27/2019 IGCAR FEM , syllabus

    1/91

    FINITE ELEMENTS ANALYSIS

    lectures at IGCAR

    Lecture-1

    by

    Dr.C.Jebaraj

    Professor of Mechanical Engineering

    AU-FRG Institute for CAD/CAM

    CEG Campus, Anna University

    Chennai-25

    [email protected]

  • 7/27/2019 IGCAR FEM , syllabus

    2/91

    1. Why CAD/CAM/CAE/CAPP.CAx

    2. SAFE DESIGN

    3. OPTIMUM DESIGN1. In shape

    2. In weight

    3. In size4. In cost

  • 7/27/2019 IGCAR FEM , syllabus

    3/91

    Example of an Optimum Design

    2

    max

    2

    wLPLM

    Z

    MyI

    MfyI

    Mf

    R

    E

    y

    f

    I

    M

    maxmaxmax;

    Bending formula

    BMDQuadratic

    Pw/Length

    L

  • 7/27/2019 IGCAR FEM , syllabus

    4/91

    Z-variation

    L

    d

    b

    261

    2

    3121

    bdd

    bd

    y

    IZ

  • 7/27/2019 IGCAR FEM , syllabus

    5/91

    STRAIGHT BAR SUBJECTED TO AN AXIAL LOAD

    AE

    PLU max

    L

    P

    P= applied load

    L= length of rod

    E= youngs modulus of material

    A= area of cross section

    dx

    AE

    Pdx

    du

    dx

    duE

    A

    P

    E

    E

    (Elongation ofsmall segment dx)

    AE

    PLU

    AE

    PdxxU

    L

    L

    max

    AE

    Px

    )(

    0

    0

    Total elongation

    P

    dx

  • 7/27/2019 IGCAR FEM , syllabus

    6/91

    Umax

    )()( LINEARAE

    PxxU

    STRAIGHT BAR SUBJECTED TO AN AXIAL LOAD.

  • 7/27/2019 IGCAR FEM , syllabus

    7/91

    TAPER ROD SUBJECTED TO AXIAL LOAD

    0

    log

    min

    max

    0

    0

    at xU

    Lat xU

    A(x)

    E

    P

    A(x)EPdxU(x)

    L

    L

    L

    P

    P

  • 7/27/2019 IGCAR FEM , syllabus

    8/91

    TAPERED ROD SUBJECTED TO AXIAL LOAD

    WITH SELF WEIGHT

    f(x)dxE

    A(x)

    (x)dxP

    EA(x)E

    (x)dxPU(x)

    ht (x)Self weigPAxial Load(x)PTotal load

    1

    1

    NOTE:

    i. We may not have explicitly integration formulae

    ii.The solution is highly complex than a

    logarithmic solution.

    P

  • 7/27/2019 IGCAR FEM , syllabus

    9/91

    Trapezoidal method (Linear)

    h)......fff(fff

    f(x)dx

    n

    1432

    21

    2

    NUMERICAL INTEGRATION

    ERROR IS SMALL

    L0

    h 0.05L

    f(x)

    f1 f2 f3 f4 fn+1 fn

    h 0.1 L

    f(x)

  • 7/27/2019 IGCAR FEM , syllabus

    10/91

    SIMPSONS METHOD (QUADRATIC)

    Error is small

    2...)(2

    42

    2

    9753

    86421

    h

    ffff

    .....)fff(fff

    f(x)dx

    N

    h 0.1 L

    f(x)

  • 7/27/2019 IGCAR FEM , syllabus

    11/91

    Summary

    1. In the absence of an explicit integration

    formulae available, we accept numericalintegration formulation which is an

    approximation only

    2. Approximation is improved byi) Increasing the No of segments

    ie., by decreasing h

    ii) Increasing the order of polynomial ofrequirements.

    3. Error is minimized and there is convergence

    towards exact solution

  • 7/27/2019 IGCAR FEM , syllabus

    12/91

    Formulation of Problem for Approximation

    solution

    System L is under equilibriumSubsystem dx is also under

    equilibrium

    + d P

    AdxAd

    AdxAdAFv

    0

    0

    L

    dx

  • 7/27/2019 IGCAR FEM , syllabus

    13/91

    0)(

    0)(

    Adx

    duEA

    dx

    d

    AdxAdx

    duEd

    AdxAEd

    Domain : 0 < x < L

    0)()(:..

    xA

    dx

    duxEA

    dx

    dEDG

    BCs : at x=0 , u=0

    at x=l , R=P

    Pdx

    duEA

    Boundary

    value

    problem

    P

    L

  • 7/27/2019 IGCAR FEM , syllabus

    14/91

    Approximate Solution

    0)()(:..

    xAdx

    du

    xEAdx

    d

    EDG

    Domain : 0 < x < L

    BCs : at x=0 , u=0

    at x=l , R=P

    1

    nnxa...........xaxaxaxaa

    solutionroximationbe the appuLet

    4

    43

    32

    210U*

    U*

  • 7/27/2019 IGCAR FEM , syllabus

    15/91

    3

    3

    2

    210 xaxaxaau*

    Assume,

    Apply BCs

    23120* aau

    Substituting 2 into 1 we get

    0

    ):(

    )(0)()(*

    i

    i

    da

    dR

    axR

    RESIDUExRxAdx

    udxEA

    dx

    d

    Should be minimum

    2

  • 7/27/2019 IGCAR FEM , syllabus

    16/91

    ILLISTRATIVE PROBLEM

    Consider the equation

    2

    2

    Xdx

    dU

    xdx

    d

    in the domain 1< X < 2

    With BCs as U(1) =2 and

    21

    2 Xdx

    dUX

    CONSTRUCTION OF TRIAL FUNCTION

    )x(..........)x()x()x( 110 nnaaU

    2)1(..........)1()1()1( 110 nnaaU

    if .....n1,2,3.....i0)1(then2)1(0 i

  • 7/27/2019 IGCAR FEM , syllabus

    17/91

    2

    1..................

    22

    11

    2

    0

    2

    X

    nn

    XXXdx

    dxa

    dx

    dxa

    dx

    dx

    dx

    UdX

    1

    if

    2

    1

    2

    0

    Xdx

    d

    x

    then ....n1,2,3.....i02

    X

    i

    dx

    dx

    Let

    2aaaa(x)U

    xaxaxaa(x)U

    4321

    3

    4

    2

    321

    or 4321 aaa2a

    2

    1)12a4a2(a

    dx

    UdX 432

    2X

    2

    432 12a4a

    4

    1a

  • 7/27/2019 IGCAR FEM , syllabus

    18/91

    Substituting for a1& a2in the expression for , we have

    xa)x(a

    11xx1xa3x1xa1x4

    12xU

    22110

    2

    43

    11xx1x23x1x1

    1x4

    1

    20

    2

    It can be easily seen that the above trail function satisfiesthe conditions imposed on the boundary. Thus the construction of

    trial function is over.

    xU

    when

  • 7/27/2019 IGCAR FEM , syllabus

    19/91

    WRM APPLICATIONConsider the equation

    0

    22

    xdx

    xdUxdx

    d

    Substituting the trial solution xU for xU , this equation is unlikely to be satisfied

    022

    xdxxUdx

    dxd

    This is called as a Residue and is a measure of the error involved.

    222

    1x2a43x3a1x4

    41xR

    42

    31

    aa

    aa

    i.e., the RHS is a non zero function R(X)

    i.e R(x)

  • 7/27/2019 IGCAR FEM , syllabus

    20/91

    COLLOCATION METHODFor all

    ia choose a point ix in the domain and at each such ix

    force the residual to be exactly zero

    i.e R(x1) = 0R(x2) = 0

    R(xn) = 0

    The chosen points are called collocation point.

    They may be located any where on the boundary or in the domain .

    For the present problem we have 2 parameter

    Therefore select any two collocation point say1a &. 2a

    X1=4/3 & X2=5/3Substituting in the expression for R(x) we have

    100

    9713

    3

    8

    8

    114

    3

    4

    21

    21

    aa

    aa

  • 7/27/2019 IGCAR FEM , syllabus

    21/91

    1a =2.0993 &

    2a = -0.356

    11xx1x0.3563x1-x2.09931x412xU 2

    therefore

    Solving the simultaneous equation

  • 7/27/2019 IGCAR FEM , syllabus

    22/91

    THE SUB- DOMAIN METHODFor each undetermined parameter

    1a choose an intervalx , in the domain.

    Then force average of the residual in the each interval to be zero.

    x11

    0R(x)dxx

    1

    .

    .

    .

    0R(x)dxx

    1

    x22

    xnn

    0R(x)dxx

    1

    1

    X1 i

    R(x)dxx

    1 iX

    x1

    x2

    x3

    x4

  • 7/27/2019 IGCAR FEM , syllabus

    23/91

    which yields n system of residual equations which can be solved for1

    a

    The intervalsix are called the sub-domain.

    They may chosen in any fashion.

    Taking

    1

    x = 1< X < 1.5,2

    x = 1.5 < X

  • 7/27/2019 IGCAR FEM , syllabus

    24/91

    LEAST SQUARE METHOD

    2

    1

    2 0)( dxxRai for i. 1,2,3n

    2

    10/ dxaddRXR i i=1,2,3,n

    this yield the results

    1= 2.3155

    2= -0.3816

  • 7/27/2019 IGCAR FEM , syllabus

    25/91

    THE GALERKIN METHOD

    For each parameter 1 we required that a weighted

    average of R(x) over the entire domain be zero.

    xi

    associated with .a i

    Weighting functions are the trial function

    .

    .

    .

    0dx(x)R(x)

    2

    1

    1

    0dx(x)R(x)2

    1

    i this yields 1= 2.13782 = - 0.3477

  • 7/27/2019 IGCAR FEM , syllabus

    26/91

    FINITE ELEMENTS ANALYSIS

    lectures at IGCAR

    Lecture-2&3

    by

    Dr.C.Jebaraj

    Professor of Mechanical Engineering

    AU-FRG Institute for CAD/CAM

    CEG Campus, Anna University

    Chennai-25

    [email protected]

  • 7/27/2019 IGCAR FEM , syllabus

    27/91

    Comparison of WRM

    Collocation method = R(x) = 0

    Ritz method

    0.)( FdxWxR

    0)(2

    dxda

    dR

    xRi

    Sub domain method 0)( dxxR

    Least square method

    0)(

    0.)(

    dxxR

    FdxWxR

    i

    Galerkin method

    RITZ VARIATIONAL METHOD (weak formulation)

  • 7/27/2019 IGCAR FEM , syllabus

    28/91

    RITZ VARIATIONAL METHOD (weak formulation)

    Staring with equation

    in0xfdx

    dU

    xdx

    d

    The WR became

    0

    dxxf

    dx

    dUx

    dx

    dxW

    Xb

    Xa

    where W(x)= weighing function

    0 dxxWxRie

    0)()(

    dxxWxfdxxWdxdU

    xdx

    d

    RITZ VARIATIONAL METHOD (contd )

  • 7/27/2019 IGCAR FEM , syllabus

    29/91

    RITZ VARIATIONAL METHOD (contd ..)

    Xb

    Xb

    Xb

    Xa

    Xb

    Xa

    dxdx

    dW

    dx

    dUx

    dx

    dUxxW

    dxdx

    dUx

    dx

    dxW

    Integration by parts for first term:

    vduuvudv

    xUxW

    xU

    In Ritz method we take

    where

    is specified, as at the boundary, W(x) = 0.

  • 7/27/2019 IGCAR FEM , syllabus

    30/91

  • 7/27/2019 IGCAR FEM , syllabus

    31/91

    0

    xAdx

    du

    XEAdx

    d

    L

    dxxAdx

    duxEA

    dx

    dxw

    0

    0

    The governing equation is

    The WR formulation is

    where w(x) is the weighting function and

    u(x) is the trial solution.

    Integrating by parts and re arranging we get

  • 7/27/2019 IGCAR FEM , syllabus

    32/91

    LPLwPwdxxwxA

    dxdx

    dw

    dx

    duXEA

    L

    L

    000

    0

    Since u(0) = 0 (specified), uw at x = 0 vanishes

    LPwdxxwxAdxdx

    dw

    dx

    duXEA

    L L

    0 0

    Integrating by parts and re-arranging we get

    )( dvdxxEA Strain energy stored

    External

    work done

    LAW OF CONSERVATION OF ENERGY!!

    LHS =

    Solution Procedure

  • 7/27/2019 IGCAR FEM , syllabus

    33/91

    Solution Procedure

    ,,, ii

    (x) wj j

    j

    a

    xaxaxau(x)

    a) u(

    xaxaxaaLet u

    321

    3

    1

    33

    221

    000

    3

    3

    2

    210

    Th V i ti l E ti

  • 7/27/2019 IGCAR FEM , syllabus

    34/91

    The Variational Equation

    L(w)B(u,w)

    Pw(L)A(x)wdxdxdx

    dw

    dx

    duxEA

    1,2,3iw

    au

    i

    3

    1j

    jj

    Now substituting

    ii

    iii

    j

    jj

    raK

    LPdxxAdxdxd

    dxdxEAa

    )()(..)(3

    1

  • 7/27/2019 IGCAR FEM , syllabus

    35/91

    L

    ij

    ij dxdx

    d

    dx

    dxEAk

    0

    )(0

    LPdxxxAr i

    L

    ii

    3

    3

    2

    2

    1

    x

    x

    x

    23

    2

    1

    3

    2

    1

    xdx

    d

    xdx

    d

    dx

    d

  • 7/27/2019 IGCAR FEM , syllabus

    36/91

    300

    0

    1111 dx

    dx

    d

    dx

    dxEAk = E(80-0.2x) .1.1 dx

    =1.5x104E

    dxdxd

    dx

    dxEAk 2112

    = E(80-0.2x) .1. 2x dx

    = 3.6x106E

    dxdx

    d

    dx

    dxEAk 3113

    = E ( 80 - 0.2 x) .1. 3x2dx

    = 9.45 x 108 E

    Similarly k21=..

    k22=

    .

    .

    k33=

  • 7/27/2019 IGCAR FEM , syllabus

    37/91

    511 103773.12.080)( dxxxdxxAr

    7222 104.22.080)( dxxxdxxAr

    9333 10598.42.080)( dxxxdxxAr

    xPL(L)PP 710311

    10x9L)( 9222 PLPP

    1027 11333 xPL(L)PP

    864 10x9 4510x3 6x1051 a

  • 7/27/2019 IGCAR FEM , syllabus

    38/91

    119

    97

    75

    3

    2

    1

    14118

    1196

    10x2710x4.598

    10x910x2.4

    10x310x.371

    10x1.32210x3.8810x9.45

    10x2.8810x1.210x3.6

    10x9.4510x3.6x105.1

    a

    a

    a

    On solving

    a1 = 6.6762 x 10-5

    a2 = -4.946 x 10-8

    a3 = 6.4736 x 10-10

    U(x) = a1x + a2x2 + a3x

    3

    U(X=300) = uL= a1 (300) + a2 (300)2+ a3 (300)

    3 = 0.033056 cm

    But Exact Value is 0.0378 cm.

    CONVERGENCE STUDY fi t

  • 7/27/2019 IGCAR FEM , syllabus

    39/91

    L

    U(x)

    0.0378

    10Th Order

    0

    6Th

    Order

    0.03306

    CONVERGENCE STUDY-p refinementincreasing the order of approximate polynomial

    NODAL APPROXIMATION METHOD

  • 7/27/2019 IGCAR FEM , syllabus

    40/91

    NODAL APPROXIMATION METHOD

    he

    i je

    Be(u ,w ) = L e(w )

    e

    he he

    e

    e

    ee

    PiwdxxAdxdx

    dw

    dx

    du

    XAE 0 0

    Ue= a0+ a1 x

    =

    1

    0

    a

    a

    he

    xAAAxA jii

  • 7/27/2019 IGCAR FEM , syllabus

    41/91

    Ui=

    1

    0

    a

    a

    Uj=

    1

    0

    a

    a

    1

    0

    1

    01

    a

    a

    heU

    U

    j

    i

    j

    i

    U

    U

    hea

    a1

    1

    0

    1

    01

    101

    U

  • 7/27/2019 IGCAR FEM , syllabus

    42/91

    .

    1

    011

    j

    i

    U

    U

    hexU

    j

    i

    U

    U

    he

    x

    he

    x1

    2

    1j

    jjNu

    1,2i, iNw

    .he

    x

    N,he

    x

    N 21 1

    ;

    1

    ,

    1 21

    hedx

    dN

    hedx

    dN

    hex

    AAAxAjii

  • 7/27/2019 IGCAR FEM , syllabus

    43/91

    Characteristic of shape function

    hexN 11

    hexN 2

    N1 N2

    N1= 1 at x=0

    N1=0 at x=he

    N2= 0 at x=0

    N2= 1 at x=he

    N1+N2=1

    h

  • 7/27/2019 IGCAR FEM , syllabus

    44/91

    2

    11.

    .)(

    21

    211

    he

    0

    1111

    AAheE

    dxhehehe

    AAAE

    dxdx

    dN

    dx

    dNxEAk

    2

    11.

    21

    21

    12112

    AA

    he

    E

    dxhehehe

    AAAEkk

  • 7/27/2019 IGCAR FEM , syllabus

    45/91

    xAAhe

  • 7/27/2019 IGCAR FEM , syllabus

    46/91

    1

    2

    0

    2

    36P

    heA

    heA

    Pdxhe

    x

    he

    AAAr

    ji

    ji

    i

    On substituting the value

    7070

    7070

    100

    1 Ek

    0

    6

    2006

    220

    1001 Rr

  • 7/27/2019 IGCAR FEM , syllabus

    47/91

    For element 2

    50505050

    100

    2

    Ek

    O

    Or

    6

    1406

    160

    1002

  • 7/27/2019 IGCAR FEM , syllabus

    48/91

    For element 3

    3030

    3030

    100

    3 Ek

    P

    O

    r680

    6

    100

    100

    3

  • 7/27/2019 IGCAR FEM , syllabus

    49/91

    On assembling

    3

    2

    1

    k

    k

    k

    4

    3

    2

    1

    u

    u

    u

    u

    r1

    r2

    r3

    =

    17070 U

  • 7/27/2019 IGCAR FEM , syllabus

    50/91

    4

    3

    2

    1

    303030305050

    50507070

    7070

    100UU

    U

    U

    EX

    6

    806

    1006

    1406

    160

    6

    2006

    220

    100

    P

    R

    0

    0

    17070 U

  • 7/27/2019 IGCAR FEM , syllabus

    51/91

    4

    3

    2

    1

    3030308050

    5012070

    7070

    100UU

    U

    U

    EX

    6

    806

    240

    6

    3606

    220

    100

    P

    R

    0

    0

    A li Gl b l b d diti U 0

  • 7/27/2019 IGCAR FEM , syllabus

    52/91

    Appling Global boundary condition U1= 0

    P

    OO

    U

    UUE

    80

    240360

    6

    100

    3030

    30805050120

    1004

    3

    2

    U4= 0.0355,

    U3= 0.0188,U2= 0.0088.

    Umaxexact = 0.0378

    CONVERGENCE STUDY h improvement

  • 7/27/2019 IGCAR FEM , syllabus

    53/91

    CONVERGENCE STUDY- h improvement

    increasing No of element

    L0.0378

    0

    0.0355

    3 element

    6 element

    10 element

    U(x)

    C i f fi

  • 7/27/2019 IGCAR FEM , syllabus

    54/91

    L

    U(x)

    0.0378

    10Th Order

    0

    6Th

    Order

    0.03306

    Comparison of refinement

  • 7/27/2019 IGCAR FEM , syllabus

    55/91

    L0.0378

    EXACT

    0

    0.0355

    3 element

    6 element

    10 element

    U(x)

    Comparison of refinement (contd)

    FINITE ELEMENTS ANALYSIS

  • 7/27/2019 IGCAR FEM , syllabus

    56/91

    FINITE ELEMENTS ANALYSIS

    lectures at IGCAR

    Lecture-4

    by

    Dr.C.Jebaraj

    Professor of Mechanical EngineeringAU-FRG Institute for CAD/CAM

    CEG Campus, Anna University

    Chennai-25

    [email protected]

  • 7/27/2019 IGCAR FEM , syllabus

    57/91

    HEAT TRANSFER BYCONDUCTION & CONVECTION

    Heat transfer Problems using FEM

  • 7/27/2019 IGCAR FEM , syllabus

    58/91

    Heat transfer Problems using FEM

    K=conductivity

    coeff..

    h=convection coeff

    T= Ambient Temp

    P= Perimeter

    A=area of cross

    section

  • 7/27/2019 IGCAR FEM , syllabus

    59/91

  • 7/27/2019 IGCAR FEM , syllabus

    60/91

  • 7/27/2019 IGCAR FEM , syllabus

    61/91

    Heat in = Heat out

    )()( TThPdxAdqqqA

    f luxheatdx

    dTKq

    0)()(

    )(0

    TTdxhPdx

    dTKAd

    TTdxhPdqA

    dxby 0)()( TThPdx

    dTKA

    dx

    d

    q + dqq

    dx

    MATHEMATICAL FORUMULATION

  • 7/27/2019 IGCAR FEM , syllabus

    62/91

    MATHEMATICAL FORUMULATION

    0)()(

    TThPdx

    dTKA

    dx

    d

    0 < X < L

    @ x = 0, T=TO

    @ x=L,)(

    TThAdx

    dTKA

    BCs:

    If the end is open toatmosphere

    0

    dx

    dTKA If the end is insulated

    GDE:

    DOMAIN:

  • 7/27/2019 IGCAR FEM , syllabus

    63/91

    Approximate Solution Procedure

    Let the App solution be, T* = a0+ a1x + a2x2

    + a3x3

    Apply B.Cs and get 23120* aaT

    Substituting in to GDE*T

    RESIDUExRTThP

    dx

    TdKA

    dx

    d )(0)()(

    *

    *

    Minimisation of residue by RITZ METHOD

    RITZ FORMULATION

  • 7/27/2019 IGCAR FEM , syllabus

    64/91

    RITZ FORMULATION

    0.)( dxFWxR

    Let (x)be the weighting function

    0)()()( dxxTThP

    dx

    dTKA

    dx

    d

    0)()()()( dxxhPTdxxhPTdxxdxdT

    KAdx

    d

    Integration by parts vduuvudvdv

    u

  • 7/27/2019 IGCAR FEM , syllabus

    65/91

    ddT

  • 7/27/2019 IGCAR FEM , syllabus

    66/91

    0

    ).().()(

    )(

    xLx dxdTKAx

    dxdTKAxdxxhPT

    dxxhPTdxdx

    d

    dx

    dTKA

    )(),( LTB

    3

    3

    2

    20 1 xaxaxaaT*

    Q)(

    )(

    dxxhPT

    dxxhPTdxdx

    d

    dx

    dTKA

    A

    3

  • 7/27/2019 IGCAR FEM , syllabus

    67/91

    321 ,,j j On applying eqn B into eqn A we get

    e

    j

    ee

    he

    i

    ee

    hejiee

    i

    QdxATh

    dxxTPhdxdx

    d

    dx

    dAKa

    )(00

    ;aTi

    ii

    *

    1 B

    ii raK

    Where i=1,2,3 & j=1,2,3 and we can calculate Kij

    and similarly ri

    RITZ E ti f Fi it l t

  • 7/27/2019 IGCAR FEM , syllabus

    68/91

    RITZ Equation for a Finite element

    O heI Je

    )(),( ee LTB

    he

    eee

    he

    eeeehe

    ee

    QdxxTAh

    dxxTphdxdx

    d

    dx

    dTAK

    0

    00

  • 7/27/2019 IGCAR FEM , syllabus

    69/91

    T should be expressed in term of e

  • 7/27/2019 IGCAR FEM , syllabus

    70/91

    J

    I

    T

    T

    T should be expressed in term of

    nodal variables

    eJI

    0 he

    heaahe, Tx

    aa, T@ x

    J

    I

    10

    10

    00

    Putting it in matrix form

  • 7/27/2019 IGCAR FEM , syllabus

    71/91

    Putting it in matrix form

    1

    0

    1

    01

    a

    a

    heT

    T

    J

    I

    J

    I

    T

    T

    hea

    a1

    1

    0

    1

    01

    matrix form cont*

  • 7/27/2019 IGCAR FEM , syllabus

    72/91

    J

    I

    T

    T

    he

    T

    1

    *

    1

    01 x1

    J

    I

    T

    T

    he

    x

    he

    x1

    J

    I

    JI

    T

    TNN

    xxaaT* 110

    1

    0

    a

    a

    2 T

  • 7/27/2019 IGCAR FEM , syllabus

    73/91

    321

    2

    1

    ,,iNxfunctionweighting

    T

    Tre q wheqNT

    i

    J

    I

    j

    j

    jj

    *

    II

    he

    eee

    heeee

    eheee

    QdxxTAh

    dxxTphdxdx

    d

    dx

    dTAK

    0

    0

    *

    0

    I

    Repeating the RITZ Eqn. I have

    On substituting II in I

  • 7/27/2019 IGCAR FEM , syllabus

    74/91

    On substituting II in I

    he

    i

    ee

    he

    ij

    eeijhe ee

    j

    j

    dxNTPh

    dxNNphdxdx

    dN

    dx

    dNAKq

    0

    00

    2

    1

    ;;12121 21hex N

    hex-; N,; j,i

  • 7/27/2019 IGCAR FEM , syllabus

    75/91

  • 7/27/2019 IGCAR FEM , syllabus

    76/91

    heKA

  • 7/27/2019 IGCAR FEM , syllabus

    77/91

    322

    hehP

    he

    KAK

    21

    12

    611

    11 hehP

    he

    KAKe

    dxNhPTrly 11lll

    21he

    hPTdxhe

    x

    hPT

    hehPTdxNhPTr

  • 7/27/2019 IGCAR FEM , syllabus

    78/91

    2 22 hPTdxNhPTr

    11

    2hehPTre

    eJ

    Ie rT

    TK

    1

    1

    221

    12

    611

    11 hehPT

    T

    ThehP

    he

    KA

    J

    I

    On Appling the element stiffness matrix and load

  • 7/27/2019 IGCAR FEM , syllabus

    79/91

    vectors and introducing the continuity condition

    we get

    3

    2

    1

    kk

    k

    4

    3

    2

    1

    T

    T

    T

    T

    2

    1

    r

    r

    2

    1

    r

    r

    2

    1

    r

    r=

    On applying the BCs and solving for the

    remaining system of equations we get the nodal

    values

    ILLUSTRATION BROBLEM

  • 7/27/2019 IGCAR FEM , syllabus

    80/91

    ILLUSTRATION BROBLEM80OC

    8 cm

    1 cm4cm

    K = 3 w/cm 0c

    h = 0.1 w/cm20cT= 20

    0c

    51 2 3 4

    421 3

    Let the element be of equal length he = 2 cm

  • 7/27/2019 IGCAR FEM , syllabus

    81/91

    The element matrices are

  • 7/27/2019 IGCAR FEM , syllabus

    82/91

    hA

    hehP

    he

    KA

    K

    e

    0

    00

    21

    12

    6

    11

    11

    ThA

    ThehPf e

    0

    1

    1

    2

    The element matrices for ELEMENT 1, 2 & 3 are

    20

    20;

    666.6667.5

    667.5666.6ee fK

    The element matrices for ELEMENT 4 is

  • 7/27/2019 IGCAR FEM , syllabus

    83/91

    28

    20

    ;066.7667.5

    667.5666.6ee

    fK

    The assemblies of the element matrices are

    28

    40

    40

    40

    20

    006.7667.5000

    667.5337.13667.500

    0667.533.13667.50

    00667.5333.13667.5

    000667.5667.6

    5

    4

    3

    2

    1

    T

    T

    T

    T

    T

    Appling the boundary condition T1= 80oC

  • 7/27/2019 IGCAR FEM , syllabus

    84/91

    1

    28

    4040

    80667.540

    006.7667.500

    667.5333.13667.500667.5333.13667.5

    00667.5337.13

    5

    4

    3

    2

    T

    TT

    T

    3.308.329.399.5380T

    Exact solution is

    6.302.332.403.5480T

  • 7/27/2019 IGCAR FEM , syllabus

    85/91

  • 7/27/2019 IGCAR FEM , syllabus

    86/91

  • 7/27/2019 IGCAR FEM , syllabus

    87/91

    Description Solidmechanic

    Equation

  • 7/27/2019 IGCAR FEM , syllabus

    88/91

    mechanic

    = Variable U=axial

    displacement

    (x) = property

    associated with

    the DERIVATIVE

    of the variable.

    E=youngs

    modulus

    = Property

    associated with

    the variable0

    f(x) = Load not

    at all associated

    with the variablerA(x)

    0xrAdx

    dyxEA

    dx

    d:GDE

    Description Fluidmechanic

    Equation

  • 7/27/2019 IGCAR FEM , syllabus

    89/91

    mechanic

    0Qdx

    dK

    dx

    d:GDE XX

    f(x) = Load not

    at all associated

    with the variable

    Q=volume of flow

    rate

    = Property

    associated with

    the variable

    h = convec co-eff

    (x) = property

    associated with

    the DERIVATIVE

    of the variable.

    Kxx= Permeability

    Co-eff

    = Variable=fluid head

    Description Electromagnetic

    Equation

  • 7/27/2019 IGCAR FEM , syllabus

    90/91

    magnetic

    0:

    dx

    dv

    dx

    dGDE

    = Variable V=Electric

    potential

    = Property

    associated with

    the variable

    0

    (x) = property

    associated with

    the DERIVATIVE

    of the variable. permissivity

    f(x) = Load not

    at all associated

    with the variable

    =Volume

    charge

    Density

  • 7/27/2019 IGCAR FEM , syllabus

    91/91


Recommended