+ All Categories
Home > Documents > I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1...

I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1...

Date post: 27-Nov-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
230
TECHNICAL- INFORMATION CENTER "" ~5 0644 00001089 6 r - - - - - - - - - - - --- - --- II - I SII NO. 12610I I>I ',i•PPLICATION OF COMPOSITE MATERIALS TO TRUCK COMPONENTS: LEAF SPRINGS AND PROPELLER......... SHAFTS FOR 5-TO'N TRUCKS" II Department of Army Contract NumherF'.,AE 30-79-C-0146 In I November 1981 by EXXON ENTERPRISES MATERIALS DIVISION US 276 & Old Laurens Road Fountain Inn, South Carolina 29644 Approved for public release, distribution unlimited. U.S. ARMY TANK-AUTOMOTIVE COMMAND RESEARCH AND DEVELOPMENT CENTER R Warren, Michigan 48090 Aa.9 S,1-'oo loI o,
Transcript
Page 1: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TECHNICAL- INFORMATION CENTER

"" ~5 0644 00001089 6

r - - - - - - - - - - - --- - - - -II

- I

SII

NO. 12610I

I>I

',i•PPLICATION OF COMPOSITE MATERIALS

TO TRUCK COMPONENTS:

LEAF SPRINGS AND PROPELLER.........SHAFTS FOR 5-TO'N TRUCKS"

II

Department of Army Contract NumherF'.,AE 30-79-C-0146

In I

November 1981

by EXXON ENTERPRISES MATERIALS DIVISION

US 276 & Old Laurens RoadFountain Inn, South Carolina 29644

Approved for public release,distribution unlimited.

U.S. ARMY TANK-AUTOMOTIVE COMMANDRESEARCH AND DEVELOPMENT CENTER RWarren, Michigan 48090 Aa.9

S,1-'oo loI o,

Page 2: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

UNCLASSTFTEDSECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

f 126104. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Application of Composite Materials to Truck Final ReportComponents: Leaf Springs and Propeller Shafts

for 5-Ton Truck 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(a)

R. L. Daugherty DAAK 30-79-C-0146

"S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASKAREA & WORK UNIT NUMBERSExxon Enterprises Materials Division

US 276 & Old Laurens Road 219 2040Fountain Inn, South Carolina 29644

i1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Tank-Automotive Command November 1981ATTN: DRSTA-RSC : 13. NUMBER OF PAGESWarren, Michigan 48090

"14. MONITORING AGENCY NAME & ADDRESS(If different trom Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified1Sa. DECLASSI FI CATION/DOWNGRADING

SCH EDULE

16. DISTRIBUTION STATEMENT (of this Report)

Unlimited

17. DISTRIBUTION STATEMENT (of the abatraci entered In Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If necessary and Identify by block number)

Composite Materials Graphite-EpoxyTruck-Automotive Components Fiberglass-EpoxyResin Matrix Composites

2(L ABSTRACT (Caautlrue am reverse de bf IHI wee•a'y d Identify by block number)

The objective of the program was to develop lightweight experimental truckcomponents, fabricated from synthetic materials. In particular, leaf springsand propeller shafts for the 5-ton Army truck are designed using resin matrixcomposite materials. Both design studies and prototype fabrication and testingare included in the program.

For the leaf springs (both front and rear) a hybrid design using steel

DD FOR 143 ED#T1ON OF I NOV65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (W11 Date Entered)

Page 3: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

SECURITY CLASSIFICATION OF THIS PAGE(ehm, Data Entered)

leaves in combination with fiberglass-epoxy leaves produced the most cost-effective solution. The propeller shaft design employed graphite-epoxy tubeswith adhesively bonded steel end sleeves.

The results of the design-material trade studies are included in thereport. The fabrication processes employed in making prototype parts are alsoincluded as well as the test results obtained for the prototype parts.

SECURITY CLASSIFICATION OF THIS PAGE(WIfthn Data Entered)

Page 4: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TABLE OF GONTENTS

Section Page

1 INTRODUCTION 9

2 COMPOSITE MATERIAL PROPERTIES 11

2.1 Graphite-epoxy Systems 112.2 Fiberglass-epoxy Systems 112.3 Adhesives 12

3 DESIGN STUDIES 27

3.1 Leaf Spring Assemblies 273.1.1 Design Criteria 273.1.2 Trade Study 293.1.3 Analysis of Composite Assemblies 333.1.4 Chosen Designs for Composite Assemblies 51

3.2 Propeller Shafts 573.2.1 Design Criteria 573.2.2 Material Trade Study 613.2.3 Analysis of Composite Tubes and Joints 643.2.4 Chosen Designs for Composite Shafts 78

4 FABRICATION OF PROTOTYPE MPONENTS 93

4.1 Leaf Spring Assemblies 934.1.1 Leaf Fabrication 934.1.2 Assembly 93

4.2 Propeller Shafts 934.2.1 Composite Tube Fabrication 934.2.2 Assembly 97

5 TEST PROGRAM 98

5.1 Non-Destructive Evaluation 985.2 Leaf Spring Assemblies 985.3 Propeller Shafts 98

6 BUDGETARY COST ESTIMATE FOR PRODUCTION 116

6.1 Leaf Spring Assemblies 1166.1.1 Production Fabrication Process 1166.1.2 Non-Recurring Investment 1206.1.3 Production Costs 121

6.2 Propeller Shafts 1246.2.1 Production Fabrication Process 1246.2.2 Non-Recurring Investment 1246.2.3 Production Costs 129

6.3 Estimated Production Costs 131

3

Page 5: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

section Page

7 CONCLUSICS AND REPOMMENDATICMS 133

APPENDIX A Fabrication Process Sheets A-IFor Leaf Spring

APPENDIX B Fabrication Process Sheets B-I

For Propeller CmTposite Tube

APPENDIX C Ultrasonic C-Scan Results C-i

APPENDIX D Leaf Spring Test Procedure D-I

DISTRIBUT'ION LIST

Page 6: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

LIST CF TABLES

TABLE TITLE PAGE

1 Material Properties for HyEl048AIE 132 Material Properties for AS/1904 163 Material Properties for EF7172 194 Material Properties for 3M-SP250 225 Adhesive Properties: Lap Shear for High- 25

Strength Graphite-Epoxy Bonded to Steel6 Rear Spring Assembly Results of Materials 31

Study7 Front Spring Assembly Results of Materials 32

Study8 Results of Materials Study for Propeller 62

Shaft 116691479 Results of Materials Study for Propeller 63

Shaft 833224810 Final Design for High-Strength Graphite-Epoxy 67

Tube for P/N 833224811 Final Design for High-Strength Graphite-Epoxy 71

Tube for P/N 1166914712 Final Design for High-Strength Graphite-Epoxy 75

Tube for P/N 833224513 Final Design for High-Strength Graphite-Epoxy 79

Tube for P/N 833224614 Weight omparison for TACOM Propeller Shaft 80

Tube Sections15 Weight of Composite Spring Assemblies 9516 Summnary of Initial Spring Rates for Front 101

Spring Assemblies17 Vertical Fatique Results for Front Steel 102

Assembly18 Vertical Fatique Results for Front COposite 104

Assembly S/N 119 Vertical Fatique Results for Front C(mposite 106

Assembly S/N 220 Summay of Initial Spring Rates for Rear Spring 108

Assemblies21 Vertical Fatique Test Results for Rear Steel 109

Assembly22 Vertical Fatique Test Results for Rear Composite i1

Assembly S/N 123 Vertical Fatique Test Results for Rear OCmsite 113

Assembly S/N 224 Vertical Fatique Test Results for Rear Composite 114

Assembly S/N 325 Estimated Production Costs 132

5

Page 7: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

LIST OF ILLUSTRATICNS

FIGURE TIL PAE

1 Glass-Epoxy Flexural Fatique Results 342 Glass-Epoxy Interlaminar Shear Fatique Results 343 Steel Main Leaf Under an Applied Torque Load 404 loading on Composite Leaves Due to an Applied 40

Torque5 Steel Main Leaf Under an Applied Torque Load 476 Loading on Composite Leaves Due to an Applied 47

Torque7 Windup Torque Force Reactions 498 Wiiposite Rear Leaf Spring Assembly 529 (cxrosite Front Leaf Spring Assembly 54

10 Omposite Design for P/N 8332248 8111 Cmnposite Design for P/N 11669147 8412 Composite Design for P/N 8332245 8713 Omuposite Design for P/N 8332246 9014 TEle ooling for Leaf Spring Fabrication 9415 Tooling for Propeller Shaft Omposite Tube Fabrication 9616 Spring Assembly Test Set-Up 9917 Clamped Spring Rate as a Function of Cycles 103

for Front Steel Assembly18 Claped Spring Rate as a Function of Cycles 105

for Front Oamposite Assembly S/N 119 Clamped Spring Rate as a Function of Cycles 107

for Front Composite Assembly S/N 220 Clamped Spring Rate as a Function of Cycles 110

for Rear Steel Assembly21 Clamped Spring Rate as a Function of Cycles 112

for Rear Omiposite Assembly S/N 122 Injection Molding Process 11823 Cm--p ssion Molding Process 11924 Learning Curves for OCuposite Rear Spring 125

Assembly25 Learning Curves for Cmposite Front Spring 126

Assembly26 Fabrication Process for Composite Tube 12727 Learning Curves for Omposite Tube 130

6

Page 8: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

SUMMARY

Exxon Enterprises Materials Division was awarded a contract by the U.S.Army Tank-Automotive Command for the design, fabrication, and testing of componentsfor the 5-ton truck using synthetic materials. The development covered theperiod from October 1979 through October 1981.

Exxon Enterprises Materials Division was responsible for the design tradestudy for the front and rear leaf springs and the propeller shafts, the prototypefabrication, and the initial laboratory testing of the fabricated parts.

7

Page 9: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

PREFACE

The work described in this report was supported by the U.S. Army Tank-Automotive Command under Contract Number DAAK 30-79-C-0146.

The contract was monitored by Mr. Avery H. Fisher7 Tank Automotive SystemsLaboratory, Warren, Michigan.

The project was managed for Exxon Enterprises Materials Division byRichard L. Daugherty, Manager of Engineering.

8

Page 10: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

1

INTRODUCTION

1.1 Introduction and Background

Composite materials are materials with high strength-to-weight andstiffness-to-weight ratios. These properties along with the advancing state-of-the-art for designing and fabrication with them and the dramatic reductionin raw material costs make their application to commercial and industrialcomponents feasible. Weight reductions approaching 50% are achievable whenreplacing conventional metal structures with advanced composite structures.

These materials can benefit the Army in several ways in truck applications.Weight reductions will result in increased fuel efficiency and overall agility.This will permit larger payloads to be transported. In addition, compositetruck components are potentially more reliable than metallic componentsbecause of their improved fatique and corrosion resistant properties.

Our objective was to show the feasibility of composite materials when appliedto the leaf springs and propeller shafts of the Army's 5-ton truck. The first phaseof the program was a material trade study to determine the weight savings possiblewith the composite material systems appropriate for these applications. Fourfactors were considered in the choice of the designs for further study: weightsavings, cost, fabricability, and interchangeability of the design with currentlyfabricated components.

For the leaf springs, E-type fiberglass-epoxy designs offer weight savingssimilar to those for the graphite-epoxy systems. Cost factors, both for the rawmaterial and the fabrication, were the deciding factors for choosing the fiberglass-epoxy design for prototype studies. The propeller shaft material trade studies showedthe graphite-epoxy designs to be the most effective.

In Phase II of the program, prototypes of the fiberglass-epoxy leaf springsand graphite-epoxy propeller shafts-were fabricated.

For the leaf springs, expendable tooling and an autoclave cure process wereemployed. Although this was a cost effective way of producing prototypecomponents, geometric irregularities resulted. Such a method would not beused for production; therefore, these irregularities were considered acceptablefor this program.

The propeller shafts were fabricated using female tooling with an internalrubber bladder to apply pressure during cure. Because of the joint necessarybetween the composite tube and metal end sleeves, this tooling was extensive.In prodution, filament winding could be substituted for this process.

9

Page 11: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Laboratory testing of the components was performed as the final phase ofthe program. Both steel and composite material leaf springs were fatique tested;the results demonstrated the fatique characteristics of the composite assemblieswere similar to those of the steel assemblies. The propeller shafts were testedunder the conditions established by the industry for the steel shafts. The staticstrength of the composite shafts was well in excess of the required load. Thefatique tests showed the joint between the composite tube and the steel sleevesfailed after several thousand cycles; steel shafts fail after 75,000 - 100,000cycles. These test results are to be related to actual requirements in field teststo be performed by TACOM.

This report presents the results of the program performed by EEMD. Toestablish the design properties for the composite materials considered appropri-ate for leaf springs and propeller shafts, a test program for E-type fiberglass-epoxy and high-strength graphite-epoxy systems was performed. The results aregiven in Section 2. The design study results, including the material tradestudies and final designs, are given in Section 3. The fabrication processesused for producing the prototype parts are discussed in Section 4, while thetest results for the component testing are discussed in Section 5. Finally,budgetary cost estimates for production of these components are presented inSection 6.

10

Page 12: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

2

COMPOSITE MATERIAL PROPERTIES

The material trade off studies, presented in Section 3, show that E-type fiberglass-epoxy and high-strength graphite-epoxy are the material systems appropriate for leafsprings and propeller shafts, respectively, for the 5-ton truck components. In thisSection, the results of the material property testing program for these systems arepresented. Also presented are the test results for the adhesives considered for thejoint between the composite tube and steel end sleeves for the shafts.

The following tests were performed on unidirectional laminates for eachmaterial system.

a. Tensile test per ASTM D3039; properties were determined in boththe fiber and transverse to fiber directions.

b. Flexural test per ASTM D790 with a 32:1 span to depth ratio.

c. Shear test per ASTM D2733; performed at 50*C.

d. Shear test per ASTM D2344; performed at room temperature (RT).

e. Impact test per ASTM D256, Method A (Izod).

2.1 Graphite-Epoxy Systems

Two high-strength graphite-epoxy systems were tested:

-Fiberite HyE 1048 AlE, with Union Carbide Thornel300 fiber.

-Hercules AS/1904, with Hercules AS-4 fiber.

The results are presented in Tables 1 and 2. The HyE 1048 system was chosenfor the prototype studies because of EEMD's processing experience with it; bothsystems exhibit similar mechanical properties.

2.2 Fiberglass-Epoxy Systems

Two E-type fiberglass-epoxy systems were tested:

-3M SP-250 E

-U.S. Polymeric EF-7172

The results are presented in Tables 3 and 4. The 3M SP-250 system was chosenfor the prototype studies because of its superior properties and EEMD's processingexperience with it.

11

Page 13: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

2.3 Adhesives

The propeller shaft designs incorporate metallic end sleeves; the shaftend fittings are welded to these end sleeves. To allow for interchangeabilityof the composite shafts with the present metallic shafts, the end sleeves werefabricated from the metal tube presently used.

The fabrication process for the composite tubes incorporates an adhesivejoint with the end sleeves formed during cure of the tube. Four adhesivesystems were tested to determine the most appropriate adhesive for thisapplication:

-3M AF13-Hysol EA9628-Metlbond 1133-Cyanamid FM-73M

The selected process included contacting each major adhesive company, explain-ing the application, and allowing them to select the best adhesive from theirline. Only standard products were considered appropriate. This processresulted in the list shown above.

The results of lap shear tests, in which high-strength graphite-epoxywas bonded to steel, are given in Table 5. The test procedure was in accordancewith ASTM D1002.

The results showed Metlbond 1133 to be the choice from shear strengthconsiderations; it is also the one with which EEMD has the most experience.Therefore, Metlbond 1133 was used in the prototype fabrication program.

12

Page 14: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 1Material Properties for HyE 1048 AlE

(a) TENSILE - FIBER DIRECTIONSpecimen Specimen Dimensions Maximum Ultimate Modulus,

No. Width, in. Thickness, in. Load, lbs Strength, psi msi

1 0.500 0.0430 5908 274,800 21.9

2 0.500 0.0440 5820 264,600 21.9

3 0.499 0.0430 5897 274,800 21.2

4 0.500 0.0413 5401 261,600 21.5

5 0.501 0.0450 5953 264,000 21.3

Average 268,000 21.6

Std. Dev. 6,400 0.3

(b) TENSILE - TRANSVERSE-TO-FIBER DIRECTIONSpecimen Specimen Dimensions Maximum Ultimate Modulus,

No. Width, in. Thickness, in. Load, lbs Strength, psi msi

1 1.000 0.0545 326 5,990 1.34

2 0.999 0.0546 349 6,410 1.32

3 0.999 0.0544 430 7,910 1.28

4 0.997 0.0548 355 6,500 1.32

5 1.001 0.0546 337 6,170 1.35

Average 6,600 1.32

Std. Dev. 800 0.03

13

Page 15: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

(c) FLEXURALSpecimen Specimen Dimensions Maximum Ultimate Modulus,

No. Width, in. Thickness, in. Load, lbs Strength, psi msi

1 1.001 0.0945 410 204,000 18.0

2 1.001 0.0927 408 211,000 18.0

3 1.002 0.0925 452 234,000 18.3

4 1.002 0.9003 373 205,000 17.3

5 1.007 0.0927 408 209,000 18.5

Average 213,000 18.0

Std. Dev. 12,300 0.5

(d) IMPACT (Izod)Specimen Specimen Dimensions Load S

No. Width, in. Length, in. lbs ft-lbs/in.

1 0.0895 2.50 4.40 *

2 0.0900 2.50 2.20 24.4

3 0.0929 2.50 2.14 23.0

4 0.0924 2.50 2.45 26.5

5 0.0906 2.50 1.62 17.9

Average >23.0

Std. Dev. 3.7

* Incomplete Break

14

Page 16: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

(e) SHEAR STRENGTH AT 500CSpecimen Specimen Dimensions Maximum Strength

No. Width, in. Area, in2 Load, lbs psi

1 0.999 0.487 1239 2,550

2 1.000 0.504 1246 2,470

3 0.999 0.503 1164 2,320

Average 2,450

Std. Dev. 120

(f) SHEAR STRENGTH AT ROOM TEMPERATURESpecimen Specimen Dimensions Maximum Strength

No. Width, in. Thickness, in. Load, lbs psi

1 0.250 0.130 534 12,310

2 0.250 0.130 551 12,720

3 0.251 0.126 525 12,440

4 0.251 0.126 513 12,160

5 0.251 0.126 540 12,810

.Average 12,500

Std. Dev. 300

15

Page 17: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 2Material Properties for AS/1904

(a) TENSILE - FIBER DIRECTIONSpecimen Specimen Dimensions Maximum Ultimate Modulus,

No. Width, in. Thickness, in. Load, lbs Strength, psi msi

1 0.498 0.0309 3825 248,600 19.6

2 0.498 0.0302 3858 256,500 19.9

3. 0.497 0.0308 3649 238,400 19.7

4 0.497 0.0307 4057 265,900 19.5

5 0.497 0.0310 3860 250,600 18.7

Average 252,000 19.5

Std. Dev. 10,200 0.5

(b) TENSILE - TRANSVERSE-TO-FIBER DIRECTIONSpecimen Specimen Dimensions Maximum Ultimate Modulus,

No. Width, in. Thickness, in. Load, lbs Strength, psi msi

1 1.011 0.0390 288 7,370 3.86

2 1.006 0.0398 358 8,950 3.92

3 1.002 0.0400 335 8,360 3.77

4 0.999 0.0398 316 7,940 3.45

5 0.999 0.0397 380 9,570 3.76

Average 8,400 3.75

Std. Dev. 900 0.18

16

Page 18: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

(c) FLEXURALSpecimen Specimen Dimensions Maximum Ultimate Modulus,

No. Width, in. Thickness, in. Load, lbs Strength, psi msi

1 0.999 0.0840 400 226,000 17.5

2 1.000 0.0810 419 255,000 17.2

3 1.001 0.0835 382 218,000 16.7

4 1.001 0.0822 430 254,000 17.3

5 1.001 0.0853 416 228,000 16.5

Average 236,000 17.0

Std. Dev. 17,000 0.4

(d) IMPACT (Izod)Specimen Specimen Dimensions Load S

No. Width, in. Length, in. lbs ft-lbs/in.

1 0.0810 2.50 2.65 32.7

2 0.0805 2.50 3.30 41.0

3 0.0807 2.50 2.18 27.0

4 0.0810 2.50 2.20 27.2

5 0.0802 2.50 2.20 *

Average >32.0

Std. Dev. 6.6

* Incomplete Break

17

Page 19: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

(e) SHEAR STRENGTH AT 50*CSpecimen Specimen Dimensions Maximum Strength

No. Width, in. Area, in2 Load, lbs psi

1 1.002 0.477 1318 2,760

2 0.999 0.471 1279 2,720

3 1.003 0.473 1182 2,490

Average 2,660

Std. Dev. 150

(f) SHEAR STRENGTH AT ROOM TEMPERATURESpecimen Specimen Dimensions Maximum Strength

No. Width, in. Thickness, in. Load, lbs psi

1 0.250 0.114 557 * 14,620

2 0.250 0.114 562 14,740

3 0.250 0.115 571 14,950

4 0.250 0.114 556 14,600

5 0.250 0.115 546 14,280

Average 14,600

Std. Dev. 200

18

Page 20: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 3Material Properties for EF 7172

(a) TENSILE - FIBER DIRECTIONSpecimen Specimen Dimensions Maximum Ultimate Modulus,

No. Width, in. Thickness, in. Load, lbs Strength, psi msi

1 0.496 0.0335 2822 169,800 6.34

2 0.496 0.0323 2646 165,200 6.34

3 0.495 0.0319 2579 163,300 6.34

Average 166,100 6.34

Std. Dev. 3,300

(b) TENSILE - TRANSVERSE-TO-FIBER DIRECTIONSpecimen Specimen Dimensions Maximum Ultimate Modulus,

No. Width, in. Thickness, in. Load, lbs Strength, psi msi

1 1.001 0.0658 318 4,820 1.88

2 0.993 0.0658 299 4,570 1.88

3 1.001 0.0636 295 4,640 1.86

Average 4,680 1.87

Std. Dev. 130 0.01

19

Page 21: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

(c) FLEXURALSpecimen Specimen Dimensions Maximum Ultimate Modulus,

No. Width, in. Thickness, in. Load, lbs Strength, psi msi

1 1.001 0.106 428 190,000 6.49

2 1.001 0.100 358 178,000 6.33

3 1.001 0.105 417 185,000 6.47

Average 184,300 6.43

Std. Dev. 6,000 .09

(d) IMPACT (Izod)Specimen Specimen Dimensions Load S

No. Width, in. Length, in. lbs ft-lbs/in.

1 0.104 2.500 8.15 *

2 0.099 2.500 8.10 81.72

3 0.1037 2.500 7.05 68.45

4 0.105 2.500 7.15 68.10

Average >72.76

Std. Dev. 7.76

*No Break

20

Page 22: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

(e) SHEAR STRENGTH AT 500CSpecimen Specimen Dimensions Maximum Strength

No. Width, in. Area, in2 Load, lbs psi

1 1.001 0.505 1120 2,220

2 1.001 0.482 1186 2,460

3 1.001 0.488 1248 2,550

Average 2,410

Std. Dev. 170

(f) SHEAR STRENGTH AT ROOM TEMPERATURESpecimen Specimen Dimensions Maximum Strength

No. Width, in. Thickness, in. Load, lbs psi

1 0.251 0.102 269 7,850

2 0.251 0.103 282 8,200

3 0.251 0.104 245 7,020

4 0.251 0.104 284 8,140

5 0.251 0.105 270 7,690

Average 7,780

Std. Dev. 470

21

Page 23: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 4Material Properties for 3M-SP250

(a) TENSILE - FIBER DIRECTIONSpecimen Specimen Dimensions Maximum Ultimate Modulus,

No. Width, in. Thickness, in. Load, lbs Strength, psi msi

1 0.498 0.0335 3164 189,600 6.74

2 0.497 0.0333 2998 181,200 6.74

3 0.497 0.0328 3087 189,300 6.67

Average 186,700 6.72

Std. Dev. 4,800 0.04

(b) TENSILE - TRANSVERSE-TO-FIBER DIRECTIONSpecimen Specimen Dimensions Maximum Ultimate Modulus,

No. Width, in. Thickness, in. Load, lbs Strength, psi msi

1 0.998 0.0400 234 5,850 2.33

2 0.999 0.0393 260 6,630 2.31

3 1.000 0.0390 288 7,380 2.44

Average 6,200 2.36

Std. Dev. 770 0.07

22

Page 24: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

(c) FLEXURALSpecimen Specimen Dimensions Maximum Ultimate Modulus,

No. Width, in. Thickness, in. Load, lbs Strength, psi msi

1 1.000 0.0725 309 202,500 6.86

2 1.000 0.0729 306 198,900 6.60

3 1.000 0.0717 293 196,800 6.61

4 1.000 0.0715 298 200,800 6.74

5 1.000 0.0718 291 194,700 6.62

Average 198,700 6.69

Std. Dev. 3,100 .23

(d) IMPACT (Izod)Specimen Specimen Dimensions Load S

No. Width, in. Length, in. lbs ft-lbs/in.

1 0.1015 2.500 8.1 79.8

2 0.1015 2.500 - *

3 0.1011 2.500 8.2 80.1

4 0.1008 2.500 7.8 77.4

5 0.1004 2.500 7.3 72.7

Average >77.5

Std. Dev. 3.4

*No Break

23

Page 25: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

(e) SHEAR STRENGTH AT 50"CSpecimen Specimen Dimensions Maximum Strength

No. Width, in. Area, in2 Load, lbs psi

1 1.000 0.509 1312 2,580

2 1.000 0.512 1312 2,560

3 0.999 0.497 1310 2,640

Average 2,590

Std. Dev. 40

(f) SHEAR STRENGTH AT ROOM TEMPERATURESpecimen Specimen Dimensions Maximum Strength

No. Width, in. Thickness, in. Load, lbs psi

1 0.250 0.129 459 10,630

2 0.250 0.128 474 11,130

3 0.251 0.132 441 10,020

4 0.251 0.130 483 11,120

5 0.251 0.129 446 10,310

Average 10,640

Std. Dev. 490

24

Page 26: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 5Adhesive Properties:

Lap Shear for High-StrengthGraphite-Epoxy Bonded to Steel

Adhesive Specimen Specimen Dimensions Maximum Average Shear

System No. Width, in. Length, in. Load, lbs Strength, psi

3MAP13 1 0.978 0.984 3516 3,650

2 0.984 1.008 3593 3,620

3 0.995 1.021 3715 3,660

4 0.983 1.007 2660 2,700

Average 3,410

Std. Dev. 470

Hysol 1 0.987 1.009 1279 1,280EA9628

2 0.973 0.996 4089 4,220

3 0.995 1.016 3373 3,340

4 0.951 0.969 1764 1,850

Average 2,670

Std. Dev. 1,490

Metlbond 1 0.991 1.025 2557 2,5201133

2 0.983 1.007 4221 4,260

3 0.988 1.018 3593 3,570

4 0.985 1.013 4101 4,110

Average 3,620

Std. Dev. 790

25

Page 27: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Adhesive Specimen Specimen Dimensions Maximum Average ShearSystem No. Width, in. Length, in. Load, lbs Strength, psi

Cyanamid 1 0.974 1.003 2161 2,210FM-73M

2 0.927 1.034 3208 3,360

3 0.921 1.029 2668 2,820

4 0.937 1.008 2745 2,910

Average 2,830

Std. Dev. 470

26

Page 28: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

3

DESIGN STUDIES

3.1 Leaf Spring Assemblies

The objective of this program was to develop lightweight experimental truckcomponents fabricated from synthetic materials. For this prototype program,P/N 7409613 (rear spring assembly) and P/N 7411110 (front spring assembly) forthe 5-ton truck were two of the chosen components.

3.1.1 Design Criteria

The general design criteria for the composite material leaf springs designsare structural integrity, 40-50+% weight savings when compared with thepresent parts, interchangeability of the prototype parts with the presentparts, and cost. Structural integrity was the major design criteria. Sincethis is a prototype program, interchangeability of parts was also consideredimportant. Cost and weight savings were considered to be of equal importance.

For both the front and rear spring assemblies the general requirements canbe summarized as follows:

a. The designs are to use at least a steel main leaf to ensurestructural integrity. For the front spring, this will maintain asteel spring eye in a steel leaf; it is known that the complex stressdistribution in the eye area can be handled by such a design. Forthe rear spring, this will provide a wear surface, with the remainderof the suspension system, of known characteristics.

b. The supporting leaves shall be fiber-reinforced composite for reducedweight. Weight reductions of 50% are anticipated. Cost shall be adetermining factor as to which fiber-reinforced composite is chosenfor the final design.

c. Areas of the composite leaves that contact other materials shall besuitably protected from stress risers due to cutting, abrasion, heatbuild-up and/or indentation which might result in premature failure.

d. The design shall be interchangeable with the present steel multi-leafdesigns without modification to suspension components. For the rearspring this implies that two steel leaves be maintained because of thedimensional envelope restraints of the brackets.

e. Means shall be provided for leaf alinement to simplify installationand to prevent dislocation in service.

f. Present production frame height should not be altered.

27

Page 29: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

The performance requirements to be met by each spring assembly are asfollows:

Rear Spring Assembly

a. The rated load capacity shall be 15,810 pounds at the spring pad.

b. The unclamped spring rate at the rated load capacity shall be 5,983pounds per inch.

c. The design shall be capable of withstanding the following maximumin service loads:

(1) Vertical Load - 2g (rated load + lg - 31,620 pounds)

(2) Transverse Load - 0.75g (11,850 pounds)

Front Spring assembly

a. The rated load capacity shall be 5,560 pounds at the spring pad.

b. The unclamped spring rate at the rated load capacity shall be 2,780pounds per inch.

c. The design shall be capable of withstanding the following maximumin service loads:

(1) Vertical Load - 2g (rated load + lg - 11,120 pounds)

(2) Transverse Load - 0.75g (4,170 pounds)

(3) Longitudinal Load - 0.8g (4,448 pounds)

d. The design shall withstand acceleration and braking windup torquesof 39,817 inch-pounds at the axle seat.

Both Assemblies

a. The design shall be capable of sustaining 11s of longitudinal twistfrom the axle seat to the eye when a 2g vertical load is applied.

b. The design shall meet the performance requirements at ambient tempera-tures ranging from -40*F to +160*F on a vehicle loaded to rated capacity.

c. The impact strength shall be suitable to meet life requirements.

d. Physical properties shall not deteriorate when exposed to any vehiclefluids, i.e., gasoline, diesel fuel, windshield washer fluid, trans-mission and axle lubes, engine oils, antifreeze, ether, freon, brakefluid, battery acids and steering fluid.

28

Page 30: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

e. The design shall be suitably protected from excessive heat build-updue to internal friction, interleaf friction and/or accumulation offoreign matter such as mud, stones, dust or salt.

f. The design shall be capable of withstanding and maintaining a 150,000pound clamp load, exerted by the U-bolts at axle seat while in service.

The spring assemblies shall be.laboratory tested for static load and rate

as well as undergo development fleet durability and fatique testing.

3.1.2 Trade Study

To meet the general requirements of interchangeability of the present andprototype spring assemblies, two steel leaves are maintained for both the rearand front springs.

The rear assembly must fit into brackets at the ends of the spring. Theselimit the total spring tip height. Since composite materials have poor shearstrength, the composite leaves must all be of the same length. Thus, twosteel leaves, each 54 inches long, will be employed along with compositesupport leaves that are 49 inches long.

The front assembly requires maintaining the present steel main leaf becauseof the eye area. The second steel leaf is needed because of the longitudinalload taken by the military wrap. Thus, if possible, the currently employedfirst and second steel leaves will be used in the new design.

For comparison purposes, both front and rear springs will be designed usingthe two steel leaves from the present multileaf steel designs with support leavesof:

a. graphite-epoxyb. fiberglass-epoxyc. a sandwich construction using graphite-epoxy faces

and a fiberglass-epoxy core

These comparisons are shown in Tables 6 and 7.

For the rear spring assembly, the fiberglass-epoxy design results in theleast number of leaves. It also produces a 50% weight savings. On the basisof material costs using 1980 anticipated prices:

Material System Cost, Dollars/Pound

Steel 0.50Fiberglass-Epoxy 7.00Graphite-Epoxy 34.00

29

Page 31: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

The three designs would have estimated material costs of:

For Spring LeavesDesign of Materials Cost, ComparativeSupport Leaves Dollars Materials Cost

Graphite-Epoxy 1778 3.49Sandwich Construction 1054 2.07Fiberglass-Epoxy 509 1.00 (Ref)

Thus, on the basis of materials and fabrication costs, the chosen design for therear spring assembly is:

a. two steel leavesb. support leaves of fiberglass-epoxy

All the front spring assembly designs have the same number of supportleaves and all have a weight savings of at least 50%. The estimatedmaterial costs for the different designs are shown below:

For Spring Leaves

Design of Materials Cost, ComparativeSupport Leaves Dollars Materials Costs

Graphite-Epoxy 517 2.66Fiberglass-Epoxy 194 1.00 (Ref)Sandwich Construction 277 1 .43

Fiberglass-epoxy support leaves are chosen on the basis of cost. Anotherreason for choosing fiberglass-epoxy support leaves is their damage tolerance:fiberglass-epoxy is approximately twice as good as graphite-epoxy.

30

Page 32: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 6

REAR SPRING ASSEMBLY

RESULTS OF MATERIALS STUDY

WEIGHT OF LEAVES, POUNDSSTEEL

MATERIAL SYSTEM NUMBER OF MAIN SUPPORT TOTALFOR SUPPORT LEAVES LEAVES LEAVES LEAVES

High-Strength 2 + 7 74.9 51.2 126.1Graphite-Epoxy

E-Type 2 + 5 74.9 67.4 142.3Fiberglass-Epoxy

Sandwich Construction 2 + 8 74.9 68.5 143.4of Graphite-Epoxy (19.9 of graphiteFaces and Fiberglass- 48.6 of glass)Epoxy Core

Present Steel Design 13 74.9 218.5 293.4

31

Page 33: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 7

FRONT SPRING ASSEMBLY

RESULTS OF MATERIALS STUDY

WE IGHT OF LEAVES, POUNDSSTEEL

MATERIAL SYSTEM NUMBER OF MAIN SUPPORT TOTALFOR SUPPORT LEAVES LEAVES LEAVES LEAVES

High-Strength 2 + 2 48.6 14.5 63.1Graphite-Epoxy

E-Type 2 + 2 48.6 24.4 73.0Fiberglass-Epoxy

Sandwich Construction 2 + 2 48.6 19.1 67.7of Graphite-Epoxy (4.4 of graphiteFaces and Fiberglass- 14.7 of glass)Epoxy Core

Present Steel Design 11 48.6 100.4 149.0

32

Page 34: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

3.1.3 Analysis of Composite Assemblies

a. Starting Point for Analysis of Fiberglass-Epoxy Designs

The starting point for the final design is the requirement of the verticalload to be carried by the spring. This load is to be applied to the spring 150,000times without failure. The material system to be used is fiberglass-epoxy.

Typical fatique curves for fiberglass-epoxy are given in Figure 1. Theflexural fatique properties are taken as:

Axial Modulus = 5.5 msiFlexural Strength = 55,000 psi

This means that the material is assumed to be exposed to a maximum stress of55,000 psi and an alternating stress of about 25,000 psi. This implies a fatiquelife of greater than 1,000,000 cycles, as shown in Figure 1.

The fatique shear strength is taken as 4,000 psi; the static allowableshear strength is 8,000 psi. Thus, as seen in Figure 2, the fatique life isgreater than 1,000,000 cycles.

The density of fiberglass-epoxy is 0.073 pounds/inch 3 .

b. Analysis of Rear Spring Assembly

The dimensions of the present steel spring are given in the TACOM drawingfor P/N 7409613. For the analysis of the load distribution, the spring istaken in the flat condition. Thus, the distance from the support to thecenter bolt is 27.00 inches.

Because of the brackets currently used at the spring support, only the firsttwo leaves can extend the full 54 inches. The maximum length allowable forthe other leaves is 49 inches if these brackets are to be used in the redesign.Composite materials have poor fatique shear strength compared to metals. Thismeans that all composite leaves must be of the same length if major weightpenalties are not to be incurred. Therefore, two steel leaves, each spanningbetween the supports, will be used. The composite leaves will all be 49inches long. The preliminary designs presented above do not include thislength restriction. The fiberglass-epoxy support leaf case has been investiga-ted with this restriction and the results are presented below.

The preliminary design with composite leaves being 49 inches long wouldresult in a maximum flexural stress in the steel leaves of 198,000 psi. Themaximum flexural stress in the multi-leaf steel design is 158,000 psi. Thereare three means of reducing the maximum stress in the hybrid design to 158,000psi:

33

Page 35: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

120 Tensile Strength

100

ompressive Strength

40 -

Cycles to Failure

FIGURE 1 GLASS-EPOXY FLEXURAL FATIQUERES ULTS

1.0C

0.911HM I I I

0.60.7

r0.5

S0.4

S0.3 - 3M Scotchply 10032 Glass-Epoxy

0.2 - R-*0.1 Sin usoidal Frequency -4 cps

0.1 - Residual Strength -96% of Static Ult.

Cycles

FIGURE 2 GLASS-EPOXY INTERLAMINAR SHEARFATIQUE RESULTS

34

Page 36: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

a. Reduce the thickness of the steel leavesb. Change the initial curvature of the steel leaves

so that a pre-load would negate this additionalstress

c. Increase the number of support leaves

Maintaining the current steel leaves results in the highest structural integrity.To minimize weight, option b. was investigated and found to yield the requiredstress redistribution.

Using the 0.558-inch thick steel leaves gives the following stress analysis

results:

a. Steel Main Leaf

The 0.558-inch thick present steel main leaf has a springrate of 530 pounds/inch:

P

L12 7 .00"- 27.004-

S=PL348EI

E - 30 x 10 6 psi

I - 1 (4) (0.558)312

where

S = deflection under the load P

thus

P/S= 530 pounds/inch

35

Page 37: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

(2) The composite leaves, therefore, need to have a spring rate

of

K - 5,983 - 2(530) - 4,923 pounds/inch

Because the composite leaves are only 49 inches long, theymust be designed to a spring rate of

K - 4,923 (27)2 - 6,231 pounds/inchT4

The length of 24 inches was chosen from considerations ofthe load transfer.

The portion of the vertical load carried by the steel main leavesis:

Load in Steel Leaves - 1,060 (31,620) - 5,602 pounds

5,983

Thus, the design criteria for the composite leaves are:

Spring rate - 6,231 pounds/inchLoad - (27) (31,620 - 5,602) - (1.13) [26,018] - 29,270 pounds

TT

where the factor is required because of the shorter composite leaves.Using these and the material properties in the composite program forleaf springs developed by EEMD, gives a spring assembly of two steelleaves, each 0.558 inch thick, and five fiberglass-epoxy leaves. Thecomposite leaves are tapered with a seat thickness of 1.432 inches perleaf and a tip thickness of 0.724 inches per leaf. They are all of thesame length and span. The total weight of the spring leaves is:

74.9 pounds of steel72.3 pounds of fiberglass-epoxy

147.2 pounds total

This is a 49.8% weight savings over the multileaf steel spring.

This results in a stack height for the composite spring of 8.576 inches;this is 1.322 inches more than the present steel spring. However, frameheight of the vehicle is unchanged.

Accepting this design as final, an analysis of it is performed to showthat is meets the other design criteria.

36

Page 38: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

c. General Design Requirements

The design given previously meets the general design requirements (see3.1.1):

a. The design utilizes two steel leaves; this insures thestructural integrity of the attaching member since it employsthe presently used leaves

b. The supporting leaves are of fiberglass-epoxy; the weight ofthe spring assembly has been reduced by more than 145 poundsthrough this redesign

c. The composite leaves have wear pads between them and the othercomponents of the spring assembly to protect them

d. The steel fiberglass design is interchangeable with the present. steel design

e. To provide leaf alignment, a center bolt will be used. Thisbolt is in an area of zero bending load if the seat clamp istight. As such, the stress concentration in the composite dueto the hole is not a problem. If the seat clamp is not tight,some stress will exist in the leaves in the area of the hole.In the composite, the stress concentration factor caused by thehole is approximately 6, whereas in steel the factor is about 4(see Advances in Joining Technology, J. Burke, A. Gorum, andA. Tarpinian, 1976, p. 405-452). Thus, the use of a center boltis acceptable.

f. Frame height has not been altered

d. Performance Requirements for Spring Assembly

Some of the performance requirements for the spring assembly werecriteria of the design process:

a. The unclamped spring rate of the assembly is 5,983 pounds/inch.

b. The spring has a design life of 150,000 cycles under the verti-cal load of 31,620 pounds.

c. Fiberglass-epoxy has the required impact resistance to meetlife requirements.

d. The properties used for fiberglass-epoxy in the design areappropriate for the temperature range of -40OF to 160*F. Theseproperties do not deteriorate when exposed to vehicle fluids.

37

Page 39: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

e. The design has wear pads between the composite leaves to protectthem from wear and excessive heat buildup due to friction. Wearpads have been used in previous designs without accumulation offoreign matter in the spring assembly.

The remaining performance requirements must be investigated.

a. The design shall be capable of withstanding a transverse load of0.75g - 11,850 pounds. This load acts on the steel main leaf andcauses a maximum shear stress of:

:.-3 (11,850/2) - 3,982 psi

2 4 x 0.558

The fatique allowable shear stress in the steel is greater than 40,000 psi.

b. The design shall be capable of sustaining 11" of longitudinaltwist from the axle seat to the eye when the 31,620 poundvertical load is applied.

Consider a steel leaf of the dimensions shown in Figure 3. This beam is clampedat one end and has a ii1 twist at the other. Using formulae developed in Theoryof Elasticity by S. Timoshenko and J. N. Goodier, the torque T required is:

T - c 2 G a b37 L

whereS- ll - 0.192 radiansL - 23.50 inchesa - 4, b- 0.558, c 2 - 0.300G - ll.54Msi

thenT - 19,660 lb-in.

The maximum shear stress resulting from this load is:

l T C1 T

whereC1 - 3.34

or"Z - 52.725 psi

38

Page 40: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Since the present steel design has to meet this same criterion, this stress levelis therefore acceptable. It is below the maximum allowable shear stress.

The composite leaves can be analyzed assuming that the load resultant of 30,544pounds takes place at each end of the spring as shown in Figure 4.

It is shown below that, with the preload, the load to be carried by the compositeleaves is 30,544 pounds.

This causes an applied torque on the leaves of:T = (30,544) (2)

2

- 30,544 inch-pounds

or, per leaf

T = 30,544 = 6,109 inch-pounds5

This results in a maximum shear stress of:

•" c1 T--Tab 2

a - 4, b=-0.724, cl = 3.42

-= 3.42 6,109(4) (0.724)-

"r= 9,965 psi

The shear allowable is 12,000 psi; the margin of safety is then20.4%.

c. The design shall be capable of withstanding and maintaining a150,000 pound clamp load, exerted by the U-bolts, at axle seatwhile in service.

The plate area for the seat clamp is:

A = 11.5 x 4 = 46.0 inches 2

39

Page 41: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

FIGURE 3 STEEL MAIN LEAF UNDER ANAPPLIED TORQUE LOAD

32556 lb

4"

FIGURE 4 LOADING ON COMPOSITE LEAVESDUE TO AN APPLIED TORQUE

40

Page 42: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

A clamping load of 150,000 pounds thus causes a compressivestress in the leaves of:

O-= 150,000 - 3,260 psi46.0

The allowable compressive stress in the composite is 16,000psi while that in the steel is greater than 40,000 psi.

e. Stresses in Steel Main Leaf in Final Design

The SAE Manual on Design and Appliction of Leaf Springs, SAE J788a,1970, gives formulae for symmetrical semi-elliptic leaf springs. Theequation for maximum normal stress in the spring is:

a-- =3LP

whereL is shown in the figure belowt = thickness of leavesN = number of leavesw = width of leaves

t pL

t• - L --"

Spring Geometry

For the presently used steel design:

w = 4 inchest = 0.558 inchN = 13L = 54.00 inches

and, thus, the maximum normal stress under the fatique load of 31,620pounds is:

0' - 3(54) (31,620)2(4) (13) (.558)A

=r - 158,200 psi

41

Page 43: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

One method for analytically determining the maximum stress in the steelleaves of the hybrid design is to note the measurements of the deflections andstresses in very accurately made multileaf springs have shown that the sameformulae apply as if it were a one-leaf spring of appropriate width. This isa preliminary procedure for determining the lengths of the leaves in a multi-leaf spring. To apply this method to the hybrid spring design, the width ofthe composite leaves must be adjusted to simulate the constant thickness steelleaves:

(EI)composite leaf (EI) simulated leaf

where

(EI) simulated leaf - E steel (1 ) (b) (t3)12

and

t - thickness of steel main leafb - resulting width of simulated leaf

Using this process, the stresses in the steel leaves of the hybrid designwere calculated. For the case of 0.558 inch thick steel leaves, the maximumnormal stress is 198,000 psi. This is greater than in the current steel spring;it may be reduced to 158 ksi by introducing a preload. This will place an addi-tional 1,274 pound load in the composite leaves. Analysis of the compositeleaves under this load yields a maximum flexural stress (in the composite leaves)of 54 ksi. This is acceptable.

f. Analysis of Front Spring Assembly

The dimensions of the present steel spring are given in the TACOM drawingfor P/N 7411110. For the analysis of the load distribution, the spring is takenin the flat condition. Thus, the distance from the eye to the center bolt is25 inches.

For the three-inch wide leaves, the results are:

(1) Steel Main Leaf

The 0.447 inch thick present steel main leaf has a spring rate of268 pounds/inch:

42

Page 44: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

P

L +l L2•5.oo" -- 25.00'q

48EI

E = 30 x 10 6psi

I = 1 (3) (.447)312

where6 = deflection under the load P

thusP/s = 268 pounds/inch

(2) The composite leaves, therefore, need to have a spring rateof:

K = 2,780 - 2(268) = 224 pounds/inch

The portion of the vertical load carried by the steel mainleaf is:

Load in Steel Leaf = (268) (11,120) = 1,072 pounds2,780

Thus, the design criteria for the composite leaves are:

Spring rate = 2,244 pounds/inchLoad = 11,120 - 2,144 - 8,976 pounds

Using these and the material properties in the composite program forleaf springs developed by EEMD gives a spring assembly of two steel leaves,each 0.447 inch thick, and two fiberglass-epoxy leaves. The composite leavesare tapered with a seat thickness of 1.60 inches per leaf and a tip thicknessof 0.643 inch per leaf. Both are of the same length and span between the twoend supports. The total weight of the leaves is:

43

Page 45: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

48.6 pounds of steel24.4 pounds of fiberglass-epoxy73.0 pounds total

The result of this design is a stack height of 4.2 inches; this is 0.70inches less than the present steel spring and will change the frame height ofthe vehicle. This will be increased to match present stack height by usingrisers in the final design.

Accepting this design as final, an analysis is performed to show thatit meets the other design criteria.

g. General Design Requirements

The design given above meets the general design requirements (see Section3.1.1):

(1) The design utilizes two steel leaves; this ensures the structuralintegrity of the attaching member since it employs the presentlyused leaves.

(2) The supporting leaves are of fiberglass-epoxy; the weight ofthe spring assembly has been reduced by more than 76 poundsthrough this redesign (neglecting riser plates)

(3) The composite leaves have wear pads between them and the othercomponents of the spring assembly to protect them

(4) The steel-fiberglass design is interchangeable with the presentsteel design

(5) To provide leaf alinement, a center bolt will be used. Thisbolt is in an area of zero bending load if the seat clamp istight. As such, the stress concentration in the composite dueto the hole is not a problem. If the seat clamp is not tight,some stress will exist in the leaves in the area of the hole.In the composite, the stress concentration factor caused by thehole is approximately 6, whereas in steel the factor is about 4(see Advances in Joining Technology, J. Burke, A. Gorum, andA. Tarpinian, 1976, p. 405-452). Thus, the use of a center boltis acceptable.

(6) Frame height has been altered; risers will be added in the finaldesign to eliminate this problem.

44

Page 46: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

h. Performance Requirements for Spring Assembly

Some of the performance requirements for the spring assembly were criteriaon the design process:

(1) The unclamped spring rate of the assembly is 2,780 pounds/inch.

(2) The spring has a design life of 150,000 cycles under the verticalload of 11,120 pounds.

(3) Fiberglass-epoxy has the required impact resistance to meet liferequirements.

(4) The properties used for fibeglass-epoxy in the design areappropriate for the temperature range of -40*F to +1600F. Theseproperties do not deteriorate when exposed to vehicle fluids.

(5) The design has wear pads between the composite leaves to protectthem from wear and excessive heat build-up due to friction. Wearpads have been used in previous designs without accumulation offoreign matter in the spring assembly.

The remaining performance requirements must be investigated.

(1) The design shall be capable of withstanding a transverse load of0.75g = 4,170 pounds. This load acts on the steel main leaf andcauses a maximum shear stress of:

= 3 (4,170/2) = 2,332 psi2 3 x .447

The fatique allowable shear stress in the steel is greater than40,000 psi.

(2) The design shall be capable of withstanding a longitudinal loadof .8g = 4,448 pounds. This load acts on the steel main leaf andresults in a normal stress of:

-= 4,448 = 3,317 psi

3 (.447)

Fatique allowable stress in the steel is 80,000 psi.

(3) The design shall be capable of sustaining 11 of longitudinaltwist from the axle seat to the eye when the 11,120 pound verti-cal load is applied.

45

Page 47: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Consider a steel leaf of the dimensions shown in Figure 5. The beam is clamped atone end and has a ii* twist at the other. Using formulae developed in Theory ofElasticity by S. Timoshenko and J. N. Goodier, the torque T required is:

T C c 2 G a b3

L

whereS- 11" - 0.192 radians.L- 20.75 inchesa 3, b - 0.447, c2 - 0.298G = 11.54 Msi

thenT - 8526 inch-pounds

The maximum shear stress resulting from this loading is:

ab2

wherecl - 3.36

or"r - 47,790 psi

Since the present steel design has to meet this same criterion, this stress levelis therefore acceptable. It is below the maximum allowable shear stress.

The composite leaves can be conservatively analyzed assuming that the load resultan

of 8,976 pounds takes place at each end of the spring as shown in Figure 6.

This causes an applied torque on the leaves of:

T - (8,976) (1.5)2

- 6,732 lb-in.

46

Page 48: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

T

FIGURE 5 STEEL MAIN LEAF UNDER ANAPPLIED TORQUE LOAD

8976 lblb.

FIGURE 6 LOADING ON COMPOSITE LEAVESDUE TO AN APPLIED TORQUE

47

Page 49: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

or, per leaf

T - 6,732 - 3,366 inch-pounds2

This results in a maximum shear stress of:

a - 3, b - 0.643, cI - 3.47

- 3.47 3,366

(3) (.643)4

- 9,417 psi

The shear allowable is 12,000 psi; the margin of safety is then21.5%.

(4) The design shall withstand acceleration and braking winduptorques of 39,817 inch-pounds at the axle seat.

The reactions due to the applied torque are 796 pounds asshown in Figure 7.

Since the spring design is based on the fatique condition, thisadditional vertical loading has already been included in theanalysis.

(5) The design shall be capable of withstanding and maintaining a150,000 pound clamp load, exerted by the U-bolts at axle seatwhile in service.

The plate area for the seat clamp is:

A - 8.5 x 3 - 25.5 inches 2

A clamping load of 150,000 pounds thus causes a compressivestress in the leaves of:

O 150,000 - 5,882 psi25.5

The allowable compressive stress in the composite is 16,000 psiwhile that in the steel is greater than 40,000 psi.

48

Page 50: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

39,817 in-lb

F 1 F2

50 inches

FIGURE 7 WINDUP TORQUE FORCEREACTIONS

49

Page 51: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

i. Stresses in Steel Main Leaf in Final Design

The SAE Manual on Design and Application of Leaf Springs, SAE J788a,1970, gives formulae for symmetrical semi-elliptic leaf springs. The equationfor maximum normal stress in the spring is:

- 3LP

whereL is shown in the figure belowt - thickness of leavesN - number of leavesw - width of leaves

pI-

I- L -

Spring Geometry

For the presently used steel design:

w - 3 inchest - 0.447 inchN - 11L - 50.00 inches

and, thus, the maximum normal stress under the fatique load of 11,120pounds is:

0' - 3(50)(11,120) - 126,485 psi2(3)(11)(.447)7

One method for analytically determining the maximum stress in the steelleaves of the hybrid design is to note that measurements of the deflectionsand stresses in accurately made multileaf springs have shown that thesame formulae apply as if they were a one-leaf spring of appropriate width. Thisis a preliminary procedure for determining the lengths of the leaves in a multi-leaf spring. To apply this method to the hybrid spring design, the width ofthe composite leaves must be adjusted to simulate the constant thickness steelleaves:

50

Page 52: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

(EI)composite leaf = (EI)simulated leaf

where(EI) simulated leaf = Esteel ( 1 ) (b) (t 3 )

12

andt = thickness of steel main leafb = resulting width of simulated leaf

Using this process, the stresses in the steel leaves of the hybriddesign were calculated. For the 0.447 inch thick steel leaves, themaximum normal stress is 89,177 psi. Since this method can only yieldapproximate results, it is concluded that this stress is equivalent to orless than that in the present multileaf steel design. Therefore, thecurrently used steel leaves can be employed in the composite design.

3.1.4 Chosen Designs for Composite Assemblies

Figures 8 and 9 show the final composite designs for the rear and frontleaf spring assemblies. These designs were used for the prototype fabrica-tion program.

51

Page 53: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

HEH

iE-1

rzl

52

Page 54: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

ITEM PART QUAN. PART OR MATERIAL NAMENO. REQD.

1 10032-1 1 Steel Leaf No. 1 from TACOM Assembly(7409613)

2 10032-2 1 Steel Leaf No. 2 from TACOM Assembly

(7409613)

3 10032-3 1 Composite Leaf 3M SP-250-E

4 10032-4 1 Composite Leaf 3M SP-250-E

5 10032-5 1 Composite Leaf 3M SP-250-E

6 10032-6 1 Composite Leaf 3M SP-250-E

7 10032-7 1 Composite Leaf 3M SP-250-E

8 10031-13 1 Bolt,1/2-20 UNF 2A See DwgSheet 2 10031 Sheet 2

9 1 Nut,1/2-20 UNF 2A Std

10 6 Spacer See Dwg 10032

11 20 Wear Pad See Dwg 10032

12 10031-14 2 Clip See Dwg 10031 Sheet 2Sheet 2

13 AR Hysol EA-8

14 AR Hysol 934

15 AR EA 3532

Figure 8 (b) COMPOSITE REAR SPRING PARTS LIST (P/N 10032)

53

Page 55: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

E-4

04

54

Page 56: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Lo 2i i

It d.

I.,

0*0

0E-4

orzrrn~~rn~~flrH CM

D~mrnL~F-4mgu

*JP tz

IsH,j Lo

of0

InH'Ir1

55~

Page 57: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

ITEM PART QUAN. PART OR MATERIAL NAMENO. REQD.

1 10031-1 1 Steel Leaf No. 1 from TACOM Assembly(7411111)

2 10031-2 1 Steel Leaf No. 2 from TACOM Assembly(7411112)

3 10031-3 1 Composite Leaf 3M SP-250-E

4 10031-4 1 Composite Leaf 3M SP-250-E

5 10031-5 1 Bolt, 1/2-20 UNF-2A See DwgSheet 2 10031 Sheet 2

6 1 Nut, 1/2-20 UNF 2A Std

7 3 Spacer See Dwg 10031 Sheet 1

8 8 Wear Pad See Dwg 10031 Sheet 1

9 10031-9 2 Clip See Dwg 10031 Sheet 2Sheet 2

10 AR Hysol EA-8

11 AR Hysol 934

12 AR EA 3532

Figure 9 (c) COMPOSITE FRONT SPRING PARTS LIST (P/N 10031)

56

Page 58: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

3.2 Propeller Shafts

Two propeller shafts for the 5-ton truck were chosen for study as part ofthe program to develop lightweight, experimental truck components. We studiedtwo 5-ton trucks. The design results for all four shafts are presented in thissection; however, only two of the shafts were fabricated.

The initial contract incorporated an internal pressure requirement for theshafts. This requirement resulted from a test for weld strength which is nolonger used by the industry. Therefore, this requirement was deleted.

3.2.1 Design Criteria

The design studies were performed for the following four shafts:

P/N 8332248P/N 11669147P/N 8332245P/N 8332246

For all designs, the structural integrity and interchangeability withexisting parts were considered primary design criteria. The design philosophyaccepted was to incorporate a composite material tube with end sleeves usingthe existing steel tube into the existing end fittings. This meets the inter-changeability and structural integrity criteria including:

a. Maximum Operating Angle for the two-joint shaft shall be 3*40'

at 4,500 RPM.

b. Length changes shall be allowed for by a spline yoke.

c. Excitation Limits shall be the same as for the present shaft:

(1) Torsional excitation limit shall be taken as 400 rad/sec2 .This is controlled by the universal joints employed.

(2) Inertia excitation limit shall be taken as 1,000 rad/sec2 .This is a function of driveshaft tube inertia.

(3) Secondary couple excitation limit. This is a supportcontrolled condition.

c. Environmental Conditions: Designs shall meet the performancerequirements at ambient temperatures ranging from -40*F to+160*F.

57

Page 59: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

a. Design Criteria for P/N 8332248

(1) Dimensional requirements:

(a) Outside diameter of shaft - 3.50 inches

(b) Length of shaft is 30.625 inches (centerline tocenterline) while the tube section length is11.625 inches

(c) End fittings, yoke, and joints shall be the same as forpresent component

Dana Yoke P/N 5-3-4581XDana Yoke P/N 5-28-167Dana Shaft P/N 5-40-491

(2) Performance Requirements:

(a) Design shall withstand the following applied torques:

Continuously Applied Torque 7,680 lb-in.Short Duration Torque 43,800 lb-in.Torsional Strength Minimum 57,270 lb-in.

Elastic Limit

(b) Maximum Operating Speed of the shaft shall be 4,500 RPM. Sincethis is a heavy truck application, the critical speed is takenas 4,500/0.75 or 6,000 RPM

b. Design Criteria for P/N 11669147

(1) Dimensional requirements:

(a) Outside diameter of shaft - 3.50 inches

(b) Length of shaft is 46.781 inches (centerline tocenterline) while the tube section length is37.50 inches

(c) End fittings, yokes, and joints shall be the same as forpresent component

58

Page 60: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Dana Yoke P/N 5-28-627Dana Yoke P/N 5-4-1721Dana Yoke P/N 5-53-141Dana Center Bearing P/N 210084-2X

(2) Performance Requirements:

(a) Design shall withstand the following applied torques:

Continuously Applied Torque 7,680 lb-in.Short Duration Torque 43,800 lb-in.Torsional Strength Minimum 78,000 lb-in.

Elastic Limit

(b) Maximum Operating Speed of the shaft shall be 4,500 RPM. Sincethis is a heavy truck application, the critical speed is takenas 4,500/0.75 or 6,000 RPM

c. Design Criteria for P/N 8332245

(1) Dimensional requirements:

(a) Outside diameter of shaft - 3.50

(b) Length of shaft is 53.625 inches (centerline tocenterline) while the tube section length is53.625 inches.

(c) End fittings, yokes, and joints shall be the same as forpresent component

Dana Yoke P/N 5-3-1341Dana Yoke P/N 5-28-167Dana Yoke P/N 5-40-491

(2) Performance Requirements:

(a) Design shall withstand the following applied torques to whichthe present shaft is exposed

Continuously Applied Torque- 7,680 lb-in.Short Duration Torque 43,800 lb-in.Torsional Strength Minimum 57,270 lb-in.

Elastic Limit

(b) Maximum Operating Speed of the shaft shall be 4,500 RPM. Sincethis is a heavy truck application, the criteria speed is takenas 4,500/0.75 or 6,000 RPM

59

Page 61: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

d. Design Criteria for P/N 8332246

(1) Dimensional requirements:

(a) Outside diameter of shaft - 3.50

(b) Length of shaft is 46.375 inches (centerline tocenterline) while the tube section length is25.281 inches.

(c) End fittings, yokes, and joint shall be the same as forpresent component: P/N 204581-1 with 1710 couplings.

(2) Performance Requirements:

(a) Design shall withstand the following applied torques to whichthe present shaft is exposed:

Continuously Applied Torque 10,800 lb-in.Short Duration Torque 57,600 lb-in.Torsional Strength Minimum 89,170 lb-in.

Elastic Limit

(b) Maximum Operating Speed of the shaft shall be 4,500 RPM. Sincethis is a heavy truck application, the critical speed is takenas 4,500/0.75 or 6,000 RPM.

60

Page 62: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

3.2.2 Material Trade Study

Material trade studies were performed for P/N 0000432 and 8332248considering the following materials for the composite tubes:

high-strength graphite-epoxyhigh-modulus graphite-epoxyE-type fiberglass-epoxy

Previous studies have shown that aramid epoxy systems are not appropriate forthese applications.

Tables 8 and 9 give the results of the studies. As shown, all possibledesigns are similar on the basis of weight: none is more than 6% greaterthan the minimum. On the basis of material costs using 1980 anticipatedprices:

Material System Cost, Dollar/Pound

Fiberglass-epoxy 7.00High-strength graphite-epoxy 34.00High-modulus graphite-epoxy 48.00

The high-strength graphite-epoxy design is the best.

Since hybrid designs can experience failures from resin and fiber mixing,the all high-strength graphite-epoxy designs were chosen for the prototypeprogram.

61

Page 63: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

* U 02

1 -1

C. :o 0 c )

5N mcI

02I I- I

I, Ic CI w I* n 0,k aw

WI 04Nz

0) IR N

C; cH HýC - c

0-i CO ON ~ O

H *- . .

44: a co 1

o om

o-4 Hj H

(34 0 U

WI 0 0 cIf

Page 64: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

a 'A aaa

5-400

AJ04)

C a 0

A N

E- £'- N ' '.

,a w 64 M M (n H~ 0 L'O H)N Aok :V ae

rz 4 =

Ar-41

Ah IT Hn q N M Lm U3coa

-4 C4

.4 C

ra- a- - 0 0 c

0 .u 0 * 0

00

cio __O -V - -D

4- -4 CN H U4

H w - ON-

00

rz 4 A

0: 41=' A0% f

I ' 3c' H " 4' ) 4'

Page 65: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

3.2.3 Analysis of Composite Tubes and Joints

Given below are stress analysis results for the final design for eachshaft using a high-strength graphite-epoxy tube with steel end sleeves.

Several possibilities exist for the joint between the composite tube andthe steel end sleeves, The lack of composite and adhesive propertydata as well as inadequate available stress analysis suggest the best designprocedure for bonded composite joints is to treat each joint as an individualstructure, test it, and modify it as the tests results indicate. Studies haveshown that varying the adherences has little impact on the adhesive shear stressdistribution. For bolted joints, the strength is dependent on many factors:

-the edge distance to bolt diameter ratio-the side distance to bolt diameter ratio-the laminate thickness to bolt diameter ratio-the orientation of the reinforcing fibers.

Experimental studies, including some performed under this program, haveshown that under torsional fatique loadings, bolted joints do not offerbetter structural integrity than bonded or bolted and bonded joints.Therefore, bonded joints were chosen for the final design.

a. Analysis for P/N 8332248

The final design is shown in Table 10.

The tube will have metal end sleeves of Dana Spicer tubing which hasan outside diameter of 3.50 inches and a wall thickness of 0.095 inch. Thisresults in shear stresses under the applied loads of:

Applied Torque, psilb-in. Tacting,__

57,270 34,000 (yield stress43,800 26,000 of material)7,680 4,560

The composite tube will have an outside diameter of 3.46 inches. Underthe applied torques the margins of safety are:

Ap p l ied T o r q ue , 'rac t in g, P si ' ral l ,P si M .S .?lb-in. at ,s__ls M.S., %

57,270 23,143 33,700 4643,800 17,578 25,275 447,680 3,104 16,850 443

45,000 18,185 23,590 30

64

Page 66: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

The torsional instability torque is:

Tbuck = (21.74)(0.67) D(2,2). 6 2 5fA(l,) A(2,2) - A(1,2) 2 .375

A(2,2)3.O.where

A and D are material property matrixesrave is the average radius

L = length of shaft = 30.625 inches

and for the composite tube

Tbuck= 67,585 lb-in.

while

Tmax 52,270 lb-in.

or

M.S. = 18.0%

The critical speed, in RPM, of the shaft is:

Wc - 94.2 386.4 EIJp A L4

whereI -Ir (OD4 - ID 4 )

64

OD = outside diamter of tubeID = inside diameter of tubep - 0.06 pounds/inch 3

A = 1r (OD 2 - ID 2)4

For the composite tube, this gives 16,890 RPM while the required criticalspeed is 6,000 RPM.

The allowable material properties used in the design account for the tubebeing exposed to the temperatures in the range of -40"F to 1600F.

65

Page 67: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Metallic end sleeves are required for the composite tube so that the endfittings can be welded to the tube. The load transfer in the scarf joint betweenthese metallic end sleeves and the composite tube requires a bond length asfollows:

(IT) (D) 2 (L) (TALL) - T

whereD - mean diameter of bond area, taken as 3.41 inchesT - applied torque

ALL - allowable shear stress in the adhesive, taken to be

Applied Torquelb-in. TALLpsi

57,270 1,50043,800 1,0007,680 500

L - length of bond area

Thus,2.09 inches based on ultimate torque

L - 2.40 inches based on limit torque0.84 inches based on fatique torque

orL - 2.09 inches

In addition, a 2-inch length of metallic sleeve at each end is required for thewelding operation. A bond length of 2.85 inches was chosen for the final design.

66

Page 68: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 10

FINAL DESIGN FOR HIGH-STRENGTH GRAPHITE-EPOXY TUBE

FOR P/N 8332248

Laminate Configuration

Thickness of +45e plies, inch 0.120

Thickness of 90' plies, inch 0.030

Total Thickness 0.150

Static Allowable Mechanical Properties

of Unidirectional Laminate Used In Design

Ell,Msi 18

E2 2 ,Msi 1.5

G1 2 ,Msi 0.6

""12 0.2

(r1 +,Ksi 160

al1-,Ksi 135

a, 2+,Ksi 6.4

,2- ,Ks i 13 .5

112,Ksi 8

Resulting Laminate Properties

Ex,Msi 3.2

EyMsi 5.4

Gxy ,Msi 3.9V xy 0.44

(rX+,Ksi 13 .8

Ox-,Ksi 28.9

cry+,Ksi 41.1

Oy- 1,Ksi 31.0

T xy,Ksi 33.7

67

Page 69: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

b. Analysis for P/N 11669147

The final design is shown in Table 11.

The tube will have metal end sleeves of Dana Spicer tubing which has anoutside diameter of 3.50 inches and a wall thickness of 0.134 inch. Thisresults in shear stresses under the applied loads of:

Applied Torque, Tlb-in. actin_,_psi

78,000 33,955 (34,000 is the yield43,800 19,070 stress of the material)7,680 3,345

The composite tube will have an outside diameter of 3.46 inches. Underthe applied torques, the margins of safety are:

Applied Torque,lb-in. actingPsi -all,PSi M.S._,%

78,000 26,240 36,220 3843,800 14,733 27,165 847,680 2,583 18,110 600

45,000 15,138 25,354 67

The torsional instability torque is:

Tbuck" (21.75) (0.67) D(2,2)0. 6 25{A(ll) A(2,2)A A1,2)2'375

rave 1.25

L0 .5

whereA and D are material property matrixesrave is the average radius

L - length of shaft - 46.781 inches

and, for the composite tube

Tbuck 98,320 lb-in.

while

Tmax - 78,000 lb-in.

68

Page 70: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

or

M.S. = 26.1%

The critical speed in RPM, of the shaft is:

Wc = 94.2384Sp A L

where

I =- (OD4 - ID 4 )64

OD = outside diameter of tubeID = inside diameter of tubeAt = 0.06 pounds/inch 3

A = T (OD 2 - ID 2)

4

For the composite tube, this gives 8,243 RPM while the required criteriaspeed is 6,000 RPM.

The allowable material properties used in the analysis account for the tubebeing exposed to temperatures in the range of -40*F to 160*F.

Metallic end sleeves are required for the composite tube so that the endfittings can be welded to the tube. The load transfer in the scarf joint betweenthese metallic end sleeves and the composite tube requires a bond length asfollows:

(I_) (D)2 (L) (TALL) = T2

whereD - mean diameter of bond area, taken as 3.41 inchesT = applied torque

ALL = allowable shear stress in the adhesive, taken to be

Applied Torquelb-in. tALL,psi

78,000 150043,800 10007,680 500

69

Page 71: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

L - length of bond area

Thus,2.85 inches based on ultimate torque

L - 2.40 inches based on limit torque0.84 inches based on fatique torque

orL - 2.85 inches

In addition, a 2-inch length of metallic sleeve at each end is required for thewelding operation. A bond length of 2.85 inches was chosen for the final design.

70

Page 72: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 11

FINAL DESIGN FOR HIGH-STRENGTH GRAPHITE-EPOXY TUBE

FOR P/N 11669147

Laminate Configuration

Thickness of +45* plies, inch 0.024

Thickness of 90* plies, inch 0.162

Total Thickness 0.186

Static Allowable Mechanical Properties

of Unidirectional Laminate Used In Design

Ell,Msi 18

E2 2 ,Msi 1.5

G1 2 ,Msi 0.6-o 12 0.207 1+,Ksi 160

(rI-,Ksi 135

r 2+,Ksi 6.4

(r 2 -,Ksi 13.5

t' 12 ,Ksi 8

Resulting Laminate Properties

Ex,Msi 4.2

Ey,MSi 3.0

GxyMs i 4.2V xy 0.77

rx+,Ksi 31.9

Ox-,Ksi 23.8

(ry+,Ksi 12.9

Ty-,Ksi 25.8

" xyKsi 36.2

71

Page 73: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

c. Analysis for P/N 8332245

The final design is shown in Table 12.

The tube will have metal end sleeves of Dana Spicer tubing which has anoutside diameter of 3.50 inches and a wall thickness of 0.095 inch. Thisresults in shear stresses under the applied loads of:

Applied Torque,lb-in. .actingPsi

57,270 34,000 (34,000 is the yield43,800 26,000 stress of the material)7,680 4,560

The composite tube will hae an outside diameter of 3.46 inches. Underthe applied torques, the margins of safety are:

Applied Torque,lb-in. Tacting,Psi all,Psi H.S.,%

57,270 21,888 30,900 4143,800 16,740 23,175 387,680 2,935 15,450 426

45,000 17,198 21,630 25

The torsional instability torque is:

Tbuck" (21.75) (0.67) D(2,2) 0 - 6 2 5 A(l,l) A(2,2)-A(1,2) 2 0. 37 5

A(2,2) J

rave 1.25L0 .5-

whereA and D are material property matrixesrave is the average radiusL - length of shaft - 46.781 inches

and, for the composite tube

Tbuck - 69,695 lb-in.

while

Tmax U 57,270 lb-in.

72

Page 74: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

or

M.S. = 21.7%

The critical speed in RPM, of the shaft is:

Wc E6 / 4 (94.2)

P A LI

where

I = t (OD4 - ID4 )64

OD = outside diameter of tubeID = inside diameter of tubef = 0.06 pounds/inch 3

A = =- (OD 2 - ID 2 )4

For the composite tube, this gives 7,925 RPM while the required criteriaspeed is 6,000 RPM.

The allowable material properties used in the analysis account for thetube being exposed to temperatures in the range of -40°F to 160*F.

Metallic end sleeves are required for the composite tube so that the endfittings can be welded to the tube. The load transfer in the scarf joint betweenthese metallic end sleeves and the composite tube requires a bond length asfollows:

(OT') (D)2 (L) ( T ALL) - T2

whereD = mean diameter of bond area, taken as 3.41 inchesT = applied torqueTALL = allowable shear stress in the adhesive, taken to be

Applied Torquelb-in. _ALL_,psi

57,270 150043,800 10007,680 500

73

Page 75: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

L - length of bond area

Thus,2.23 inches based on ultimate torque

L - 2.56 inches based on limit torque0.90 inches based on fatique torque

orL - 2.56 inches

In addition, a 2-inch length of metallic sleeve at each end is required for thewelding operation. A bond length of 2.60 inches was chosen for the final design.

74

Page 76: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 12

FINAL DESIGN FOR HIGH-STRENGTH GRAPHITE-EPOXY TUBE

FOR P/N 8332245

Laminate Configuration

Thickness of +45* plies, inch 0.116

Thickness of 90' plies, inch 0.044

Total Thickness 0.160

Static Allowable Mechanical Properties

of Unidirectional Laminate Used In Design

EllMsi 18

E2 2 ,Msi 1.5

G1 2 ,Msi 0.6V 12 0.2

C01 +,Ksi 160

0Sl-,Ksi 135

a,2+,Ksi 6.4

6*2-,Ksi 13.5

'rl2, Ksi 8

Resulting Laminate Properties

ExMsi 6.7

EyMsi 3.3

Gxy,Ms i 3.6

-0 xy 0.73

0x+,Ksi 51.1

Ux-,Ksi 39.1

6'y+,KSi 14.2

COy-,Ksi 29.7

rxy,Ksi 30.9

75

Page 77: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

d. Analysis for P/N 8332246

The final design is shown in Table 13.

The tube will have metal end sleeves of Dana Spicer tubing which has anoutside diameter of 3.50 inches and a wall thickness of 0.095 inch. Thisresults in shear stresses under the applied loads of:

Applied Torque,lb-in. tacting,Psi

89,170 33,985 (yield stress57,600 21,955 of the material)10,800 4,115

The composite tube will have an outside diameter of 3.46 inches. Underthe applied torques, the margins of safety are:

Applied Torque,lb-in.. actinS,Psi all,psi M.S._,%

89,170 27,784 37,900 3657,600 17,947 28,425 5810,800 3,365 18,950 463

The torsional instability torque is:

Tbuck" (21.75) (0.67) D(2,2)0625[A(l,l) A(2,2)-A(l,2)2 0.375

A(2,2)

rav 1.25

whereA and D are material property matrixesrave is the average radius

L - length of shaft - 46.375 inches

and, for the composite tube

Tbuck - 106,980 lb-in.

while

Tmax - 89,170 lb-in.

76

Page 78: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

or

M.S. = 20.0%

The critical speed in RPM, of the shaft is:

=- 94.2/386.4 I

PP AL

where

I = (OD4 - ID4 )64

OD = outside diameter of tubeID = inside diameter of tubef = 0.06 pounds/inch 3

A =-T- (OD2 - ID 2 )4

For the composite tube, this gives 7,550 RPM while the required criteriaspeed is 6,000 RPM.

The allowable material properties used in the analysis account forthe tube being exposed to temperatures in the range of -40*F to 160°F.

Metallic end sleeves are required for the composite tube so that the endfittings can be welded to the tube. The load transfer in the scarf joint betweenthese metallic end sleeves and the composite tube requires a bond length asfollows:

(r) (D) 2 (L) ( TALL) = T

whereD = mean diameter of bond area, taken as 3.26 inchesT = applied torque

TALL = allowable shear stress in the adhesive, taken to be

Applied Torque tlb-in. _ALL,psi

89,170 150057,600 100010,800 500

77

Page 79: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

L - length of bond area

Thus,3.57 inches based on ultimate torque

L - 3.46 inches based on limit torque1.30 inches based on fatique torque

orL - 3.60 inches

In addition, a 2-inch length of metallic sleeve at each end is required for thewelding operation.

A weight savings comparison of these designs to the existing tubes isshown in Table 14. Because of the required steel end sleeves, weight savingsare as low as 26%.

3.2.4 Chosen Designs for Composite Shafts

The final designs are given in Figures 10 - 13:

Figure 10: Composite Design for P/N 8332248Figure 11: Composite Design for P/N 11669147Figure 12: Composite Design for P/N 8332245Figure 13: Composite Design for P/N 8332246

Tolerances for all designs were chosen to agree with those for theexisting steel tube used to facilitate balancing of the shaft. These tolerancesare:

a. Ovality T.I.R. maximum of 0.007 inch; this is the most signi-ficant parameter for balancing

b. Straightness T.I.R. maximum runout of 0.012 inch

c. Wall thickness of +0.005 inch; this is greater than the +0.003inch required for the steel tube, but is not the major parameterin balancing the shaft.

78

Page 80: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 13

FINAL DESIGN FOR HIGH-STRENGTH GRAPHITE-EPOXY TUBE

FOR P/N 8332246

Laminate Configuration

Thickness of +45* plies, inch 0.016

Thickness of 90* plies, inch 0.188

Total Thickness 0.204

Static Allowable Mechanical Properties

of Unidirectional Laminate Used In Design

Ell,Msi 18

E2 2 ,Msi 1.5

G1 2 ,Msi 0.6

"d 12 0.2

a + ,Ks i 160

C 1-,Ksi 135

(r 2+,Ksi 6.4

'2-,Ksi 13.5

"r12,Ksi 8

Resulting Laminate Properties

Ex,Msi 3.5

EyMsi 2.8

Gxy,Msi 4.4

"v xy 0.77

l'x+,Ksi 26.0

G'x-,Ksi 19.3

G'y+,Ksi 11.9

Ty-,Ksi 22.8

Txy,Ksi 37.9

79

Page 81: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

'%D0 n m~ 0 In (V) w. '0

(VM C4 In H- r- In H In v 0' ~ -o dP

en C4 4 Hý 44 c 4 u ;L

H- IV In In In0E- C4 0 (n %.0 0 On 0 ' .

N %V '0 in 0 (3% In 0 0% v H 00 r-I N

co C' n '.nD C. '

E--4

m o nm 0 C4 4t

a4 (" ' 0 ) i 0 ) ('q0 I C r

0. In 0 C% v InC 0) tD Hn 0 ' r, dP

E4 UCN" Ho C' 0 cn" C' O H C') 0 0 ("4 n w0 ('4

cn

00

00 41 -H0 u

41 0) Cf 00

(d 4J $4 H ) 0) r0

I-4 4) 9 r. -4 4 '- C) >10. 0) -HX& A

.,II E-4 - 44 - 4 0 4 0 4Jg ~ M 00 E- 4) - .A E-4 U)

u~ 0 .,- (U) V) Hj 0U V 0 - -f to2.1 m~4 r.4

"-4 4 eA -4 w J j :!5~ 040 0 H 0 m ' 2 0 .

(d 0) 0 (D

Page 82: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

101

0' InIta.

2r

~d

C4

00

rzP-4

'-4

81-

Page 83: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

8

CAC.

- -4

iqI

20.

K- 82

Page 84: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

0Lt

0

a 0 IL C

LL -1i I

CL u* 7 M_

WCIJ -l 1 I=

6! 4-

Co ztt- .

V1) -L

-E-

00

00

CD,

0n 0

LiJ 0.0

Z CO

2 Ht

,-c -

83

Page 85: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

7Z 7J UJ w

4w w

i 3-

r-4

'a's

~0

_z-z~r

00

VH

84J

Page 86: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

.1 La : .1 I

I I

-W 00

w 3

-4T

10.

CDI

E-1

ii -'S.

I .4~ rr4

I .J~ LJ

~. ~ 0

0 .g ~85X

Page 87: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

ox a z ' cf*i -2 ' _

80

-J - ~LJLJJWS

2 ~ -r

C 3

6. C

00- - -

- -L zP, N%

0R 04

cu zI- I .

*-~~*-LlTH

(IiL

rZ

rrzc~i m

___ __ __ __ _86_

Page 88: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

>21' 4I '

CP4

0

1-4

E0

87

Page 89: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

o too Ito

1)- 0

- CD 0

4,41

-- , -4 - ---

.4 ~ I. n

4,r

4 IP10- - .

t) .

.4 - I-i

0 ~ . ,,~ Ii i p J

'w 4

o -- -. . ~cc

190'

88~

Page 90: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

z 0

wo C *uD ~ N -

p *2) a.

csp fv uJ

ap J jC

LAIn

('4

ccc

-JE-1

2 P4

0

C32

Na o C%

P6U(PA

CH

L90

p. o

X

h8

Page 91: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

'SN

'0

0

r44

900

Page 92: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

i I I i0g

. £ d2

tto0i w

-_.--_-- _-_•= = --------

• -%0

-~N I - N1

° 3

fH

0-

• N6 .

9cc

IiIN,

I * 0Qt II

II -4

em ,'I, w

Page 93: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

cu> >~

w 0 - 0.>'-

00

co

04w zI. 1

"E-4

g2c

~HC3n

00

>00

I'If

IcI

'' .aZ3

0cLp0

Zi

7i rz

~ r ~ >

* a.Iz* *

'1 '92

Page 94: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

4

FABRICATION OF PROTOTYPE COMPONENTS

4.1 Leaf Spring Assemblies

4.1.1 Leaf Fabrication

Individual leaves of fiberglass-epoxy were fabricated from billetson expendable tooling. An example of the tooling is shown in Figure 14. Theprocess involves laying individual prepreg plies of fiberglass-epoxy, cut tolengths to form a billet of the desired final shapes for the leaf, on thetooling. During lay-up, the material is compacted to minimize wrinkling of thematerial during cure. After all plies are laid-up, a caul sheet is placed ontop. The billet is then cured at 85 psi and 250"F. Finally, the cured billetis cut into leaves of the desired width. Appendix A gives the step-by-stepprocedure for the composite leaves of the rear assembly; the process for thefront assembly is similar.

4.1.2 Assembly

After the composite leaves are fabricated, spacer and wear pads areadhesively bonded to each leaf and the center bolt hole is drilled.

The assembly consists of the steel leaves, composite leaves, spacer andwear pads, risers (if required), center bolt, and clips. The final assembly isin accordance with the designs shown in Figures 8 and 9. The assemblyprocess is given in detail in Appendix A for the front assembly, which is themore complex of the two assemblies. The proposed clip design is for prototypesamples only. In production, the clip would be attached to the steel main leafby a rivet. The prototype clip was chosen to avoid the heat treat and shotpreening operations required after riveting. If these operations are notperformed, the mechanical properties of the steel leaves will be inadequate forservice conditions.

It should be noted that the purpose of the clip is to aline the leaves andto facilitate handling of the assembly. Thus, if the adhesive bond of theprototype design fails during service (which is expected), it does not affectperformance.

Component spring assembly weights are shown in Table 15.

4.2 Propeller Shafts

4.2.1 Composite Tube Fabrication

The graphite-epoxy tubes for the propeller shaft are fabricated on a steelmandrel overwrapped with a silicone rubber bag; a typical mandrel is shown inFigure 15. The composite prepreg plies, cut in accordance with the required

93

Page 95: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

FIGURE 14

EXPENDABLE TOOLING FORLEAF SPRING FABRICATION

94

Page 96: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 15WEIGHT OF COMPOSITE SPRING ASSEMBLIES

Weight, PoundsComponent Front Assembly Rear Assembly

Composite Assembly:

Steel Leaves and Clamp Bars 46.5 74.1

Composite Leaves 23.4 70.7

Brackets 2.0 3.0

Center Bolt 0.3 0.5

Risers 5.5 ---

TOTAL 77.7 148.3

Steel Assembly 149.0 293.4

Weight Savings for CompositeAssembly

Pounds 71.3 145.1Percent 48 49

95

Page 97: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

FIGURE 15

TOOLING FOR PROPELLER SHAFTCOMPOSITE TUBE FABRICATION

96

Page 98: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

patterns, are then laid on the mandrel. The steel end sleeves are placed onthe mandrel before it is inserted into the mold cavity, shown in Figure 15. Thetube is cured at 250*F with a pressure of 85 psi applied at the inner radius ofthe tube. This pressure forces the composite material to expand to the moldcavity. This expansion insures a good bond between the composite tube and theend sleeves, minimizes material wrinkling, and produces a tube of the requiredoutside diameter. This process is given in detail in Appendix B.

4.2.2 Assembly

The cured composite tube, with steel end sleeves, is designed to replace theexisting steel tube of the propeller shafts. The end fittings are welded to theend sleeves. This assembly process was subcontracted to the Dana Corporation,the supplier of the existing shafts. The end fittings and welding and balancingprocesses employed to fabricate the existing shafts were followed. This proceduremaximized the structural integrity of the composite redesign effort.

97

Page 99: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

5

TEST PROGRAM

The composite components fabricated in the program were subjected to non-destructive and destructive tests.

5.1 Non-Destructive Evaluation

All composite parts fabricated were ultrasonically C-scanned to verifythe fabrication process, investigate internal flaws in the material, and providea quality assurance standard. The results of the C-scans for the prototypecomponents are given in Appendix C.

5.2 Leaf Spring Assemblies

All leaf spring assemblies were tested statically to determine the springrate at the rated load. Figure 16 shows the test set-up. Several of the assembl-ies were also tested under fatigue conditions to determine the fatigue lives ofboth the existing steel assembly and the composite designs. The tests were inaccordance with the procedures outlined in Appendix D.

For the front assemblies, the steel and composite designs results aregiven in Tables 16-19 and Figures 17-19. As shown, the assemblies survived150,000 cycles without any apparent failures. The spring rate does change withcycling, as has been shown in previous studies.

The results for the rear assemblies are given in Tables 20-24 and Figures20 and 21. The static results are as predicted. The fatigue results for thesteel assembly show that it survived 150,000 cycles without any apparent failures.The composite assemblies experienced major problems during fatigue testing.After several failures, see Tables 23 and 24, the problem was determined to beload transfer between leaves. This was caused by the nonmatching curvatures ofthe composite leaves in the spacer pad area. Such a problem results from thefabrication process used for the prototype parts. A production process would notexhibit this characteristic. Therefore, the test results given in Table 22 areconsidered indicative of the composite design: a fatique life of greater than100,000 cycles. It is concluded that the composite design does exhibit a fatiguelife common for heavy truck leaf springs and that the design is acceptable.

5.3 Propeller Shafts

Destructive testing of the fabricated propeller shafts consisted of astatic test to failure and a fatigue test. The static torque test was a continu-ously increasing load test. The fatigue test was a continuously applied torqueof +45,000 lb-in, at laboratory ambient temperature.

98

Page 100: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

FIGURE 16(a) SPRING ASSEMBLY TEST SET-UPREAR ASSEMBLY

FIGURE 16(b) SPRING ASSEMBLY TEST SET-UPFRONT ASSEMBLY

99

Page 101: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

II

FIGURE 16(c) SPRING ASSEMBLY TEST SET-UPFRONT ASSEMBLY

100

Page 102: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 16

SUMMARY OF INITIAL SPRING RATES

FOR FRONT SPRING ASSEMBLIES*

Clamped Spring Rate,

lb/in. at Rated Load

Material S/N Loading Unloading Average

Steel 2,625 2,669 2,647

Composite 1 3,500 3,303 3,402

2 3,172 3,019 3,095

3 3,478 3,391 3,435

4 3,172 3,041 3,1075 3,347 3,281 3,314

6 3,347 3,259 3,303

Average 3,336 3,216 3,276

*Composite Assembly Design Spring Rate was not that

of the Steel Assembly

101

Page 103: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 17

VERTICAL FATIGUE TEST RESULTS

FOR FRONT STEEL ASSEMBLY

Clamped Spring Rate, Torque on U-Bolts

Cycles lb/in. at Rated Load lb-in.

1 2,625* 260 260 260 260

10,000 3,172 180 180 150 150

35,000 3,347 200 200 230 220

60,000 3,412 220 250 180 160

85,000 3,894 250 260 250 260

110,000 3,894 245 250 255 260

135,000 3,937 250 255 255 255

150,000** 3,937 255 260 260 260

*Unclamped Spring Rate of 2,272 lb/in.

**Test completed, no apparent failures

102

Page 104: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

>4

E-1

_ _ _ _ 0

00oN

HýC)1

0 rT40

0r 4

C12

E-4

C) 0

103

Page 105: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 18

VERTICAL FATIGUE TEST RESULTS

FOR FRONT COMPOSITE ASSEMBLY S/N 1

Clamped Spring Rate, Torque on U-Bolts

Cycles IbAn. at Rated Load lb-in.

1 3,476* 260 260 260 260

10,000 3,346 180 220 200 180

35,000 3,522 200 215 225 230

60,000 3,566 230 255 250 230

85,000 3,544 260 245 265 260

110,000 3,522 260 245 255 260

135,000 3,588 260 255 260 265

150,000** 3,588 255 260 260 260

*Unclamped Spring Rate of 3,265 lbxin.

**Test completed, no apparent failures

104

Page 106: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

00

00

ii--i

U0

C)C

0 C10

H ZE-,

u

0 U

oc

en CN1

qou/.sund poqpaqU p apUBu~dSpadup o rXti

10H

Page 107: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 19

VERTICAL FATIGUE TEST RESULTS

FOR FRONT COMPOSITE ASSEMBLY S/N 2

Clamped Spring Rate, Torque on U-Bolts

Cycles lb/in, at Rated Load lb-in.

1 3,281 260 260 260 260

10,000 3,588 220 220 220 210

35,000 3,522 255 260 240 240

60,000 3,456 250 250 250 250

85,000 3,500 250 260 250 250

110,000 3,456 250 260 250 250

135,000 3,566 260 255 260 260

150,000* 3,500 260 260 260 260

*Test completed, no apparent failures

106

Page 108: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

0

0

iE-4

z

0

0

0

C)

0 0

UrT4I.

0

M0

0) U)n

rz4tt~tf/SPfl~d'p~o pe~~~ ~ ~ tx d p~dI-T

1070

Page 109: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 20

SUMMARY OF INITIAL SPRING RATES

FOR REAR SPRING ASSEMBLIES

Clamped Spring Rate,

lb/in. at Rated Load

Material S/N Loading Unloading Average

Steel 7,437 6,694 7,065

Composite 1 6,038 5,381 5,710

2 6,869 5,994 6,432

3 7,394 6,213 6,804

4 7,326 6,320 6,823

5 7,364 6,475 6,920

6 7,321 6,065 6,693

Average 7,052 6,075 6,564

108

Page 110: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 21

VERTICAL FATIGUE TEST RESULTS

FOR REAR STEEL ASSEMBLY

Clamped Spring Rate,

Cycles lb/in. at Rated Load

1 7,437

10,000 10,588

35,000 11,375

60,000 11,113

85,000 11,681

110,000 11,419

135,000 11,594

150,000* 12,513

*Test completed, no apparent failures

109

Page 111: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

U)

0

o >4

0 )

>) 0

u H

o 144C)

04

% 0o1 0 0N

=110

Page 112: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 22

VERTICAL FATIGUE TEST RESULTS

FOR REAR COMPOSITE ASSEMBLY S/N 1

Clamped Spring Rate, Torque on U-Bolts

Cycles lb/in, at Rated Load lb-in.

1 6,038 260 260 260 260

25,000 6,912 150 17 150 150

50,000 6,606 200 230 200 200

75,000 7,131 225 230 230 235

100,000 6,781 270 260 270 270

108,000* ....-- -- --

*Steel main leaf broke

111

Page 113: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

00

00

C)

0

z

r 0

rZ4

rz

00 W

110 0

112~

Page 114: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 23

VERTICAL FATIGUE TEST RESULTS

FOR REAR COMPOSITE ASSEMBLY S/N 2

Clamped Spring Rate, Torque on U-Bolts

Cycles lb/in. at Rated Load lb-in.

1 6,869 260 260 260 260

9,460* 6,388 --. --. . ..

*Test terminated: top composite leaf delaminated and vertical

crack propagated from spacer edge

113

Page 115: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Table 24

VERTICAL FATIGUE TEST RESULTS

MOR REAR COMPOSITE ASSEMBLY S/N 3

Clamped Spring Rate, Torque on U-Bolts

Cycles lb/in, at Rated Load lb-in.

1 7,394 260 260 260 260

7,500* .- ---.-- --

*Test terminated: cracks formed in top composite leaf propagated

to next two leaves

114

Page 116: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Static failure test results are shown below.

Ultimate Torque, lb-in.Composite Design to Replace P/N Required Experimental

8332248 57,270 81,80011669147 78,000 111,000

These results are considered excellent.

Fatigue testing of the shafts showed that the adhesive bond failed. Thiswas the result of the graphite tube shortening during loading; which is a resultof the laminate characteristics. This shortening placed a positive transversenormal stress on the adhesive; adhesives have poor tensile strengths.

This phenomenon was observed during testing of the composite design toreplace P/N 8332248; the fatigue life results are shown below.

Tube S/N Fatigue Life, cycles

1 1,9002 ,403 2,400

A redesign to include a bolted and bonded joint between the composite tubeand the steel end sleeves was undertaken. Changing the joint area was impossiblebecause of the tube length; see Figure 10. Shafts to replace P/N 11669147 werefabricated to this new design and tested; the results are shown below.

Tube S/N Fatigue Life, cycles

1 6,7002 2,700

As shown, the bolts did not significantly change the results. The failuremode was not changed either. Therefore, it was decided to use only an adhesivelybonded joint for the prototype parts.

The fatigue results were interpreted by Dana Corporation personnel to meanthe following for the 5-ton Army truck:

-in peace time, probably indefinite life.-in war time, where the truck is often in mud,

a life expectancy of 9 months.

It was, therefore, decided to fabricate shafts to the proposed design for fieldtesting.

115

Page 117: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

6

BUDGETARY COST ESTIMATE FOR PRODUCTION

The following discussion assumes constant FY79 dollars for all cost calcu-lations.

6.1 Leaf Spring Assemblies

6.1.1 Production Fabrication Process

For volume manufacturing, quantities of at least 25 units per day (6,250 peryear) are required. For quantities of these amounts and greater, there are severalmanufacturing techniques which are applicable to the fabrication of composite leafsprings.

The primary objective in the fabrication of any component is to reduce to aminimum the number of processing steps and, in particular, those that requireheavy labor content. The principle processing steps involved in the manufactureof a leaf spring are:

1. The deposition of material.2. The curing of the component.3. Assembly of the spring pack.

Of these, the first is a major contributor to the cost of composite hardware.It can range from a hand lay-up process in which plies are laid down individuallyto the rapid lay-down of material via a filament winding process. One of theprimary considerations that determines which method is used is the type ofmaterial to be deposited and how rapidly it can be positioned to form the thicknessand contour required by the product. Prepreg can be used and has the maximumflexibility in positioning the material. Depositing the same amount of materialby filament winding would be faster; however, since the composite material leafhas a variable contour, the winding operation would have to be stopped severaltimes to incorporate and position discrete plies in order to build up the variablecontour. A compromise is to fabricate prepreg using a filament winding machine.

One of the solutions to the rapid deposition of material is to use thickerlayers of reinforcement in order to reduce the number of pieces to be handledeither by machine or by hand. Investigations have shown this to be the besttrade-off in cost and in manufacturing rate. Two options are available. Uni-directional fiberglass can be used which will yield a per ply thickness between0.020 and 0.030 inch. Or an XMC sheet molding compound material, which is availablein thicknesses ranging from 1/8 to 1/4 inch, can be used.

The manufacturing processes that utilize these material forms are discussedbelow and are viable for the fabrication of composite leaf springs. They arestate-of-the-art processes and satisfy the production rates required for thisapplication.

116

Page 118: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

a. Resin Injection Molding Fabrication Process

Resin injection molding involves the placement of dry reinforcement in amatched die cavity that is subsequently injected with liquid resin. The liquidresin is injected under pressure and, by also using a vacuum, it infiltrates thereinforcement held in the cavity. Once full injection has been accomplished, thedie is heated to effect a cure. Figure 22 shows the process sequence.

It is not economical to use this process on a discrete leaf element. Theproposed process is to fabricate a large billet, a minimum of 48 incheswide, to yield 12-15 discrete leaves. One cavity would be required for eachof the leaf shapes in the assembly.

To use this method requires unidirectional fiberglass; this could be purchasedin 48 inch widths or fabricated using a filament winding machine. This materialwould be cut to the prescribed pattern lengths and placed in the cavity dry. Theresin can be any number of epoxy resin systems which exhibit low viscosity (forthe resin injection) and combine with the glass reinforcement to produce a curedcomposite yielding the properties which are required of this application. Curetimes for currently available resins range from 60 to 90 minutes. Newerresins now in the stage of advanced development and commercial applicationindicate cure times on the order of 10 to 20 minutes are possible.

After cure, the billets would be cut into discrete leaf elements using aprofile cut-off saw programmed to cut the billet into the required width leaves.The ends of the leaves would then be trimmed to length, the center bolt holedrilled, the leaves inspected, and the discrete leaves assembled to form assemblies.

b. Compression Molding Fabrication Process

This process involves the matched metal molding of XMC sheet molding compoundcontaining glass reinforcement and epoxy resin. The process sequence requiresthat individual patterns be cut from the broadgoods sheets and placed into thematched metal die. Again, these broadgoods sheets could be fabricated usingfilament winding. Under pressures of 500 to 1500 psi and temperatures from 300to 400 degrees F, the part is cured in 10 to 20 minutes. It is then ejected fromthe mold, the centerbolt hole drilled, and the leaf inspected. Assembly into thespring pack would take place after these operations. Figure 23 shows this process.

Currently available XMC materials containing epoxy resins are in the advancedstages of development for some commercial applications. As a general rule theyare available in thicknesses of 1/8 to 1/4 inch and have a cross-pliedorientation of approximately 10 degrees. This orientation is appropriate forleaf spring applications. The material is received in a boardy (b-staged)condition which requires it to be heated in order to be formed into the complex

117

Page 119: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

00

-o•

Cc 0S-

118...

Page 120: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Go.

119

-~ H

119

Page 121: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

contours of the leaf. Upon heating and with the application of pressure, it willflow and form readily to the leaf spring configuration. The compression moldedpart can be directly assemblied into a spring pack after removal of mold flash.

Curing of the currently available epoxy XMC molding compounds is accomplishedat between 300 and 400 degrees F at pressures in excess of 500 psi. Cycle timesrange from 10 to 20 minutes depending on the system, thickness of thepart, and the temperatures used. Present experience indicates that 15 to 20minutes for currently available material is required to effect a cure on partshaving the thickness required of heavy truck leaf springs.

There are two major concerns associated with using XMC molding compounds.The first is the distortion of the fiber orientation under the high pressure.This could result in a lower strength and stiffness than would occur from otherprocesses. The second concern is that the thickness of the starting material issuch that to retain uniform fiber and resin distribution in a variable contourbuild-up is difficult.

c. Chosen Fabrication Process

At the present time, the compression molding process is a tried and provenfabrication method for heavy truck leaf springs. The resin injection moldingprocess offers some cost advantages; but still needs to-be developed before itcan be used as a production method. Therefore, for this study, the compressionmolding process has been chosen.

6.1.2 Non-Recurring Investment

The compression molding process requires a large press with a capacity of100 to 300 tons. Such a press would cost $300,000 to $500,000. The work arearequired for production of leaf spring assemblies, except for the press, would benominal. For this process, other required initial expenditures would be:

-the compression molds; one required for each leafconfiguration

-centerbolt drilling fixture

-routing facilities

Compression molds for heavy truck leaf springs cost approximately $40,000per mold. This includes the cost of design and fabrication of each mold. Theother fixtures costs would be minimal in comparison. Thus, an estimate of initialmold cost is:

120

Page 122: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Spring Assembly Number of Composite Total Cost of Molds,Leaves Dollars

Rear 5 200,000Front 2 80,000

One set of molds would be able to produce about 10,000 parts per year;the life of a mold should be in excess of 100,000 parts.

6.1.3 Production Costs

The compression molded process, once established, requires minimalsupervision; most supervision would occur through quality control. Recurringengineering and sustaining tool costs are considered negligible.

The material costs associated with the spring assemblies are:

-fiberglass fiber in a compression moldable epoxyresin: this can be purchased for about $5 per pound.Rejection and/or scrap rate for this process in pro-duction is taken as 25%'

-steel leaves, clips, riser plates, cnterbolts, etc:this can be assumed to cost $0.50 per pound

-miscellaneous materials (spacer and wear pads,adhesives, etc): the combined total per assemblyis about $15.00

Labor charges, which are estimated from work performed at EEMD in thefabrication of compression molded leaf springs, are taken as:

-molding of leaf: 2 hrs of technician per leaf

-assembly: 2.5 hrs of technician per leaf

-Q.A.: 0.4 hrs of Q.A. technician

-supervision: 0.5 hrs of Engineer

There are no sub-contracted items associated with this process.

The budgetary cost estimate for production can be figured using thefollowing process:

a. The total cost is calculated using the following elements

-Direct Labor Charges-Labor Overhead at 140%

121

Page 123: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

-Material Charges-Material Handling Overhead at 12%-Other Charges

b. The selling price is calculated by

-including 15% for general and administrative expenses-including an 8% profit /fee

This results in

a. direct labor charges being multiplied by 2.13 to obtain theportion of the selling price due to labor

b. material charges being multiplied by 1.39 to obtain the portionof the selling price due to material

c. other costs being multiplied by 1.24 to obtain the portion ofthe selling price to these items

Using FY79 dollars and rates, these result in selling price labor rates of

Category Burdened Labor Rate,Dollars/Hour

Technician 22.50Q.A. Technician 19.50Engineer 36.00

The burdened material costs are

Burdened Cost,Material Dollars/Pound

Fiberglass-Epoxy 7.00High-Strength Graphite-Epoxy 35.00Epoxy Resin 8.00Steel (in fabricated form) 0.70

122

Page 124: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

For the leaf spring assemblies, the cost estimates are then:

Rear Assembly Front Assemblya. Material pounds Burdened Cost, pounds Burdened Cost,

or hours $ or hours $

Fiberglass-epoxy 70.7 495 23.4 164Steel 74.1 52 46.5 33Miscellaneous --- 21 21TOTAL 568 218

b. Labor for 1st Unit$ $

Technician 27.5 619 14.0 315Q.A. Technician 0.4 8 0.4 8Engineer 0.5 18 0.5 18TOTAL ---- 645 --- 341

c. Subcontracts ---- 0 0

To estimate the cost of a unit, the material costs shown above are to beused.

For estimating the labor hours associated with a unit, a learning curveis appropriate. Learning curves are predictive tools that must be applied with agreat deal of professional judgement. Nevertheless, they are the manufacturingoperations estimator's most powerful forecasting tool. They allow basic, standardtime data to be used for estimating production quantities. The learning curveprojects the actual time it will take to make units during the buildup to peakefficiency.

The learning curve concept is that as quantities double, the rate oflearning remains the same.

Thus,y kxn

wherey = average cost per unitx = number of unitsk = cost of the first unit producedn = constant, representing the relation between x and y

On a log-log plot, the learning curve is a straight line:

log y = log k - n log x

123

Page 125: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Learning curves for machined or detailed parts are typically 95%. Sub-assembly learning curves are generally near 87% and minor assembly curves areabout 86%. As unit complexity increases further, learning curve percentagecontinues downward.

For the truck components being considered in this study

-a learning curve of 90% is considered achievable-a learning curve of 87.5% is considered possible-a learning curve of 85% is considered overly optimistic

For the composite spring assemblies, the labor costs, in FY79 dollars,associated with each unit of production is shown in Figures 24 and 25. Theinitial unit cost is taken as that calculated above. To find the total costof a production unit, the material and labor costs must be combined

6.2 Propeller Shafts

6.2.1 Production Fabrication Process

The fabrication process for the composite tube of the propeller shaft usedin the prototype program is shown schematically in Figure 26. The female mandrelconcept was employed for the reasons discussed in Section 4. However, thisprocess does not lend itself to production: it is labor intensive.

Since the majority of the fibers are at a +45* orientation, filament windingis the obvious choice for production of the composite tubes. For this process, thetooling is minimal, the fabrication process utilizes an automatable device which caneasily apply fiber at a 450 angle, and no special curing equipment is required.Therefore, the filament winding process is chosen for the budgetary cost estimate forproduction.

6.2.2 Non-Recurring Investment

In addition to filament winding machines which are available in manycomposite fabrication facilities, only mandrels are needed to fabricate thecomposite tubes.

The mandrel would consist of a steel tube or shaft of constant diameterwith machined slots to locate the end sleeves. Such a simple mandrel would cost$2,000 to $2,500. Production quantities would require the following number ofmandrels:

124

Page 126: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

E-1H

"o00 u

04

S~H

0

o .

4-)

0 LO U1C)a) 0 LO>c o (M0 0 1

Hp 0 H0

o 0 -

oz

ioq~ ppuepin• V.uf

1259

Page 127: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

00

0 z

LO

'000 a

Q 'Q

Q) 0

0 Ci)

0

z H

InC'J

0 ~000 v-I

SJVETocI '!.SODaoqvq paeupang ;Tun

126

Page 128: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

€ E-4VPP0

En. 0• ~mo

® *- UP W

II

a

127

Page 129: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

0F44

rzi

1281

Page 130: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Yearly Production Rate Number of Mandrels

1,020 105,100 36

10,200 68

A minimum economical yearly production rate would be 500.

Final machining of the cured tube would employ standard milling/cuttingequipment.

6.2.3 Production Costs

The methods outlined in Section 6.1.3 can be used to obtain the budgetarycost estimates for the propeller shafts as well. The composite design replacingP/N 11669147 was chosen as the example for the propeller shafts since its lengthis near the average of the components considered. The cost estimate is:

(a) Material Pounds or hours Burdened cost, dollars

Graphite Fiber 2.75 96Epoxy Resin 1.20 10Steel Sleeves 3.0 2Miscellaneous ---- 2

TOTAL 110

(b) Labor for 1st Unit

Technician 38 855QA Technician 0.5 10Engineer 0.4 15

TOTAL 880

(c) Subcontracts

End fittings, 240Assembly, andBalancing(Existing technology used)

To estimate cost of a unit, use the material and subcontract costs shownabove and the labor costs given in Figure 27.

129

Page 131: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

0

0os

(3) 00 0 -

cn 0

r-4

p00

4-) 0

CII CH

00rI-.

(DD

Pz4

0 v-I

savl[oa 'ZSODloqvq pauepazng ;.Tun

130

Page 132: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

6.3 Estimated Production Costs

Estimated production costs for each component can be calculated from thedata given in Section 6.1 and 6.2.

Table 25 gives the estimated production costs, neglecting non-recurringinvestment, for the 1,000th, 5,000th, and 10,000th unit produced.

131

Page 133: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TABLE 25

ESTIMATED PRODUCTION COSTS

Component Estimated Cost, in Dollars, for1,000th 5,000th 10,000th

unit unit unitSpring Assemblies:

Front 310 285 275Rear 890 715 685

Propeller Shafts:P/N 11669147 845 570 535P/N 8332248 745 470 435

132

Page 134: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

7CONCLUSIONS AND RECOMMENDATIONS

The test results given in Section 5 indicate that the composite materialcomponents designed and fabricated as part of the program will meet the liferequirements for these parts.

The cost data presented in Section 6 also indicate the economic benefitspossible for these lightweight components. The next step in pursuing theseconclusions are:

-field testing of the prototype components-development of production processes for the components

133

Page 135: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

APPENDIX A

FABRICATION PROCESS SHEETS

FOR LEAF SPRING

A-I

Page 136: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

1... rz.1.4 14 24

04

44 14-

020

0 4J

0 a

LIJ

0-

-43

LUU

T 0

to 0'

0 '44

pa W

0 40 >

a)4 V 04 0o n to .4 i

P4 0 48x

Is 00 ' 0 toC) ' 0 A2t 1 rC r

H 4.1 (a 0 m 41 g0H4 A 4.1 cc 4E-4 0 0 H3 04 04

0 1 i 0 0g .0 4 C Ho 04 Hý La

0 0 >11

04 004z4 0 .&. 4.1 tn CC CnL n

E4) V~ 0 ) '

0 V4I

Page 137: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

.4.)

Ol H

--4

w2 41 4.) C> -4 54 (d04 C 04 0

U) HO 0 4

44 5.4 ' 4J CO

0~ 4) C wr

0 (nU24

0J ( 04.4) 01 04 4. 44

4' Cm a4 0 '000 N4 ' 0. C4) 0

a'o V r. W'-

4.4 0H (a 0 *1 '04 1

.a4 . 0 to4 0 ..

11-4 C 0 PA~4 4Jo0 ~ '. 41-. 4.m r-44

LiU 0 to0 4 (Dj .4 C 0444 '0c. '40 V40 to00 0 41 H )f 0 00

0j 4.W Eir- 0 0 0 0o 0 0)'0I L4 ~ ýH 0.. 44 4 4 - "O

0 4Jin00 0 $4 4J .0-

0n 41 to 00 41' 044 C : 4) 0. 4J 0 ý4-ý4 Cr .40 0 V

4 1 Q1 0n 9r04 4 to 04(a1 toP i C4.4- m

0L 00 0 0464 .2 0 N('D'-41.to to30-4 (D+ p. 4-1 ON40 4 1 -Cid4 w N0w.0

4) 03 to 00 0~0 CA 03 to 44 0

wa >14 w 1 41 .0 0w 0 al)' 0o a)~0~ $ Cr. $ 0 HOr 04 C H -C r. 00WU) g

CL .0 041 in 41 0 ~ 41- .0 -0 .4 0

* 04 w -.4 (L) Z W *COC 41 cc0.00 MO0

to 0: 00 H ow o' .0 *.04 H01-0 C s024 0 .O r HO 41114Cw ~ O01 0~40 0 ->1.0> to. 0 0 O0

*~~~~ 0' 01 C. O 0-HIl 1O .04w 1 4* w-0~~~ ~ 0H 0 0 0 4.* w HHO 0

0 0.0 0 t0410 CU 0'-4 a 0 00 0 w0 > id 00 4 M 04 C 41 to 4J0 w4 0 c -4 E>1 0 -4 0 tit

C-)0 Co -0 .00 -A C ~ -4 (n >' 4>4 1 A444mdcc *.41 0 4iO 4

4 1 C) 0.0 41 In r- 4OO Id 00L H 3: to4 to) 01 w4 V. 40.)0 1M

Li 0 Li 41 4041 4J cc0 F40 0-1 1 0 0000C 0, *40w 0 WCO -I .. 6ý0C0 H-

O 4 WE 0D m1 - 4) o 0) 41 fC 1 0 4 *-0i0W4 0 0

rz i 41~ 0) W0CwI I0 +jw0 000 -441u 0.r- -' 0.00004s-41 4* 4 0 V ta Hn >0

H4 4 E 0 O) '0 0J Z 4.4 4.44 A c 004 .- 0000' 0'I -. 0. C 4 0 W O .. 0w 000 00 40 000 Ho4_,(D 0 004 -0. IV .41C u r-4 C) 4J 1-M CW 0 0 41 w4

4) L .0 >1 w -0 :0w410 '0 . 044 04X 41 .0 10 4) 4) 4)H J3 (a -I0 r-4'0 0 n 410 >41 0 W1 JW4 J W40 f -

to 0) 0, $41 004 401 . 4 -1 (a0 go' C 4.1)l0 4[ w $40O &A 4104 0rC-4 a] W.CO 0 O E.L410 U40-

04t 0 (1)(L e4 10 .0 w 0Ctw-4 0404. 0 01 O J 44O. 4 041-4 41)C0) 'i0 -4 41 . H) I: w 4141Occ 0>m0' 041.'H0 004141 00 0 04 w t 00 d 04' .14 (U 10 H"1 0

E- (D c41 0 a U W.0 0 04 1'4 -I $ 41~.- 0 M C)ro >4j - W 440a - 4 0 4 4 0 o.0 Cz)0U1 10 tI o -04 w00

4) r- 0C4 -4 U) 'E-0 > 041 w to t o>1 0E. A >$4 0 Hw'In 001 C-4O0 0.U-M (D4(U41V0- -. -(a

4. 40 C wt 0 u0 0 kv a- N - ::Wý )C 0

0- 0P$f 3 0 M 4$ X 0 0 0 ) r 4, )

044 C0t a4 L nMr40t

Page 138: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

'-4

4104 r

00

414

CA Oa 1-4 41 r.U) 04.. .

0Li0 0L"

464 4J1,az i

>1 044;1 044 0Lio

41to4c

L*4 0 0 (

-4C -e 4)1-

06 4J 41 Aug

0b 0 > a 04 atS

4 1Eu 0U >14)4 4 V

0j4 - 0 3: 0 Eu0 in 0 001 rq. -q'0

U- 4.4 w4 Li ) en0

.4 0

"0 '4C r. N 'o Eu

so0 CM -H $4 V%5. 0r t j A 4 Ci41 ri. Eu 04 ".4C m : )w go 0

w J a r- 0M 41 V~'~ 0 0444- 441 to to W4 r 3 xý 4 ! 0 o a

c~ '0 Eu V NE 4 1 E V4000 40 t

to~a wi 0)r.oC0 4 a r

r- C)i'J 0 4) V -0r A 0 :C oMtr- 0 Eu 1.4 >4 0 A coCO Eu0 ) 1C--414 :0 Eu 4 ) V 0C4A q ) c 0 0 "4 -0 r

0Eu 40 0 0,.g, *d -A M 4 0 LaI Eu-.0 - $4 0j 41 raQ4 *-4 0-j u ý 4 E

41G1...4 01wLa 0. 1j~ go' 441 0= 0.4 c Eu Eu .m c1

4 1 4 u to41atu 4) 54 14) ul0 Eu 0r-4 u 01> c 0 JC) 0 w j(d41 41 -Z 4X X "4 d 4.4 C - 4 40 d9

z doL ac 4C> " 0,4 0~ 4 0 P41 41 Li Cnx -E4 to Eu) a L i 0 4) O M ~ Li4 0 v a t

.. (oIC C)l 0) '0 rn0 000 .0 fa 0 a c t 4tE-0 44 4 > a .4 W. 4 )1 Eu O r-l Eu 0i0 4) o 0 0.3L4) o

0 C 0 co 0 0 0 V-04E0 'J 0w0 4I c0 0beu

4J .C i0 r-I V M 414 4 4C 4) i104.. 0'.4 VO M0 o-- 00 4) AZ. -4 .)M,). ) r 0 4 0C LCE u0 C

-' "-4C Eu '0 m4 ar4 aA >uC- V Li 4 0E 41 tn rr- o w : c A. 01 1.0441 C4 C 4J 0 a0 *5-4- c~

In 0 4H: 0 0D 0 i to 0.H VI - 0 $4 '.0..-0 41 0S0 1i 0 4 m 1 0 w 00 a 0C).4J O : a oI 000 V4) 4C 0 Eu

0 4 04 --4Eu S y .4) ~0 0. 0 0 w go . 4 0 -. 4 V 041 M

tv9- 0 0' m ~ LitAOC 401 Cu 0 14 4J4J 4 s-4Eu0 ' 040 L H 41 0 0 .X4) :4 ) V40

o4 -A .0Eu '.4 004 0 0. 0. = 1.0u 4a4. Id 3tLi O 40000 .0 0 N N

0 04 .0 .. 04 o O C4 0a 0 C u.Oe CC.) C 1- . 0 Li-01V.0 C~40C0i

Page 139: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

4.)C.)

04I-

$4 -4 W.w 4. 4.1

02 HO 04

t". $4 ' 4J W

41 00 .0 : 040$4

.CUO IN

(D 9 0ul 04

+1

-.jLU-o

U~U

ra-

0 04.

uU 0"-4 w4

0 0 to 04-A

0. .0 41 41

V- 0 - 0 092

w -Wm>Z cr 4 0 0

>- cc0 o 0 ta U,

0 U- wU as 04IL4 04 C) 0 C 4 w

r24 rz 2: 0 0 n00 10 0 r J .C 2

., * CD CD :3--4 04 CDmL 0 0 dr 1 1

a4 0 0. 0l C4 0 - CiW-1 L) w "to - t .0 0 0

0 JC 0 w- 0 44 n r: 0 c cr -. 4 &U %W 4C) 0t

CA 0 C r- 4lUJ VO 0J *.- i w0 - 0 04 0ý 0 0 V 0 06 w) P

00 0 0- W 4J 41 .0'U 4 4 ' 4- L4 a 0 $49 10 . 0 Cl 0 .41 *- (a

w 0 '.4)4 0C0 4C 0 C& 0 = >~O u0 42 - $

$4 0Do H I 040.

0 H0~C 0 0 . ) U .4. C) z LnCI 0 CU-1

w 4J O*-' 1- 4)0 00 C N .i-) *d A 4)W O4O H.I0

04C 4 r1 10 )lC 04 * ..00 1: ' 0 O '4 0 ) ~

Page 140: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

H

20

H

U1

Page 141: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

C143

rZ2

ZIP.

Page 142: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM REAR LEAF SPRING / 386 / JUNE 9, 1980

---------------- INDIVIDUAL PLY LENGTHS.--------------PAGE 1

PLY THICKNESS IS 0.0166 INCHES

PLY NUMBER FRONT LENGTH REAR LENGTH TOTAL LENGTH

1 24.00 24.00 54.00

2 24.00 24.00 54.00

3 24.00 24.00 54.00

4 24.00 24.00 54.00

5 24.00 24.00 54.00

6 24.00 24.00 54.00

7 24.00 24.00 54.00

8 24.00 24.00 54.00

9 24.00 24.00 54.00

10 24.00 24.00 54.00

11 24.00 24.00 54.00

12 24.00 24.00 54.00

13 24.00 24.00 54.00

14 24.00 24.00 54.00

15 24.00 24.00 54.00

16 24.00 24.00 54.00

17 24.00 24.00 54.00

18 24.00 24.00 54.00

19 24.00 24.00 54.00

20 24.00 24.00 54.00

21 24.00 24.00 54.00

22 24.00 24.00 54.00

23 17.20 17.20 34.40

24 16.40 16.40 32.80

25 15.80 15.80 31.60

A-8

Page 143: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM REAR LEAF SPRING / 386 / JUNE 9, 1980

-------------------- INDIVIDUAL PLY LENGTHS ----------------- PAGE 2

PLY THICKNESS IS 0.0166 INCHES

PLY NUMBER FRONT LENGTH REAR LENGTH TOTAL LENGTH

26 15.20 15.20 30.40

27 14.70 14.70 29.40

28 14.20 14.20 28.40

29 13.80 13.80 27.60

30 13.40 13.40 26.80

31 13.00 13.00 26.00

32 12.60 12.60 25.20

33 12.20 12.20 24.40

34 U1.90 11.90 23.80

35 11.60 11.60 23.20

36 11.20 11.20 22.40

37 10.90 10.90 21.80

38 10.60 10.60 21.20

39 10.30 10.30 20.60

40 10.00 10.00 20.00

41 9.70 9.70 19.40

42 9.50 9.50 19.00

43 9.20 9.20 18.40

44 8.90 8.90 17.80

45 8.70 8.70 17.40

46 8.40 8.40 16.80

47 8.20 8.20 16.40

48 7.70 7.70 15.40

49 7.40 7.40 14.80

A-9

Page 144: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM REAR LEAF SPRING / 386 / JUNE 9, 1980

---------------- INDIVIDUAL PLY LENGTHS ---------------- PAGE 3

PLY THICKNESS IS 0.0166 INCHES

PLY NUMBER FRONT LENGTH REAR LENGTH TOTAL LENGTH

50 7.20 7.20 14.40

51 7.00 7.00 14.00

52 6.70 6.70 13.40

53 6.50 6.50 13.00

54 6.10 6.10 12.20

55 24.00 24.00 54.00

56 24.00 24.00 54.00

57 24.00 24.00 54.00

58 24.00 24.00 54.00

59 24.00 24.00 54.00

60 24.00 24.00 54.00

61 24.00 24.00 54.00

62 24.00 24.00 54.00

63 24.00 24.00 54.00

64 24.00 24.00 54.00

65 24.00 24.00 54.00

66 24.00 24.00 54.00

67 24.00 24.00 54.00

68 24.00 24.00 54.00

69 24.00 24.00 54.00

70 24.00 24.00 54.00

71 24.00 24.00 54.00

72 24.00 24.00 54.00

73 24.00 24.00 54.00

74 24.00 24.00 54.00

75 24.00 24.00 54.00

76 24.00 24.00 54.00

77 24.00 24.00 54.00

78 24.00 24.00 54.00

8 24.__2_054A-10

Page 145: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

FABRICATION PROCESS SHEETS

FOR LEAF SPRING ASSEMBLY

A-I1

Page 146: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

'-.

4j)

00rZ4)

4) 0

H- 04)4 9

En.00.0 r

01 01 1 c4 U)4) 0 4) :3

E4

CD 41C-) N' a 4

$$4CD . 0 0

4J

oA 4)) t

aJ

$440 1dm

C.-) .040.-~A 4))~ ) 0

0 0 ON go $4

E- 4

HH

Q-44 4

4ju-

-) >1" .4 0 0.

40 0l w

0 '4. .0)040

01 -'1 >04m

0~~~ 0 0 04 Vnw0t. .41 4) -

4) ON4 0.) m n M4

Q4 CD) 0

Page 147: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

0

CD I I .

0 I01 4 en to

0 C N W I

-4 0II

0d . I

oo i *

e,.J inII I)

0 00 I4 ca0 I 0

U) 04 z

4) W

0n H00WW.

2 0 222 I .41

0 i n

oo Z- (D 4) ) A00 0n () I 4>ý t w I

OIU N IV 10 r 4WII0 1 1

=0 CC 14 0n Na V 0 :C/) 0 0 fc r.) L

0 0 4J 0- 41 g243 (( M )( 4 - I '4

41 00 4)j 1> t or 0 ICc nt.4 .cI 0 I 4

L~0 M. 0U43r4 -0 0 04 I- 'o14 0) 4)4)% 0 - 04

V 41 0 in', WIn w to 8z uIH-r V VA

ra V0~

14I 00 0

L.0 qj u 40 I0"= L4 M WI I w

00 4J 0n en mI "

1:Z ~ U $44 D )( 0 C1 C CrzaL z. 000 04 CD CD l

~~000 ~ c I LIi.413 x u: 0 4

0tota WV ~ U 'l U I-4 0000I04I~ I ca

Page 148: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

r-441

-4

414-4 W

> -1$4 CO

'44 .4 ' 41 U)

10 a) w 1.-

41 -H

04) 4 04 0 $4 0

4)1W Q) 0

4 00) 4))V

V 4-4 COl $ 0

'.44 , 442ý 0 4401 4 i

g) 0 L ) )0 0o 8. 41 45 45'0

-.4)4 E ~ Q45 to 045

(1 I45 . 0 t- 1

to4)4a5- "44 CD4 640I-.4.) U) 4.) to401 ~

LaJ to 04 M-.4 4504 I04 Z .0 r. -4 to4r.

= '14 > 450W.

'0~~ 0-- JJ0 41 i)~ 0O00 4514 0 Q5

00 ~ 4) $4 cz A A4.

0 4- 4 Jr- v4 V1)-1 0 m4

Lii V1 9''444 41 $A to5~ 4540 ( a ~ -

olf 4J W' 0 0 )0 C u''

Q l0 41) 0. .C

C 4- 04 004U 0 0 0 t0 40 A Q) 1)-- 10 0C4C .

44 04 0 L .- tw 4) 0 45 -41 0IV4 9

0- . 4) 14.1 M'W.4 0 .

U5 4.) 410 Z R 451 Q44 U, 0 4,I

-.4 U0) V5-4 Ix4 = 45F t,0 t0)1. 404 M 0 >55 w5 > 45

0a 8- a)0 5-k

L L . 04 41 .4 11)414to4J4- r . 4 rd. 4V00 '--I' 45

454 rz o m to(D0 41 - Q41 q5.0 v 310.0= c 41 .04 0 41 4O *- to

4545 r In 4.) t -) . 44 .014 x .u 04

41 $6 ) '0 4 t 0 0 4 n mN 041~ ~)4. *o 004 rq IV e 1N t O g

W < -- w 45 5w oa a 0 45

"4 0~' 0O 4)4 000 V0 L N to 4) 4)tP 1 -4 0 '410 45 0 .

S 0 z 0 '44 4'-44 1

14 14 0 to 0 -41) 06S41- -1-Z 0 ~ -4.~ 4 0.0 $4 Ll $4 -4 4 4 ) r-4 .0

go d y -.4 c0 ý4 1 .- 4 41o : 0 r5.C

.cc C4) -I -44 d) - C~. 450 to 451)r Lgo- c5 C-f 4J1d4W x4)' 0o go. I 1 01 0 r. r

45 go4 14-.-44 ig 4514 014w4M45 61 4 0 45 0.-110) t

C 4 r= 0-4 4)4. '0 4 41 .0404 go4 toV. -4rd -W to. u-I .. 4 Ir- V4 '41 a) -. 4 to 4 Ad

0 xi 00 4J 541 )t0 0 .0- -640 $ -4 V 45 M wH -H '04 to ZC -V3 04 0) X 4 E4 W ~ 0 04) 00

E- 0~ 1 w 0 .0 C - - - 0 )04".5~4'4-4 ca45 ( C. E-4 -i-4 W0 w0 .0 4

4-4~ ~~~ ~~ 0 W~ 45 E 441142 4C 45 44' 0 - 4 41 4.4

C4 41 0.0 Q 1 c 0 0) 0)0 V41do) 0 41u ~ i~l 4) 41 ov .4 0) r-I '014 f.-4 00 0 0 C4 V

M q WC 4) A g 04 C54 20 451.r0--4 go. V 0 -4 - o$

0 5. w- 4.4 w5 45 F4 91 go 1 4004w450 w54 05

E-44 1 0 4 5 E ) >0 C =4V5 0 1 4 o

o4 to cc4 to ~41 14514w 41 r-4d a) 0) w4~ I CH. 04 to~ 64 450 dU C 11) -1~4 4~ 4

E- 4 go0 1) r45C 0 4 )41 45 4) 401.0 04 r404)

CO 4) -4 c 45 (a .. 44 0.0 m 0 ' 14 -4 4Jv1 W451) m .0-4 4)144459 '4-4.C0=04 C C C 040 P40 Cz04) 01)C

ad -04 4111 . 140 4541 44 t z 0 -.4 4 wc 0 -5450)LO-w4o 2c. 0 M to40 45150 0o4X r-4. 4 4 04CH

0 0 Nl N C14 N C4 C4 C4

z0 0 z C 0 0 0 0 0 0

0R o A 01, nl,) 'n I ,

04 4 ) 0 %D 0%.0 0%0 C~D %0 0%0 0 tD

Page 149: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

-4

U4.)

> -4 4

> -4 C: 04 0

0N.

41 0041 : 04r)$'4 040.w u 4=4

Ci~H 41C ý4.

4J~ 0 (

M. 4.) -yl 0 04 0 -(D o- 0 q

4) 0O C 00 0 i 4 0 41 cO

.UC to Cj 4. j~' .8 fEU~U V00 0to C 0

04 $4 00l 0. C) 0V(

CO 4 -10 w0 c 04.41 ) 4 0 0 0) 41 4 0.40 . wg. .- OC V0 1.C 0 WOUp

owO4j- C : 01 C0) 41 4J w .r0041 C)4 14 0 0) 4.) to* rT4 4H) .

>o4 04.J 0 3 4. z1. 0J 4)a UCmU 0 m .r. u0, r.0 4) t (

0 ~1 00> H0 WW 0 U - 0 pOm 0.C , - 4 EU.C 04.4 >

0UOH ) .M. 4U V O 8U Od -4er-oC)-. 0 WU. 41 a a L 4

UCOC 04 r4 0 Lo 4.10Wz00. 4 0 H 0 0 C4 d

04.E 04J.'.

HE .4J 04 .0 40 t), o 41 H- 0, 0 E CC) W 0 -4 r= QV g 0- :... M,

(D to00 ) 0: 4 0 0 0 C) $4 1~0 a 4J4

to4 %U 0 144 RC C.4 J C :4C)0C > CU $4 412C 0 r- 0- 0r4. .4

go4E 0C 04 4) 4) H4 54$4.i .Q 0 -4

co V0 t 41 0 ) ~ .0 mC 0c %D 4 (CC C4-4 44 m to 0 r. to 0:41 EU 4I4S

0o C:1 w EU W 4J -r V 4 4 0 C-A4E M 0 P-4OO...4EU l to U1 0U : *4 .0 0 ~ C 4J 4 r-4 4

ud~ C to 01 .4 n0 c-q>iU W ~ r-4E 40C 00,( a

04) ~ C) AU tplu 0 L 0" H D.0 w 41U0 H 14100 ) 041. - (a X ri r- 0 'a 0, C V 4j 0% ) 0)44 $4 fL

to T-1 :3.0Q .00 A ~ E OR I 0 i 41 0 00 H-

9 04 4J)) E 414W 0 M 0EU 0CCO 'n 4 9W C 4 4U EU'UOCFAO C) mOt EU 0 C ~00 to-4C 0 4 LUWt

U .0 0 - to0) w -40, M (D a 0 4)O OUEU WFA w "EO4

* 0 UG r4 r4 .r- 0 ) 0) to 4)HV a4 to0 0,-C V41 0 0 ) 00 0J (L) U 0

0 ) - 90 0 0 W )t S4)wa o4)ý 0~~r O C) 0 -HEU '4.43a4104 :-4 0C) -,4.0 ( , ,IC > go W 0 to 0 C. 0, 41.-

EU r- H 00. w U4) g : ý:0 9- Hl .4 0w E-A 04 0 )0(Y I tr p C) ri *0 "4 04 3r l-A t CC) PW 0 0)4J

0p w M-4 EU : w E0C W )E 0 O W0W 4 r 10to0) 41 0

ld 0 UW 0X'I-4) 40 Z . , 0 (aw0 ".4 r-4H> 0 OHI0)$ )-.ap 0 ~ 0 C: ,~4~ 4 0 4) UHC EUqr.0 t tl4 41 *UC)

CCEU.% r--M ).Ma 0 r-4X4 to " 0,00w r 04 C

V 0) 044)C (a4 ~ 1 V -A w al 0.0 C9.0 00iw w w OaC4 0 r- 0H1OI 000) r r:: ~0)- x 41- Q.. to04 ago 0 -usC 00 4) ylH- 'm 0EUU 0 ww t 410-. -4 14.4 CO u c

$4 0. U O H w440w ý4 w0 c m oto2 c0~ .H -.4C03 .E-40ma 0CC 0 1 1 104o0 r. -W 0C. Q41 0)-4 0 0a .00r 00 w to EU0C

0o . 21 *~N N 0Vr -,4 -. 4EUw 0 w 0 k to 14.4 to 0 >0 V.0Jc0 41H -4 O 4 H4c 4.4 W 04 1 0 4)4)- 4 ) UI 4 4M 2: 04) i> CE-4 C)~ 4 $ w>1 t ) 0 )C)C)> H (D a0 C "4 ) V 40 4J

44 0) ~>o a0,04J C 4 03 -4 *4--4 4J 4) 4 C 41 04 - 0 H-I : t0, OUH' -41 =00 : m 04 04 C 00 toO. r.304 w c Q .00 Im

Ui C 3 .0 U 0U144 E4H 0- 41 41E 0 c r VV" MV(D

0 ) w(0 43 E CCQ 1.. 4z A4W Dmrp4 40 041 to' to '. 0,Cw-4)

E4 EUC it WOOC)r - ý 30 F-ar -I 00 ~ C 0 , ' CO 0 ) 4 .0 0 ro4 10$ V 04 r ( 41 00g t IV 4'-42 rzi 1>i-A41 b40 to00

H) 0 ~ a) o ( 4 4 0-.4 c 41 C 41 41H VU0t & t 4 3 1 H4

E-1 .0 V ) OC V0 00 14 Hdw 4)4 1t 4 W . w o 04 w ~ 4)C)OU)0 10 E)0 C r01 3 00 41V COO 41jU 4) 0 0. W

W C00 0 1 00 OC 000 CO 00R00r 4 A g 0,HO HH )t rfr4zO0W

0 0 (4'M N' '4 ('4

I IIw. 4J1 m nlnf enC~ a1 0I('(3),y 14- N 0C4% C 0 4%

Page 150: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

OfH

>-4 $

" c04 '-

0 ~ 4. 4) w 0

(D ~ ~ ~ V 'a4

U200

44 2.4 '04 01

0~~4c 024r

>' 0t

.0"I0Da04.0o 4

U4 w 4r. >4. ) 004

al 0 A ( .4p

'aJ 'a m0 4) 0aV Ma A"C - 0 44 0 0 V0) -4 OH 'a1. ~

0 4 "4 1 Vr4g $4' . W >

44 44. .0 VIO V ' +i40 0. a)5.' 01 w )0"4"4 $a a4 4Ht

to >1W 'a = 4 '-4 *0 .0 o -. W "4 V

LU 4' .0V-4 MC 41 4 ) - O F4 a )C 4=L 0 0 en01o- M4 oC 0 V 00 CV) 'CH "4 v)' 5. = to "4 C) 0 4> )

=4'. M 04 .C MO H4) "4 0 r. 4 i3Z01) 41' g0CL a0' "u 0o $ 1 1V0 -1 X arflO)AOO

Oww 0 r00 >. 'C4C) m o cn. 0 m C 0en' ~'. 0 "4. M ( V C ' > 4 "4> A;) HZi

cc a) a 4'1. la 6 a) 0 "4 8 " 0 .ae4H C

"c 4)"40 0. W 4 W -9X0e>1z Eac fn4 ~ gooV 0% 4 en 0 a~ A

00A. C 01 4' C)OElP4 cn 0" 0 0- - 0 w r-40 to

U- HW -- MzU - . ow w 04 ,g~0 Wvr40 '0 t .4 0 HO ,444 0-' 0

LI0 I~41 IF,0 0 to0to41 w O~ VC) H "4 00.' Hc .E -"4 ).0 0 4m d 0 4 0- 0 4

)0i') 1400 0-0to E-I W I"w H 0 Vi 4 4) 54)

.0 m CD .0 tor-4 04 'H64 0> 01 .0 0 > 43 4 Vq 'aC) 0 0-4 00 ' H4 0 V). 4 0 W0

14 0 M ON 3t to S44D 4W 444) 4 4 ok e V3 0 00 4J IW M C la "4 0 2' 0~ 0j go 4')5.~ 00 n o

M' .5 "4 VO5.i 0 A r-4 go 04I 4a r 0 -0~ >O do~'~ do 4 "4 0 .0- m 0 0.0 4J 0)~C0 W

04' 0 Q-I ,00" tr 0 4'4 00 0M) 00 00 " .4 atU 4 V 0 04 0. 44 'aJ O4 i vE0-a. - C)H

O 04 wMw r44 to 444'V> 0 M t 0E- .D' 001 44 1 012, O OO0 4 1.0 0) C 54 "4 (.a ..6 a tow4 W0" ~ 0 -4) 0~..4 0 '00 04 b0 ..Ii

tv to -4 04 04 4 V4 M ~~ V 0Q4 Ci * 00 0 10 A$4 c 4 -IW 3: 4'0) pq w$01 ) do 00 0 I. a)a'4'4

.3 0 -i 0 ar Oi N )HO " 01 "4 8 003 04 ~04 W-1V0~4 M"z . IV 44H 0 .H ca 00 X) 00000440 V i gox M r0H00 -4 to '0 Li" 0 0 4) *. I' Qw C14 " 0n U 00

-A 4' 0 4 (.0 1" -40 Z0 M r4' 0- ) 4 0) V4404'C."00 > W H 4 4)00 " 0 0 H 4 1 V ) J 0(4 ' w - 4

0H4ý 0r O O i " 4) -4 C >0 g W,4H 44 0V 0 - 1 C"

'a 04" 0 0 40 10 440 E 0 4')04 )w4 0 0' a

0) C) 43 44 :t 44- 0) > gU m X.0-4CO "4 HO M 0 44 >o ."4) " 04 44 :3

r4 Ho (U 0 Va -4 00 V c' 4'"4) 0 H 410 0 'at0" 000 V 10H. M 0 0 d Li 4 HOH 1HW. H J

z E-4 v C"0 0 IV w0 Z L4j 04 44 -4 0 mCIA0 0 044 0wo r-40101 % O C 00 >U) -4 0 W3 go M*2 0 0).H -. 40. C I 0'0o"- o4 -4 3: aLi * 4.)00V to

co i~ 1 0) IV "1 0 S- W4 0 04 0 . 0 a 00 0 0i.(D x0 4) w)00 .0 OWEs 0 04 0 Xe m .aw w 0

=z0U) 0 V40 Q,., ,4 0 V 4.; 0 H "4 U) to0, " H4-I

o r-I .0 0

0 4 14 N C4. C4 4

0 0 ýC 0 CD Q

0) Iy IN %V IN 4% % 0N %

0JW OW 0%00%0 Q %D 0%0

Page 151: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

4.1"-4

C) cn.4H 0 4

0144 ) 4j 4H

U 4J -I

41 a)QJ4J 04 014

cflaO H 4J C

w~C)

00 41 04 -W,~4)~~ 0 o)Cc

F-14 0 1 )(41 1 ý0

4. E)~ -04 w mr: 0 0* 14 0 o Rr

to 0) r4 0) 041 00-01 A) to EIJ)0) .0Ja U

010 tp 4) ) 0 4JA 04 V l X41 cc I* 4J. 0 .0

0 41 -~ co 41 gorwa) a) a4 1 )

' n 4i 1 1.4 0 41 -4C -04 0 404 0 0~ -H ).Qo 0o tyl ý4 w. 0W.C r- W: a4 r. R u- 1 r-4 u. Jig 00 4o

0 tT~ 0gw . >. 14.- F..- V 4 0

3: 0 2) toV to a) ww rd4.4 41~. (a.M d4 "4 V. 4-4 C, a0 a)

04 > -4 (n 0 to rw I >a) ) : C: ).I CA4 $4 a) 4) go04 (a

c 8 .0 41 .2~ 0 cc 41a E) (a 0)10:5(s0 081 0 0o CD00Ai 00 mV wO 0~ $4 ~ C

0441 41 >0a (a0

w 41 .-4 qw w 41.C A. 'Vr 1 0 0 29 M4 tlU -4$41 4J H0. 0 -4) (13l4 :m VU 0 3: 0 cr) o V

toa LnrI m 0 m0 H- a)40) w HO *.4a) 0 Mc~ -i-4a .0Q .04 41J

01 ) ~ I) 0 44IO Va 4.1W O4 0 C) 4

01W 44 a) 04 %0.C tU 0 z) .41 C-u ) t o 41 2)4 C a ) 0 I -) t oa> 4

to% -4 a) 4 1 J0 .J I 'a-0 M 41 44 0W0to1t04 0) Q1 -W 0 ?A a) Cm) Hc 0 0.4 JJ 1a4 0 ~ 41 Haj m 4) C 41) H

(D CA0 4E)0 -. 40 0 (A0 - 4 Vu- V > gV m4 0 o4 1 0 W 0V ) 01 4JdJ to0 Hto 4

- -4Ia a) 0J .0 $4 WOD 4J Id -4 Ha) 0 H. d -0-) go H0 a)4C E-4 90 ta) * to 0 > -A

a) W > f $ r 0 Wt a) to~> (c.a) a)x 1(C 06m H) a ) R VW.aC . 04) a) .H4- a1 V

14 = (L. 0) H (U aV4--0U 41 V 40 -41 ~ a

rx Z1 01 VU 0 -i4f04 C j4 0% to

01 a)I' 41%D a 01 C:4. -4m ( a14 010 a m V a)-'0 W 0C w) 041 a)-1 0) 41(a ra)4 IV 0) a Cm4 "a4a0)o0g a) = a ~ 01 0 )> g

.0 41 w~ to $04 W4W)H ON4 0) Wa)-4 0 10o Ca).J 10 1~)4 010 S ~ ) a

4) a)H4., 0 J ta o 4J 0 ca 0 "H a)H' 0r-4 sta %0 a)w a)* ) 0 J.. 041-4 0

w cU'. V0 a)0 0441 VMCU -4 a) 4)1 Ha) 000a H 4 W ~4a) go~ 41

zf -45 0)>0 t wpa~ 410 IWOHU H4.0 >) H to -4 tH m E) cc .041 0 00W (00 4-a)ji V 2(0$ 0

ad 0 (C * 04 0)' 4120.1 c C) 0C >0 4~) 410 10 f 0 24 a) cc 3: 41- V a) 00A4--A t4oc"& t W4 1

9 04 HPU4 0 04.4 >m O 4 .- VHIU=VZ09o CO MOW4

1.rI r V ý 4 0W W 0) 4J 10 m2 Ol41.>1aHn4 oQ V'0 H 0~ 41.C' -6C to r4 I'0) c H( 0 j1

Wa 0- > - 1a 1 a ) .0 4I14 as. C) > c~ a)(DWm00c r 4 0 fa 14 toUC4 c1 a)0 0 U 41 41

0a4)--0 4 0) I V~ C ) H 4 -40 44 .0140V0 E-4 4 tOVC 40 0 C )ý4M 0 V4g a,..

*0 s C H 1 44 .Jw >$ 0ý 0 41)

0- 4 o( 0 't' m. to1 r4 ('1 to r( (D4)04- 0 0) 0) "q 04 0 C c0)

4) go 04 P04 x~I oI n oI jc Vl' V of1W4 $ 4)

z04-a z a 4 01 'O% 0~ 01% 0~ 0I' Qi

Page 152: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

04-4

CX

$4

14 1

04 14 V 4 "4

Izo 04)*

04)4J0 0 w1

CJ) 04 H 4J 9 m

W to4 $4 w . 4.

4M)t an 54 V 4) 0404mu w 44 C1 to V 44 to 0, E

Min 01.04c Ad to 4 0 go41 44 r.A 0 tUcq u 011 4 " o u O 0 d 41

it' W -4) % 4 to 4) 44VH R 0 0 0 4)- 0 0n

Q4J 44m .4.V *q 0 4 H= t 0'4J 00 9 C4 ON 04s44 0

QL 04 o 0 -V m~4)w04 4 ( - 4) 0f V 44 r-4 En U

0-014 0 00 m400 En 044 W enI 0 4r o .C'- 4) 0 0 H4 m1 0 0 -4) CD W V

0 > 044 0 to4A4 0 aO A0 14-d 0 itU g 0 V- V * CD4 V 0

S(d) ELI0 06 01 00 o pLi ."0r 0046 44 0 444 4)

CD $4 04 a 0 C 0 0 c 0 40go 1.4 2 41 0 4

w0 H) 404 H 2- Cm 0. 0- H )0i".4z 04 r. 14 C .4) W,> 04

-4 0 0 0 014) C to 0L C00 04) -WZ V4 W.C 00 to 0 0. C41 4. V4

$. 4 0)4 0 1. V Q04) w u

0) 0) 0 IV w $4L)C J 0 0OM V la Ct W4 A40 V VV go 4 o 4 41c004 -~4) m En 02 01 0 0 -1 4 .40) Z0J ý

4)en 0 V 4En"- 41 cc C4) V1 44 V-W1-4) c 0 0 x 04 54 to 0 x r.doW 00-4 01 1 0 2) 44 0 E4 0-4 4 0Md

1.42 8 "4to4)0 "C 0 En 0 4 W 4)0C41 4H0 04 ()to : 4) w 0 -04H 0

015 VOV -4 "-1) 0) V44 WOO-!4)0 04 VI X* 0 0a 0 0 i0

0: CH4 -4 H4 if? to~u w 4 oV 4).- 00*4 20 Vo go 4. 4) c 0w-I0 Cm- 0g~ C 4) 440 w 0 01C"4c 0 t w) 40c0 j 1.0t a40 go V4 00 a). to0 0 to -4.

20 OH0C r4 WE1 - n 1.40 W0 -H010 4 0 4 .0 4) go go04 ) -0 14 04. 004

00 0 t I 4 OM in IN 0d WV 0 4C 04w 0 14 "4 w 0.4 H )4 0 04) Q)4 go4' go4 v

1420 4 04 -- 0-4) 0 to0 . 04 H2E0 04) '0 .V * 04C S al En 0A 004 04.0 SC41 R04 04) Hjr 0 Vn04C 00 W. C4 04) H1 C 0-Io 4) 4) 0 020 - C 0- RV 4) j 0 0 0 -0 44 C-E- HD O4) 0 r4 0 MH 0 ~ Cftn4 CH-14 a 4 -.40 0.4w- 0a gno 00.C 4) 00 >14 4) 0 044 M 0014=)4 0

04 4)V0 o g C 1 0I ".42 V4) to 0to4w t 0. C- 00 1450- x CO-I) 02 WV 00 En go M0 En .E0-s OSWV 00 o

H -r.Q l41 r r-4 1.4 v I r- 0 0. 0 4 1)- -. 4 -n -1

H- P4 4 0 1 WV0 0 4)j 00 to w 41 00 0 W~u 0 44J.0tH 1g 0n =WC 1C IS H 0 Ai "4 W 0 U 14 00

0 . 0 4) q)E s 0 t-w toH 04) mfa VA U -#I4) 0 a*-4H4) 04)0 .8 14.) >- 4 V4) U 0 w~ V F- >. -4) w W

>- -AO 000 Hw fu .0 DA >~ "0 0 M Hoon - 0"04 4 0 4 4) N 04) w g a'0 o - V~ 0 4)

I-I 46. V * (0) rx0 > fn4 00 -4 V *) w MOC

0 O ) 0004 C01 Cm 0 0 W 4 J O -A 0004) C04a0 w 4 41 U 0H m0 -4 w- W0.) O 05r.

0 t>04 140.4 0 0. VH a) V -4 0 > VHH0. e to U) 4V en 0) 00 1-4 0 to 4 *0 en

o: .w 0oL )w C P44 4 mL )= 4

00)Lnr 0 0 0 Aj r 4 cm ý 0 > 0 034

: : 4rI Po .I 0 CI r4 : )I0 r o rI-to w) 0 04i 0 I~ Oli 0)i to i 0M 0- zý o a g 0Il

0~I4 N NJ ~ NI ~ C4~ NI% NI NI ~ (4 ~ Ni

01 al~ 04 Nr4% C D N %D. 0C4 %P Itq D 0e O %D M o %0I

Page 153: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

-'4

IN

>4 r-4 .40

W) 4J 4 04 _ _ _

411 0

041 00.

5) U)

03 04

11r.C *1 t-441 -,4 ~002 4 -

to0 V r_ 009-40 0o 0 020) ..4l

Va 0) (D VH- 404 0.

02 .-4 4.-4-4 0 '0 41 0 .- 4' o

4) :1 $4 0220 to 4

03 r. '00 0

0to 4) H 4 00 04

0 2 4 - > 41 041.* 0 t2.qsO V 0

0o 4 C r- 4 0 4-4 i-I W4-00 Q41-0H

440 1 40 z '

o 04 004 3 H040 0 41 to 41 41 H-04 4j 4 . 41 -4 -0 4)-.

0) 0 02I W H02 .0 54 CH ?A .0 02.0 VC4

l 41 .0 I 0 0 204-40 U2 (0 40 0 0 402-4.1 H .0 0

03 41 H 02 H ) 0% 143~4 to .0 0002)) -

41 wV w~ C0 04 0' 14

.0 0) C) 04 .V0 0041 V: 0 4~ 0.0 C4 -4 r- 4-)

ra 0 al tyl 0 000 c 044 02 .04 0o-A 0 40r " -4 3 1. 4j 4 0) V

3 .00 r > H0V ~ r to00 ''04U2 . - 0 ri a0 ) 4) riO- ~ -4l~4 04 r 4 01

0o 0 0 l~ ~ E 0 0 4) 0 02 Vw 8l 2 2 .OO 0'* C 0

02 041 0> 14 e4 4 -42 w 0 4) (041 .~ 0i P4. 0. 00 r-4-1 4i'- 4 V >4 -40 04 "4 l4a 0 0 4 I4.0)0 ty .0 Ca~ 0 0 41V44 1 0 00' r. 0 0 0o 040 0. 0 0

4) 0 Z .0H'4 V03 4 02w go 44 04 w1 rz VH44 0 . 414 0

0 0 r. -r-4 z4 go~02 ~ HO 0 E-400 - >- 00 41 002 0 PC1.r4 0 0

041 1.4 0 02 0.0 0j 0 H 02 01 0104) 0 2 . 41 00 04 -4 0' 0

41 > - w C V 1V0--0.,iIi 0 I 04 '00 0o x ý4 0 0 0 I00 V00 H 4 0 .0 0 4114 .-14 w2 020 0. go0 V .4c 02 lCa 0D 41 H4E- a 0 1> 02 1.4 02 4) r4H to -1 04 020 4 O .04

a0d >0 0) to 01 Lo >V .~10 0 41 w 0- 4

H * 00 04 0 C) I WHO 0- E-4 0 0 02d1t OHI 01 IA C) 0 00> to V 10 02 .- 4

r. 0 80 Vo x 04 0 410t . 04 0 -41.1 t0 41U3 -1. cm 0 0o 4) E 0 0 000 to C4 -4 * j H 41. 0

H 1 F *4 0 w2H 4 00 .'4H .0 04( i0 4 )C 0 0Q 0 tin0 'T'~ $4 > 410 L) v .0 41 HO1 .0 .0

0 Cn Z *4 H1 g 0 HO 01 14 0) u0 00z E404 H 0- >1 a >iH4 ".4 cc 4 0 go 0f 4) 0 0o zY tv 0o H- H0-4 134 H-I $4 0) 02 VC V1

H0) H- .0 02 00A

002 Hto 0- 4 4 3 4 0 m2 000 w 4) 40 .0H 41V 41 4101 02 41 2 to 20 41 04.. =2 M ) 00 c 4 l$

0 4-4 0 0410 4404 E-4 0a 0to 0 0 g0

0 00 00 00

cm d Cd N C4' C4 C. C4 N4 C4o0 0 0D 4 D DC 0 0 0

z M aI Im I4 I *I *1 Go

$4 4J(F OIFOI4OIF %D Oj)4~ 0o C4wC4%j-% W0%

04~444).

Page 154: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

4.' 0)

41 3L. tL

M in

0 0)

Ell

'-4

44

Page 155: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

< 0z

~~aa0-

10 .

.rz4

Page 156: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

0-0-o N'a gj

*4.J 4

E)1~ u4

~~ w

Page 157: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

0 zo-0

c~J *0

- 004

z

dr

CD06

0,-

Page 158: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

0-

M 0

In'

FIGURE A7

Front Leaf Spring Assembly

A-24

Page 159: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

APPENDIX B

FABRICATION PROCESS SHEETS

FOR PROPELLER SHAFT COMPOSITE TUBE

B-I

Page 160: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

4.3

01

0

o1 oa

'-4404 0

0 'U

'Il

Iq

= >1Cl)0 1..

LUl k % 0 8 q

I4 N.Im I z z P, 4

44 A, 0 r

CRww

Page 161: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

0(Z.7?CZ&'67R) -7D&YYŽ??Sc 7001

> /SF

00

4J

0 0*

040

2 -P4 5P4OLLJ 0 4~

51 VQ/ 41

_qA- --

0 499

U- __8_

44/

2z0

$41 oYAZ 00y -1PWRN0V AI 3/;g/A/O ZLy7//XU 7&

Page 162: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

'41 -

in in r4A

$4 Mto

4.' 1

01.4W

U)A d -H co

S0'

LAoi 0)

00 ) $4 v44

oc t

+1~ 0 a

UW ) (d (1

=. "4 > 0 .41.4)a

aw (d 4 04.0 o4.) P-4 -W U

.1.) 0.0

- 4)4) 0

,a-4 0)LU Id-44) U

0 C) -H4 4

H U)4 4-)** W 0 4)-w it

E-4 D- 0 4(a 4. ) 0) 4a) U) (1)1.

H) 4)- M 4

0 ; w -mx=

r . 4 ) 4 1 e 0 )

CC)

W. I4)4

Page 163: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Ol H

> 4 4

N r4

0J4J -r

O040

04J(1)0 4J: N040

w m :3 34(d n Nl1%

I4-LiJ

C.', 00( k

o4 w

-' 3-4 E4 0-

4 .)S40

4- 0

544

00

54-4.'

- -4

0 01- -4 0>.O .

E-4 ) 0 4)

I-4 -4 0u' 04) F- 4.)

:3 4 4

w0n

IQ . 4-1

202

0~~

04 4-4 0)

Page 164: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

P-441

IN4 4

$4r-

0 w 4) 4) w )r

40 4).

041 0)

.C4O toNN

004

-4 +1N 4J 4.4 4)

.4) o"4 .,ro -r r.4I.0()- 4

V 24J. Ux a..4J 00 'w -4i-H. cd m m A -4 d 0

cn -Ww 8 C -H 0-H c A t a )2cn-W-H4P -40 to go-0

X 00 14) 4 P1L 0 44 0 .IV. X .. i04) 04idH .L _ _ _ _

R 410 4 0)0k -H V4 *pa)- r.U~4

0 >4 m a) 0..4G

r-i 41 a :a)4C>w U) -H -W - 0 vif)0404-) k 1 r- ~ 4-).44=MI

41 4) 4.)41 > ca

1. .00 w Ht444W C W p0 M >i () 4-) C 0 0 41 0) 44 a)0 49W 04J M 4J. (L) Q -A '44 4~

-H M 10 r (d .a > 4-)% -EV4)

0 0410..1 D4 . 4) -41 .4 a)' 41C W4.4 t

).0 4) ) w 0 H0m'&J. r. 004 41L,- U)o 44

0 ~ ~ ~ ~ ~ .E) w) 41r04 0a ji04) 1 w 00v4m) 04 "4U)rI 4)x 0 04 0

04 01i 0o 4 u.0 U)tAg 4 0 o04 C' d 0- v0 404") m .4 m 4-4

x U 1)a) ()- 004 0% V W W HO0)O *' 1 4)0 4o F 4) 0404).F.. *0 )IV 41 w 1 ( 4-4 4) k0 0 0

H to o co )- r.44.4 r.4 E .9 a 0al0 9-4to 0W."i.4E-O2440W0 0 4-) () 4J A 44 0 C 0'0r.

04 Ni

-H 9 0 0 04 j N-"1 2)4C) 40 ,r 4) c o 4 -

04u r4t q toP4C t L -0 n i4lm r; 1 : o-

Page 165: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

Ol H

"-4

rz1

41 I 4)4)4) 1 :1 "-4 w

U) H 4 J ul

:1 0 .

:504 M CO 4-

0~ *n 0000 0W".4 -4 a .

314)Z x 0 Ety4J 3.4)-H4J10000024. I44~44 Q4

Lii a) 02 id o 01

a4, 0 41 -

P4I 4) 4)* L-

p4 H) 0.4 > Eu

- 0

I.4 0 r- 'a~> 0 ~ ~

b4 1:4) 5 mu

0 -4 $4 0 0

4)- 0 PC0). r

0o v) 0~

-4 EuC 4. 4 a (a EEu 3 0 CO- 4-)

a) NZ~ 3: . 9 0 z4-)-4' 0~E

(D4 'a0)U 44 $4 41 J- Eu)k0 04. cd (d0 44 4-

.,IW 3 E u u' r-4 0 04H 0 >4 000 w4J~

4J *-I 0- o(I r -4J o E4o W-0

04 (a 4 0 04. uI z20 a

0~~ -HU~u 0

0o- /'CO4) H . 4404J-

H 4) 00 cu - 4 4) (D 04 0'5-4 4E)r: : "

u Tro4) 4 >'V It au

0 0

0. 4)4 4 C 4-

0N 0 -

Page 166: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

44.

0 $4 $4 "1.4E

44~ 4. 'JJO$4j

4)V0

04J1

In A

toe) 00 -

LU 2

78 ' 0 4)0

0 .0

LUU u -L) tn 0(n'

(A 2 * C z 0.

00- u004-- 3 >

C 0D 0

I- - ~~- 0-4'0 In <C

a. ~ ~ C .0 . -

00 C

W 0U 0* 0-0 4 -' 0e ) CL 0 -

-c I- CD -' 0.1J0 - 0 41

0 0 0 - C )10 I -T .

0 ~0 4- 02 U0 - 0 a cc

C - c 0 w~0 I 0 0 u- '.- I-' -

E- 0)4-~ a) c.

L 0 c0. -4- EC0 0 U 0 a) m C

2m C 0 __ __ _ ow > 400 m. in 0U 10 -

0 4- E-0 1. C

H w 0 - n4

02 CU C 0-E- C

04 _ co I 0 E Ca

000

20) 0) 02 p

Page 167: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

4JH

W 4J 4J~

44U~

J 443-

44J~

U)JialH 4.J 0f

u 4

W43.

0. 0

4- 0 >0r:c~ 4-J 0

LU 4 1J I

=0 41 c.E 0.0 cu c $4C/D 43 CL a)a

C/i C3 = 0. L3 A3-

(-j 4-3 Ifl >-

> u-n 4) 4 - 0

Q a) . :3

a-4 0 .J m 4.06441 m3 43442/ 0

(n I 0 -a 0 41Jc O0 4-1- uU a

4- 43 43- )U0> a) I3*t

0) 4-J 4= L.-44 tr'a) C- Q2r 1r

43 43 IA 0 0 04-Oc 43 -L 4L ' ...

a) CL - 4-. M 4.40 43 0.j uJ 4 >- 43 43 (

-; -4J. m4 4-' Co (a. 0 44*J Q) 4-J -j m

4)3=- t 4 )J 4

0.0 = 04- 124--j L o

0 L: L U E ~ W4 qr.

43CCo 43 43W2 j L- - W -o

0 a) L 3w I.4. I- = ~ Ia a 4) LU (x 4-Co 0- :3 m a) C

(n 0. 0343E I- lJ Wu 43H - -L- Q3

U .0 C. 3 0 0 - .rq r-. .-=C .0-3H- 43 IA:3 C W 40 Co< 0 tv =

H IA . W L L Co 0 1.H- >3 43 43 " z 4)itU E

E4 IYA > 43) > M,*a)0 L-f CO a 0.00 4 .ý4) mo wU - 0 0 3-11'

0

0444 Q)

Page 168: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

ý4

W~ 4___4___

> .4 -1 (

.9 it r.'

ON 4j .,4.4

En 4) r

41N

4) 4 14)

W 04 H 4'

(fl 0sW~ *W .0) 0

~4 041 00000. 0nU)4) 4)0 04 $4o

0a 4 .040 04 0) 0 z~ 0 3 4

0 0.. 4) 0 24r..0 -41 r.24 aW

4)0 W r. 0 440~

0 4. X4 44 Oj o N :

m0 0- ) 0 0)r4,4) 0 0i4) r40N 44) >

4)0)4 04 O w 040 -f4

C)~~~4 H- r.0 0 4)I

_0 04 * r. 0) 0W 4) S2 U) E 4) )4) C 4J ) > 41

=4.)44) v0W2 .4) w0I- e-0L-1 0 rz R

0 ed0 0 0 0 4) d) 0 laI~i

L1d 'U (a . 0 0.0054~ '4J4) r.4

41 4)H r-4 cd ) 0 mr.. c 4) >) 41)

Ol N '4 M 40 4j-HW44 40 to r-4 41E) f4 4J 4.4 1LU0 4 H- W)1IN

4)4) Q 0 () 0 1) 4J 10 c'$4~" >0

04 .0N r-)EW

H4 04~ 9 *,44n

404 0 "4 4 H. +1~

N 41-~ 4)r j5* 1. 024x > Id ~.4)0 4) + U4

o 4)*-I ~ t 4)0O+E-4 04 ) 0 04 4J U N .0

4 H4) 4I C40- w (

4)0w $ M M0W004 04 (n 04

(a .04. f04 ( a lz a)U N

w coM ( Z4t- rd 4I 04 :3En0 a

Page 169: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

44M 4J4)> -4P

14 04000

En 1-'I4 Ol

'44 $.i1 (

0 41 -4

00O

En ~adH 41 9: c

cn PI4

LUI

C/3C,,

CLU

000.. . -

0H

.4.3

z~04

00

P43Ho tH9 134

u Z 04

W * '

0 'U0 '

H U)040

En

00

0

o 01

S.4 44 .(L0 x in

Page 170: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

ri

4 4Ji%: 4-3 cr

U' E-4 ( -,qi it aE-4

1- 06 0&.

tL 0A0

* )w. O.IU) tv . .0. d) k 4.o 4 C

*ia) 4JC Id 4) , w. s.0 )qto tr. O0. -3 0 4 AI\XXN~ H om 1.4- 4

0> 4)0 4jJ 0 CD .00 >0 0a-Ht

Cfl 0 U) 04 3 1 C-4 0 04- s *c -IJOUO C W 0 .4 "1, -3x 0 4pE4= Q .0

41 0. -W - d444 0 4.) w .0 4 A4-E d -

4-c3> J W 1 4) r 4)-3**4

).0 o) H0 k 0 H) 0) go 0 3r.4 r z4

14 0 1 A -4 4J 04

fx -1 :33. .0.11 0H 0 0 4.

H~~~~ ~ ~ ~ 0 .04 d4J9C r

to4 0 4)0atoI 41. 0 -,q

-0 : 04 W. 4)W )4-0 0.404(D. '1 44 r. C-1l W 04- 41 0. 1 .

)O 10 E Co - EO - .t . 0 0a D4-4

( .V0 4).0 0 9 M ro-U)0 MO~ 0A w 0 U 0~ 0 /f\\1XX1 V.,..U

H r r. 4.0 :4 w0 00 *4-3As r 41 w 0d HU ~1.4 -H0400). rH >0 A~4 C 0 .0 0- a0a 0HI4.JR

r-4~ Id W zi 0o 0 J4 a Q-la H4

U)1. 00 '4 00a)r C4r- - 0-~ C4J ̀.404Jd S0. ~ e 0 U)0m 9$-i (D -1 .4)0.0.

-4 r- 4 a c ( 0 4.~H ) J$ 0. U 4 4~ >.0..m~~~' 4) 4 'C0J(d04 )V>

rat : .10 E V d0 4 '

LD 0z EA M 0 C - i. )40 rH* : r O( 0 4 E - .H0 C41

Page 171: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

0

4J E0W

$4 -

~: 44C1 - T

"rd r= aw4 -C U-H __ _ __ _

t?

4.)En

$4 -00 H 4.- (1) a)J 0

,o (n 0 .,q 0)0 > $4 4 4) a)71 CN 0. (d$0 4 0U w~ 0 0' 0 k,n0 tO *dWi Cn0 .0 ).0 0 -

CN $ 144$ ILn *L 14-r44 21 0 $4 0 0 In0 $4 Io' I00dpO 0$ 0 r 4-)la00N -40 4)$. 0 M 0 04- H3

ra4W04-~) U *.00 r.4-4~ :3 * $0-) 4J 4) 0. Cfl (1)- A-4 0 0 ~ ~ (2'4J..-r4144 4JJ~l 0 4 4U2 rd J' 0. 0 Z

004JC r04- r.0 00 r.4 ) ,U) * 1 $4 -a0 ) 410 0( r- ý40-H) 4) r. 0H 00Hr

4 U d E 4- 01-Q4U -1 MU '4)4, 'U . 00a

41 ) (1) 1 -4 04 $4 $4 C.0 -4'C$, rU (d dfUwj $>10 Q04a 4) )0 0 ( r ) .. 0 010 a)0 C14 5

W) 0' (d$4 04 0 k0 41 HOOC w,~ 0 m d a0I>) r. r-4 0X'-4 r-4 4J (d tV OP 004

0 -00 00a)1 $d 00 ~4J 0 Q0 41 H-wfU Ei 0 0 0 4.) E-1 -. -I~) . >40)$4 ~ 44 k4 tO

-14 0) 41 9-4 a)0 dP 0 (d0) H-4 0 rq $4.04)$ w w 0 0 to W 1 $ 04 E-4 (D4-) 44 lO0

4 0 0 9: ko 4-) 4) 0. 10 04 0 -H 444-4- r: -q o r 4-)0d4-) 4J Z 0 0

S $40 (d a) 'U % 4 10 C) 0 $4 tl1

41 44J Q)V H 0 W 0 s 1 4 '40 *04' g 410 43 .Q U 4)E -i0 43)$ (0d 0 .- 1 0 0 W) 0$v 40 004.) 04- $ 00 $401 0u042 00P 4

CD U)4 -4 - -H (3C.) 0 $4D-$4 .0 0 4-) H 0- ~00 1a)0~ 4 Ol H4 -PJ) M

* >4- Q 4 w. *o 0 (d2 rd Er'L- w4. -'-I 0 41 'U (Da)03 (12 . 003 ý4 000 w 4) ý4t P" . 44W$4ý$ 4 0 4J)4J (nl* WU (i24 -I : 4-) 0 44 00 H0

0 4-)))1> 0 00E-4( Wa d0 -(n0 04 0 0 4 $Ln4-) WOOd ( 0 9 -40 a)* 'o - $4 $4 U2 )

'44 (1H 4-) U 134 Wa4j )0 04 a)4.4 tlW 0 0C 4.) VVS0 44i C) z 4i 0 ol V ~ 0 A4>1 0 41 r" 044-)

< 0 $4 -.44)0 CdU$4 c a 0$W r4)H.W'-H ' 0H 00(1) (af 0. CO .hý4 $4CO0)0 d) .AQ'U.to a $4

9: VU sz u *0W4 C) V>' 0Hflrq0 ) 0 COL( 0 0- Wri r.u

-4)~ 9 a] o r-40 E $4 > (1) 0 (C4 ) 0~ H4) 04 a) 1340'44) -H H- 004 'Uo Q4 ~ U

oj '.n .- i -4 .d O - ý04 $ 4 U$ 4 W 0' a ) 44 0 -4 0v0 4J 4) HH$4 4J 0~ 0H H O a) 44(

4.U 4 4 4 4 r.. 4 H '4 ~ h ' U o ilf4 . ~ 4r4' V ) 04-4 0 00 a)-~~ a)0 $4 r4

cn04W .n $40( 0 '.4101 E-4 0 c.) .4-0 to .4-)-AEi= ., *H I H. ~ 4J4) ~ '0 -r-$4 (d$4 (1) U 0lc 00

(al .43 'U *'I 0 0 --d 4J() t'4) 40. CO 0- HC-" 0 4)H -1 OW (1) olH ) - :3 A -M A4-) 0a) . 0 4-)0 $4 C) * r ) (D . (d 4-) * 4-)0H a) - H 0 A 0 4) a)00 o U-I4 W 0 (L)H H4 00 UWV 'o> 1 9'0 En:3 ~4-) a) M 0 :r

I 4- tn ( S: kU )44 H w ~ $ 0 W $40 Id 0

4 4 En ~ 0('4 0 . E r r 0 04)H V4J Q0 H4 - 4)J r. .1 .

a"-r tyl d %.,I a)i H. 0 r.~ UD 0 0 04) $ 0W W 0 V I

co 4-)"q U~ P4lO 'U4a 0 0 0000 0 $4 4J 4.) 0) 00 $.ro ) ~ ~ U H 0 UJCH ) 4) 00 0 0'

ý404 4 0 04 "3 U)2. H) 4J a).4 0 :$4 (D)$

ka. 04 20 w4~U4 0 mw9: Q()4J 0)H4 4H40 $4 04 w0) 0

0 .$4 0 0 4 -1-H 42) rd w 0 44 a (13 H >' 41 (1 04~ $4 U)

0 0z z 4

cr m(L5 E-4 %D koi n ni

Cn ko %Din inio<-

0- 0n 0 U) C)

Page 172: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

APPENDIX C

ULTRASONIC C-SCAN RESULTS

C-1

Page 173: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

C-SCAN FOR LEAVES

C-2

Page 174: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcom LEAF SPRINGS

UL-riZSONIC C.5CA* ,'scTo

,Zlk" No.3 SIZ~ XDeP TYPG .c A ,CP' xC .2 4/.

RE. AT ENEPGMl 2- .AN40 dB ArlN. /0 -20 dB

AY6 PEAK~ OUTPUT ~. C ATE DEL~q ~T JTH______

6CAW SPECD INE INTC~A 0,.021 in. INDEX DIREC.TIO1MU -2N

INDICATION -LEVEL IAJ0ICqIT/0AJ AWA~

i. Nor ?JErcemIAJEIJ 1. > yq SQ IM

2. 25ý% 8,4c. RZCF46CM/AJ 7. lW - Y illt3. 50% 2ACkC REp~c(.C~no 3. '12- CIA 1"'4

4. 76*4 SACk QEPLecT1opj 4. 1 - zsQ. I m.

~.100% */ ACk REFUhCToM 9.2-4 54. -.~i4.<-SAcx grFLEc-nom 14. <4 saim

PESULTS: A •/Z.F/oZZ f7,4W /tVl.Jý/4rWZ5

C- 3

Page 175: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcOM LEAF SPRINUS

ULTRASoNM C-SCAN3 INI.SPECTIONi

SPR-l"G No. -3 :5)2 *2 )(D. TN'PG 0,50 14rAnrr;PC5 XDCA FREe. 22 d!

REP. RAE S E*NERG-4 z____ - GAIN ~40dB ATMV. /0 A /8dB

Ave. PERII OUTPUT Gj2TE DEAI /0-2 CE WloTH 7

6CAV~J 5PECC 1P jc 7,jOENCRq 0, 02 S in IND~EX DIREeT0Ijo TýP AJs

1I401CATION LEVEL, INDItCAT/oA '42C.4 -<,I TH5!!"-1. Nor b~remmih I. > Zf SQ. sIl.

3. SO% BACk R.P~cT7OA 3.%1~ M

4. 76*. SACS, ~emwr.CioA 4. 1- sQ. i N.

15. 100% 1/ ACM REFaECT&IAJ S.2-4 54.11. a

16-. C 'ci ur'FLEC-uooAJ 1 . 4 sa m. -

PEsuLTs: t k~eLt 2- AiCA 2 2 /34

-ii 7

2-5

C-4

Page 176: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SP~'N~s

Lk,1i-ASONIC 0C-Sc~i INlJSP-eCT10~l

D.4 rE /DO- 2-3- O

SPIN No. -3im DP T'?PG$• ý-0AIAACRC XDCPa FRE- 2.2~ 5 1

REP. RATE•.20<frNERG'4 2-I 40 IB ATMh. /2-20dB

AY6 PEAiW. OUTPUT Q, -1 V aATE DEL.Qy- /0-820 W5 TEWIDTH ________

6CAij S~eCo /60 -P JNDEJC JNCR p,0025 in. J-NDE-K DIREC.TIONJ

INDICATION LEVEL, /NDICtqT/OAI 42CA .,C4A)iTn•SO

1. NOT bEremmEbIA~ I. > "if SQ.

2. 2Ž5% 8ACX RCF46CM/oj 2.. '14* - Yz Q.43. SO% 8ACk eftleCrCAJ 3. V2. - 1 9. 1 M

4. 76*/. SACe REPLECTlom 4. 1Z -zse. i N.6. 100 I/ SACIk REF1CTIOAM S.2-4 Sia. 114.

16, -< 8'~cx ggLEc-nom. 14.<4 sa

A EsuLTs //po~ '"vr ~&xiz,

C- 5

Page 177: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

f TACOM LEOF SPRI'NGS

UcLTrZASO1,C- C-SCA" IJSPECTIoNj

SPRIN'G Na. S3 J XDCd;. TYPEC 0.0 PApj0"I"21IC XDCRL FPE 2. 25J,,'l~z

REP. RATE -.....K . NERGM -2_____ GSAI 4 0dB ATTN. 10 - /Y dB

AY6. FPRIx OuTPUT L9___2 ___ 6ATE DEL41 /0 20• P£A6,TE WIDTH_____

6C~qt SpecD 6 IN a x ,. ICq 0 n IN bE. X IRECTION%

-INDICATIOm LEvEL //JDtCsqToAj AE41. NoT bueTE&DicaJ I. > P4 S. '~i~A 7,,2. 2S~% 13ACK RCFM.C7/e6AJ 2. q'/Z S-V2 t3. So% RAcX ReFpJmoAj 3. -4 o,.- ft -.*

4. 76"/. eAcle QEP~LECCotj 4. 1.2 sQ. iNr.

'S. 100% */ BCk I.EPLWC70A) 45.2-4 54. 10.

(0, C -8ACK RPLIECTIOAI < 4 se* im*

R esuLrs: J ~' /,e

~-. 7"

25"

C-6

Page 178: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcom LEAF PIFG

LJ-TrZASIN(c C-SCAý-Ijsikcl~

DA ht 7-r: /-20 ý-80

!ýMmG~J No. -3 6N? 2 D5* - TYP5 0,S 1'41jA1P7E1te XDCP. Fk.Ea. '56 n7½h

REP. RATE -5k- - NEZGI P-- GAIMJ 40 dB An'r-N. 20 dB

AY6. OUTPUT .2v CA~ DELpx10/-20' usi 6,3TE WIJ)TH 7_______

4ýcAj SpecD ' ~c- 1N mcqJ Q,92 Sin. -ItND DLREC.TJ-J i'90J.

INOiCAT(OP4 LEVEL1 IAJ0ICiAT10A. ý

1. NoT bF-6em,,-jE 1. > '/q SQ. Im

2. 2:5% e~cx ReirL.ec7-.j z. v - '/z :5 l.IN3 /. 2.Acx iREPC177cnd) 13. "1.-1s'IN4. 7•. ACJk IEPL(CTjoM 4. 1 - SQ sa o

~.100% */ Acj REP4l.EC7A0M .2-4 54. IN.

--. , ACW REFLEC-no7J <4_____

R6SULTS: NO 5' IV/C/Ltk/J V CŽrZ I¼V(',4 (70/I

25"

C-7

Page 179: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcom LEAF SPRING6S

UIJ.7gASON.IC C-SCPAj ItaSPECTJ0A

!EPikimG No. 3 IJa~ o~t NNP 0-f e,~)4A~,6TC. xDco. sEQ. 2.2!9 P'5"e

REP. RATE ____ TkNEQG-4 2-. GAIN 4 0 cl A raEN. //I ~d B

Mr.. PýRt* OUTPUJT 2V ATE DEL41 /0' - 20T VS 6,7-cWDTII __7V5__

6CANW Speet (35 bie LAiOcll 0-0 ~t2S inf. INIDE-A DIRsE-rIO' TeANS

INO)CATIOm LEvEL IMOICATION 4~E1. NOT DEMEAMiIJb 1. > Y- so. I M rq/S !ýZ

2S 2% 13CXc R-.CFMTA5A 2. 'Iq -Z 54- So."3*So% 8ACX REP"eC77Aj 3. C46. 11'4.

4.76% SAcit eEPLECT10pj 4. - so. iN100 Ioo SACk REPLE6CTAJ C.2.4 5 6. *

16. '*8-ArkI gr~PLCno -- 6. <4 siatd

AEUT ýsu..s: •-u 2 - 4,e, 2 - sr-- ,~~~~qre,

lg25">

C-8

Page 180: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SP'P'NGS

ULTJ2ASO NI C C-5cim I1'SPECT'loA

~PW~G oJ ~4XDC-P TN'PG 0,25' xDCQ. FR~a 5.0fl1Mh;,)dB ;t.'os

REP. RATE ______ NERG~i 2- -0 B AmrN. 12 dBELtD~

A4Yt. PYAW OUTPUT 0. 6ArE DEL-ij A9)O/ -207 I5 '7/15

6CA~3 S~e~r- !NE- IN~ cA 0 0.L26 in. -INDEX IREC-7iO0

-INDICOATI Om LEVEL. I liD1CT/O ,.

2. 257% aACK .P(F66C716AJ 2. 'At' :SQ 12 1J.3. SCI% .8AC RcLc p 3. "' AA

4. 7651 SACJd 1QEpLec-jjoM 4. 1-2 so. Ira.

~.100% */ ACJk PELj-C7TIOM ý52-4q S. Ili.

Z~ S ACke RE LECTIoNJ ro 45

AE SULTS "o ~j

/0

C- 9

Page 181: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF .5P'INGS

t)L-r)AS0NlJC C-5CA?,3 IlJSPECTIOA\

!ýPfikiG No. 4 ~ XNJ 2-~ DCP TN'PG S,7 0L~m~~c fn 1 m4Z~,7odB cvOtS

REP. RATE EN____ NE RG'I_____ GAIM4-...dB _ ArTEN-. /. dB -

AVG. Pcqk OUTPUT 0.) rED.A1 /O TEWfM______

65cQ. SPecD 4 PSj.~oa2_5 in "INDEX DIREC.T-JI~tJ 7i

INIAI O UVocr~~aLEVL /AJOICATIOJ 4,--

2. 2:5% ancx Rej~t.~cr,~j 2. '/ c -'/a

3. SO% BACK RE77OkiA 2. '4.- . I t.

4. 7504 8ACJI IQEPL6CTIO.j 4. 2*, so. w

~. 100% */ ACk PS;:46C70AJ -5-2-4 5G. 114.

P SULTS: No 7-/'%t f ,-Z~-A 1 vWtqiA

< 25"

C- 10

Page 182: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcom LEA~F SPRINGS

UCi2ASONIc C-SCPN3 ItSpcCTJOAJ

!ý~k" No. -4 s~~l -* XDeZk TYWPE 0.1S" P,41J,.ne1,erpS xOca. FREO.______

R~EP. RATE IK NERG't______ GAN -40_ dB Arnzw. /2 dB

AY6. PcEix OUTPUT O v 3 ATE D)ELq'j M-20 /)§' 6 WOTS 7

IINDWCATtOmJ LEV.EL IAWICRATIOAJ 4-A2S7 •O

I. NOT bI*,mmb1 > "i SQ. I M.

2. 2:5% epcy Re:-crm'~. 2. Vq' - '12 sQim

4. 7% &c; zQE)LdC71loM 4. 1- sQ. 3100i~% BACk ;LPýACThOAJ 9. 2.4 Sa. Ia.

251#>

C-11

Page 183: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcom LEA~F SPRINGS

ULRSONIC C-SCAiiJ INSPECTIOA3

!PaIN6 No. -- '4 SN t 4 (D~rP. TYPE _______ xOcP. FREG. _____

REP. RATE 5K FEN RG'I_____ GAIN 40___dB_ AnN. 12 -2 0dB

Aya. PEAV. OUTPUT 0A V rAE DEL4qji1oA" ~ ~ 7/

6C4IJ SpeCO D I5 NaE-A TtjcA O-Z in. 1re( Di RECTIOlJ1M A)

INDICATf On LEVEL I/JDIC19TIoA 4jAegq54)7' /

1. NoT bErw1amopc J. > 'hf S.D IN.

2. 2 9 % t)ACx ReFemcrdAi~A 2. Il - '/z sq.,_________

3. S011 8GAcw RtLcn~ 3. -4 - i c. I P,.

4.76*4 8ACke EPLE.CTio~.. 4. 1-2 so. IN4.100w% BAck REFW.CTA3I S. 2-4 54. oi'..

6 . -< BACK gFLCragcot 14.<4 w.IN

P6UT:~ LE(16~ L-2 Ae6A '/ 2/3

C-12

Page 184: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SP'l'MGS

UJLT92ASO NIC C-SCAMj IMSPECTION'

SmmG~i No. XE CP TYPEd-f A Mo4AI'PrAeQ5 XDCPQ FREG. MHZ

RiEP. RATE {K NERGM I GAIM .4()dB AmmN /,0-/8 dB

AYc-. haw. OUTPUT 2 6ATE DEL~qf /0 202V A)_ 6gAE wjJ)D4TH of

INOC- 5p~a _ 0Nv~Jc <92 "I IN o Y D iRE C-TJO 0 7--A A/S

INDICATtom LEVEL lmiAiqrICAT/A Aps <CAfu 7T5 i -S

1. NoT bErEi5VAJ~b I. > Y'f .SQ. I".

2. 25% s~cy Re(~cI cm~ 2. '1'i - Vasw t3. 50% BAC Rck Ca~ 3. 'i1 5 a,. , ,.4. 760/. BACIcj QEhPLECTot 4. 12 sQ. , t.S. 100 %/ BA Ck R CF44- C TION S. 2-4 54. i

6, '< S~cR RgrLEcTIomJ 14. <4 s ..

APES ULT S: kVLr A J ee c'W A--/A~CV'S'u~.~~

___ ________ ____C-13 -

Page 185: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SPRWGS

UJLTR~ASONIC C-ScPM INS~er-TIOAJ

/0-22-80

SmPi"G No. -4 6&jl £* r XDCP. TYKP 0-510 oAJ~-,4d xDCk FRSQ. ol /"f

REP. RATE _______ ENER64 2 GAIl 40 dB AT77N. __0_____dB

AY6. PEAK OUTPUT 2 /(ATE DELAqy /40 -20 '6-9 TE WIDTH PIS____

ýgcRa s4c /pS lNtjEIJvca 0-0o29 in INDEX DIRECTrION~ 7-le,~4 Js

ItJDICTIOM LEVEL ImoinqTiomAer S 3 CRV 7-1-/S 5VL)6

1. NOT bErTE*JIAJEb j. > Vyj SQ. sm. ____________2. 29% eScjx RCF.MC'rlw 2. 'Iq - 12 SQ.3. SO% .SACIC Re(pe77OAJ .' 5A. .

4.76/- 8~i~ce QEP:LeCTjoI 4. iz sQ.~.100% 8/ ACk REPikCrioJ S. 2-4 So. 114.

<. ( 8sci RFvFLEcTIjoA 6. < 4 s aw.

A ESULTS: LEVCi L' pReA / A.5AA W~CTIJ 1z..-

U Li-L3 IE4pL42

101

C-14

Page 186: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACom LEAF SPRING~S

ULTR~ASONIC C-5cAM fINSPECTIONJ

D-4rE 10-22-80

SPpo"G No. -4 5N -4 2' XDCP. T'P~ S' 05'0 ~ ce~~ XDCR. RZ&E. 2,26 fl

REP. RATE Ek _______ GAINj 40dB- ArrN. /0 20 di

AY6. AERAX OUTPUT ________ aATE DR'lfq~ 647-C ?LGAE IDTH4 ________

6CPAij SPecD I~ e NDCX INCA o~o25 in. INE DIREC.TIOA5 Tt14-lvS

IAIDICATIOAJ LEVEL /AJOICAT/O#J ARE Sd.41 71415 <fDC-

1. NoT bET~ammJch I. > / SQ. I M.

3. SO% SACX R~-,CA 1* '/2.-~ 90. IM"

4.760 BACud QEbPLCTlom. 4. 1-2 SQ.IN~.1001/ BACk REFLECTION 9.2-4 So.

16. '< SACK~ REFLECTIOM I .< 4 s3k

Rs uLT S:O•yt (2 -AY-e. C 7V-1aCEL

STAP-7

C-i15

Page 187: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

p TACOM LEAF SPkING~S

UL7 A SO N C C-SCA) itJSk-CTIoA

SPRWi~G No. P-3 SN~2 'i X ~-'P. TY ?5075 PANPe-r-Ek xDCQ. FREG. 5YI

REP. RATE-NEG 2- GAI ~4 OB~ 7~. )

AY6. Pra OUTPUT O(2VArE DEL..'iCT WJTM 6AH

[INDICARTION LEVEL /,VDCA.qiWoj ,4ýrA1. NoT ZIEr¶iAJwa 1. > 'Af S~Q:.'14 c k 7*i 5*Z

2. 2% 8flCX ReCFLeCMAJ 2. '/q Y2 591Z 5?.I

3so% SAX3 CLcA 3. 1- 14 1".

4.7504 &SACJ QE):LWC7I0p 4. -z ~SQ. I N.100* io% ACk R.EPU.C74.Aj S. 2. - a -4

16, SAC~e Qwc-tIoP J6. < 4

SCA~£cRA 13 LJGJTH1

1< 25"

C-16

Page 188: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEA SP~iN~s

Ut-7)ASO.N(C C-SCAM dSCTO\

SP~kiJG No. R-3 :5,?- XD2. ,<rPc 9 0.75~'/0A,;Imeyec xC.FR 5. h

REP. RATE 5k NEPGI 2 GAIN .40 dB A7r-N. 3 dB

AVG. ~01 yE 6u~T______ ArE DE-LAq' /0-t-5 All~ 6CAE W~D~5A.'s

•C 3 S GI N DV.' jN c.A 0 L9? i n NT D IP -1 [ TFe q A 5Y

WI O)ATIOM- Lfv9L /AWICP7TIOJ 42S'A

I.No-r bE-rhV.1iAJE b > S Q. I m

S.O2% BACX RC.i4t.C7,76AJ 2.'/Z -

4. 767/. s~ck, QE;~c77oA 4. 1- 2 .

S. 100o/ SAcJk Re;Lt4C-,OAJ 9.2-4 SQ. "J.

6 gAC;? RLE CTIWP4 6. <4 s~k im-

A EsvLTs -J ftDICrq~k55 ep~iu- ios: .4AR t05 TdJL~~ ~o p,

"la ULOSedDO Sp®1

25'

C-17

Page 189: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF 5ol~

Lkir)ZSoIC- C-5cAM I-Sj ~ o'

!SPW N'.j. R-3 sp 2 '3 XDA TYPE 0.75' PAJNAMVE7jýi XDCa . 5E.~ SONlw

REP. RATE sk IENERG'I GAI?4 40 dB Anrtr. 20dB_

Ayrs. Araw OUTPUT 0.6 ATE DE'LAI' 20-2S '03 6CiE WIDJTH E_____

6c-AK) Sper-D 7 p to- .10JNcj 0-O) 0 j0fn. LN t)pexDiR C-F.T30M 72ANS

INDICA~fo LsVEL IM IAJO ICITWJ 42rA

2. 2S% 20*cx RCFLcC716AJ ~2. tI~~/ 11 4140 S/. 4RACX REcLeC,7?oAj 4.3 .'/.2.1

7610% sAcu QPrL6CTAIA 4. .1 " a.

100 */ 8ACk R5PL,_CTIOAJ t.5-24 6. "J4.

RESULTS 92REA 2 AJNBRIOA.J Itolr LEVEL 2- SIGNJAL (RESINJ?)

SAPME AS OD

()LOSS OF ' IAA CAVSE-D 8'f CR'VATUI2 OMu C-

(D7LA.jo It-,D:CATOpAJS, EAC14 AeEA i. 4ptuo LEVC-L 2. eix 263 ICH

A CAqr Pt-v EWS 15 ppoS5ABCU SE

13'I

le 25"

C-18

Page 190: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOm LEAF SPRIN6S

ULkTýSO,.IC- C-.SCAIM INSPECTIONJ

SPAl)iG N.R-3 sw *4 XD-P T'#Y 276 lA1-,,mj~rntICS XDCJZ FR£0fX o

REP. RATE____ _ FrNERG1 2j IN 40 dB ATWN Im dB

AY6 P.A OUTPUT 0, vGATE DEtL'y /0-/50,'r 6AE DJ)DTbf 30 *ff

6cq~ Speco 6Nc- ' N cVA - 0N .026 in. I.NDEX Di RECTMO(J TI1A JS

INDINOCATION LEVECL lA CT/M)2•iA

4. 75/% SAC), QEPVLC7,OAJ 4. 12 sQ. iN

~. 100% */- cj BAk E C74eAJ ý5 2--q SQ. 14..

4. IgACl 19C iPlomJ 6. <4 50

A EsuLc~~os no jz3/4 z

/4~ o IaTACr

/eA_ 3 r- ______c__ ___

12'

25"-

C-19

Page 191: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcom LEAF SPRINGS

JL72ASONIC C-SCAM ItJ.SPECTIOAJ

;mGp~j No. R-XD2* C-P. T'?P6 Af~-'I5Cff xDCat F $0 .

REP. RATE K..... NE2G"1 G~Ajm 40 dB ATrtN. (8B

AVG-. A.-AX OUTPUT 0L2y C ATE DEL~lf A) f 6,17-E WW"H ________

~ ~eo 7 o o0 2•, in- TIND~x DIRECTION~

INVINO'TIOAJ LsvEi. /NIcAr/oAJ 42r

1. Nor bEi&M)ED 1.> %I !G :APOr TNIS -'tJbF

ýXl BACk )2P.C7OA 5a' .I $5., -'oC (a.< ~ELC.OJ~ 4 SoI.

A(euL ) ReEA 2 LeveL 2 ituWOCATioA pl CvD I~~ P wS

SAMnE vS e~cepr AECA

12'lz*

sccAw L.EPJ~fl

< 25

C-2 0

Page 192: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEA SP'~RiN~s

Ji..rASON~IC- C-5CAýM IINSPECTIO&I

Dh- 77E

SPRImG No. R-3 st4PŽ '*( XD TYPE 0-15" RANAr~fT_2CS XDC9L F25a. 5'df14b?

REP. RATE •kE~l 2AI 40B ArT7-N. 2 dB

AY6 Px-,; OUTPUT v VCATE DfLq'1 6,97',RE WIDTHd f_______

'ý A p r 7 i P-5 J~ 0 .0 2 S in , ~ x ~ I E T O~ J T 4 V

INDICATIOml LUEL /AtDITicvoAj EA1. No-r bz762mIAJEa 1. > 'AfLo SQ. -TIuc CAtUAjetý Fpr~ rHIiS :1DE

3. SO'/- BAcx R6;=tecnoAj 3. '/2-la Im.

4.7611. eqAc QELec-710j 4. -Z sQ. , N. -e

~.100% BACk 2SLEC70AJ -•.2-4 5a. 114. i

6, '. *8 C) RgLECTIOIJ 6~.<4 si N. -

PESULTS CA lK DCAT100 iTH Leuec. 3S16IA.-* 17 P?0. 3 t

5-CAJ'~ MUL0 "V 2,.4C 9

-FIN 1:51

13"

25"

C-2 1

Page 193: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcOm LEA SPRINS

ULT-QS0NtC- C-SCAM- INSIPEC71OP

Oh 76*-* io -,o86J

!ýk No a-R4 :ENIi 41X~ TYP5 L 6 x4cV FRE$. ____________

REP. RATE -52............. 2- GAI4 ~40 dB A=TN.______

AYCG. I'ERJ OUTPUT V________ 6ATE DEL4.f 6,47-E WIDTH7

.5CA~j SpecD 7N-- 7,c. o0-2S in- !Nr)x DiRECtnotJ 7.e,4I7Js

INDINCATION LEVEL IIMOICA77OAN §2rA

1. Nor, b~r,2ib 1. Q m i !rC~Aj T41 SI sOC-

2. 2,5/ 8J*Cx PiL,:5C7r15J 2. '/4 5414 -:==-I- .

4.75% -Acm~ QEpLecTjom. 4. sQ . I N.

100io% SACJk REPLE6C7,OAJ -5-2-4 SQ. 114.

-, 8ACMeR ~LSC -l o"J 6. < 4 So IN. I

Ar: suLTs: NA2o I ji010 RT o'Js ý.EVEI- 4 !SfAALL A C ( 2/3A y 64v...05o)

E~o s5p- Itjc

I-C G3 -s

26"'

C- 22

Page 194: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SPOQINGS

UlJr)ASOr~iC- C-5C~im INJSPECTIONJ

-SPP)NG N-. 1 NI. 2 XDCP. TY'PS ,S 101A7e-, XCP FREG.- 01 /Ilkz

REP. RATEG' 2, G~qi 463 dB AT7TN. 16 dB

AY6.' Prax OUTPUT Q,-' V ArE Drtq'y 15%~ ?a~ Ae ,9 WIDTH~ _______

6cq~ Spec-D _______ 0024Cý in____ IN DIRS-CriON 'eA

INODICATIObJ UrEUL IMD0TO 42~~o~ ~ ~ Cq Tý41S 51b"E

1. NoT bE- j,5MAJ~b 1. > Yf SQ. 1".

2. 2s'% aACX R6JzC7/6AJ 2. 72~ Sq.z

3. So% 2Acx Rck ýpo~ 31. *z N

4*. 76/% sAcie ý!pe~c 4. 1 -2~ 50.100 '/. % ACJ ;ZE t-C7bCAJ I 5. 2- -4 54J.

"4. S8Ck' RELC-nomj (a.<4 S~

A ESULTS A (2-,4 3 -E-ve-l 3 ~ ,ce7/o'v' 2/.5

13''

CL:

26'I

C-2 3

Page 195: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SPRINGS

j)-. LTSO NI C C-SCrA.j IN.SPECTION~

~P~I4G ho 7-ST 10-20-80.

SP~ic. o. -4 stv 43 XrDCk T'YP5 0-75Pn'9Al1)re'5 XDC~k FZEe. a2

REP. RATE 5kE _______2 _ (5 A 1? 40 dB A T7-,N. /4dB

AY6. APaY. OUTPUT Y9. VCATE DELAc1 /62 g W10rs _____

I IOICRTJoAJ UvSJL /NIDICAT/OAJ ~4,2 eoqT43 S0I. Nor berammAJn 1. > '/.f SQ. , P.

2. 2:5% 2AC RCF6LEC7T/AJ 2. '/q - 72 54-"4-

4. 76% *& 8Cd Q.EJL6,C7T10 4. 2- SG. , t4.

4. -C aAC)X RFLýCTIOM 6. <4 Saim

APESULTS LF LvEL. 3 d,27E4 Z /31 (PL'4 CtAJDS)

Ze le2 4etq 1 -21

Z~a L~'c3 qaea 2 '/+

@~ec- 2. ARE~A

kvLE c, ~3 4 t6 " / j ý5

13" 1'3-

C-24

Page 196: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

- ... TACOM LEAF SA~ipiss

lJTASONIC C-5CApj !tJSPC.CTIO&J

AY6. PEak. OUTPUT vX a SA E DEL4' 1 O- 2o AJ-I 64TE WIDTH -7

~cP~ ~Peo ~ ..io~c NCA Q1 ~ ~ INDEV. DIRE~TOe70j

lNO)SCATlom LEvaLIJ CTOI~~

1. Nor bU~?15PJch '> Vq SQ SC~ rpS e~j

2. 2S,% eiACK ReircTMAJ 2.1I4 - 'Iz :S.a.3. 50% BACX REPU-070A.J3. I CA. 114.

4.76% SAcl, REPi4CTnoA 4. IZso. r4.100 ;oo BACk REPECTIOA) C. 2.4 54. 11s.

(d. - ACI Rraucniom 14. <4

RESULTS: LEUCt Z Ae5~A G6U6AE.4L. C'rnwt.L DiSC~lsU7r'ALJlT'&5 4 LL.

~~ a 26"1

C- 25

Page 197: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SPRINSs

lLTQ rA SONI.c C-5CFtM INSIECTIOMJ

REP. RATE Sk EN m 2 GAIN 40 dB ATN i'8dB

Ame. PEa OUTPUJT 0.2 aAT DEL4,q /0 -2 0J 6,9r- WOlTM ____7 __

ICnP~ 6p- -1' bso~c TNAjcq 0.62-5 in TNDrEX DIRECT)Oti

IAIOICATIOn LEveL, Imoic Ic~IAJ A t1. NOT Ub7ETfPiIAEB 1. > 4i o i -5AA r~H/:5 !TL)5*2. 2S'% eqc)G ReFa6cT/6.D 2. IN' - sq. m~.2

3So*/ 2AC REPw'7.OAJ 3. 'A - 94. -

4.7S*/. eAcjt QEPV~Cfoi~j 4. 1 -z so. i t.100 */% 8ACk REFIaCrioAj 9.2.4 34."A

A esuLTs: LeV-L ~ V qŽ 1 3 t Q

C-2 6

Page 198: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF S~k"NGS

LJI-T)ZASON\IC C-SCAQ IIJSPCCTIOAJ

D.4Tt to-t7-90-

!ýPRjIMG N,. R-4 -,,N 1~ '4 XDCP TY"P5 0.15 PANAfý17elcS XDCP. REG. S•O rrmp

REP. RATE A__________2a GAIN 40o dB AT7-TEN,. 20 dB

AYeS. P--q OUTPUT 0,__2-__v __ ATE DE~~qf~ 15_20,u5 rj-E ior 7JJOT ____5

6cA~ Sperm 6 ~ ~ - ltPSj 0. J 02- in. 'INDEX DiREC-71tJ le

INDICAT~ION.. LEVEL IiJDICATIOA. A r

2. 25'% 8ACY. RC4C7-,j 2. 72i 5q.14

3r. 7-o/. SACI IEC7A 3. 1~- 2 S. 1

10. 75% BACk REPLC-C7,oAJ 9.2-4 54. ,..~

P&SULTS Le® Lve 2 lt.niCA-r~otS q-C~EA i 2o6Ad3L' p ~EIUDT'

13SCA-A) Lc-C-u&7H

-~~ 26' -

C- 27

Page 199: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SP';N6Ss{ L)L1MASOtilJe C-SCA~j INSPECTIOAJ

Snm No. L-~~IS 5N 1 X'DCP TYPC L25 142"NAMcI~eles xDca FPe --- M0

Rep. RATE FNEG 2 GAIN -40 dB AT1N -14 dB

Am6 PEnax OUTPUT 0.2 c:ArE DEtqy ILITh 4) CATE AJIOTH 5-1 A/

jNCcJ SPECO 0IP ~.025 in lNbEx DIREC 05I~

IP401CA710OM LEvgSL 1IijO CqT/OAJ 4,WC/.4-fDC

I. Nor UnriuvAJra .> "'f So. "M.

2.S2% 84CXc RCFl6C7,dAJ.J 'I'i - Y ie

3. SO% BACX PepaC70A.J 3. - 4 N

7.601% SAcM, QERP4.ncTp.j 4. 1Z SQ 2 N

~.100 % SACk REFA.EC71M S. 2-4 54. 11'. -(.,. a ACM Q9uCjCruo., 4.(<4 So

PESULTS:® L l A-24 e.4

LC-28 --- -- _

Page 200: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

-TAcom LEAF SPRINGS

ULRAONIC C-ScA?, INSPECTIOM

S~kj- No. R-5 st f ~2 XDCP. TYPE 0-.52 ilswMERICS - DCA F;ZEQ.

REP. RATE .s*2GAIM 40 dB AM7N. L -* 16d

AY6 P~ OUTPUT 0.2v 6ATE bFyl 6A-2AJc~T W)DrJ. ________

Sca Speco 4,1P5OS ~ t I~ac-A~a 0.025 in INFV DIREe.TIOJ VeR

INMMCATIOm~ LEVEL /MoicwrToAI ý C~ ~' /Q

2. 2S~% 8,c~c RrF(eCvdA!~J 2. 8Ilq - '/z sq. i A.3. SO% -BACXc RZE~-71A. 3. / ~-1 I * CA 1M

7. 7% sAcle JZE~FU77oAJ 4. 1 -Z sQ. I N.

100 */O BI ACk 9V:46iC7TjO ýC- 2.4 1&. M~.

8A c~ xACp LEc Ti om 1 4. < 4

PESULTS p /Atf5-jTd~4,v/4~~I

I C-29

Page 201: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcom LEAF SPQINGSs

U-712ASON.IC, OCA5j I?.SPCT10Ai

SPPM"G No. R-5 5m. I 3 -X~r-k TYP15 0_50 P;Am~ErRC xDC~kREG 2,-J.fM'4

REP. RATE- 5 NERG'4 GAIN 40 dB ATnrN. 7-16 .dB

AMe PERJY. OUJTPUT 0.2V CATE DELA~IO-o ~ 6TEwiDH _____

Scrn ~ ~ ~ IDC I ____ s~ NCA O-25If. jD1EX DIREe.TjotJ V~

INDICATIoA* LEvELIOIa/A 4pxA £-q& r 'S r

2. 2:5% 94cic ecjLwcr/dAj z. 'Iq - 'z sq.

3~So% 2AC REA&OAJ 3. %, - I CA. 11.4.75% 8.~ e~mEPLd~nOAJ 4. 1- so. 1 r4.

1.00%0/ SRk QeF:LrECT'jO S.2-4 $4. -J. -

4. aG 8 ieger~Lc-rioA 4. <4 :sa im.

RESULTS: A26- 2 -213f ~v

C- 30

Page 202: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

-TAcom LEAF SAQ".N6S

UJLT-ASON4C C-SCA MScTo&

SPIN No. RS2 XDCP TYPE5 10-52 B""r-iC. -xocP FSZSZQ.'

R~EP. RATE FNEG 2 GAIN r0 -dB ArTMN. 10-19 11

AY6. PERIL OUTPUJT .0.2 v GIATE DELAI /) 0 )-'Ayrfw o'OU. 's WT ~/0 05

IND$CATION LEVEL /AImoieT-lomJAE Cr~

1. NOT bETAMAM > Xf 5* 0"

2. 2:5% 8i PCFM.CMAS.J 2.'/'I - '/;Z~.M50S% 2ACXC REPa<77-0,4 3 1 -IC. -' M

4.76% SAcje IQE)PLa1Om 4- b-Z sa. Im.~.100%l SACk REjC7-JAJ S. 2.4 54. -l-

6. C R-RCi F~LECTtOJ ea. <4 50

PESULTS: t10o hFC~rFAJ/V//lOU

C- 31

Page 203: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SPR"N&S

lLT~2A So Nc C-SCA~ IN-SileCTIOA

!E rl . p~I mc Na XDCPL TYPE 0.5 AgAM*RC XDC _______14z

SIEP. RATE Sk NERG'f 2- GAIN .40 dB AnIN. /, -1 d

Ayva. PERIL OUTPUT 0. 2 v a~ DEL.~y At~r C6.qE WJDTN ________

SCRN~j Spect) 16LS l~o&7p.yca 0.025 in. 'It4ODY DIPEC~TION UR7

(NOICArIOA LEvEL /IoicqrT)oA 42rA <C-PrNr 7H'S SIDO&

1. NOT bP,,D.,h I. > /-f sa.IM

2. 2% eao~cx Rr.FmCrK,.Aj Z. 'If Vz SQ.,'.

7.6 7/1 SAcig QELM~ 4. 1 - sa. iNm.

100 '/@ BA. 5REMPLECTAJO 2.24 SA 'J

16. 4 BACX QFit.rIC~OA a. <'4 soim

RESULTS: / 2 Id)~ e/3S pc~V~

/0 /0>

I ~C-3 2

Page 204: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

MAOM LEtýF Sp~ziNs

U.LT2ASON(jC C-SCAM INJSPECTIONi

SIIki"G Na. ~5 5XDC t TYPG 0-7 Pqiii'eLlC: XDC9a FREQ. _____

REP. RATE SA~ FNERG-'4 2GAIN .40 dB ArrN.

AY6. PtawI. OUTPUT 0.2v V ArE DELq-f 10 1?4ý .,7E WIDTH 1'4

C~ ' 15 NJc Q 025 in. DIEToJ

INDICiATfOi LEVEL INOICARTIOAJ 4-A~A•fNT- ,sSC

1. Nor- bvETE1amr 1. > '-f so I".

2.% SA/. ci Rntmcrh6A Z. '1q - Vz/s.z23. 50% 8ACXc REP.L7oAJ3. 1 iCiM

4-.j 75Q EPV1JATCoAj 4. 1 -zQ so.

~. tOV. AC~k RE~LECTCA C. 2.4 54. a's.

RES6, S a (c PF~uc-no a. <~e 4 2.

F- C- 33

Page 205: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SPRING4SS

ULrIZSON.IC C-5CPm fI.JSAtECTIOAJ

C~ir No. 9-- SJ"' Ii X~-J 7YP o .5'0 JA~mmEreicZ xDCA Fl e

REP. RATE Sk E*NE~G' 2 GAIN ?0 -dB AT77E.0-04

AVG. PERK OUTPUT 0.2 v (SATr DEL4, )oZw5 ' 4' 6E WiDTm _____

,lcRqw specr, s Ipt~Jb-TNCJ 0 .02.5 in. JNDE'A D I RE CTI 0J iI6e r

INDICATIOMs LEvaL /JJOICRJAJ A1EA SYA7-v T,-/S :51061. NOT ZIETE&PVAJEb I. > "if so. I".

4. SO%/ BACX REPad<710.J -14. 1 ca S. #%.

~.100% 8ACkd REL.CTloM S. 2-4 $4. ,1. -

f(l. aAC'e q~ECR-jCr0$ 4. 4 sm

A EsuLTS :DC VC-L L 2 4,ec-4 Jucr j; F2tT5iPC RFd 7/'-

nA

®It

C-34____________________

Page 206: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LE. F SA A INGs S

LJLTIZASON~c C-.5Cv*. INSPECTIOA3

lk No "%' N ~ I XDC-P. T-YPG 0-120 PpN,2mAirlefcs xDcA R..~ _______

REP. RATE_____ ENE2G'I GAIM. ~40 B ATTErN. /a.-'? dB.-

AM~ PAnIX OUTPUT 0,2v 6~AT DEL~y /2-,'9eTE WIOTH ________

INODI!AT1tm LEVEL Imo0qICOA ,N ~) ii

1. Nor bV.-mamwraJ ~ 1. > '/-1 so. M

2. 2S% 84cic RCFWC71dJ I. '1q '/Z .IM

3. SO% 2ACXC Repi..c76AJ 2. " 1-4. ft.+. 7SO/ SAck 1Q5PL6MO~ 4. 12SQ. I M.

S. 1001/ BACkd REALEC7T0A 4.2.4 Sa. "A. -

16 -AR RFLCTIO J 4. <4 :sa m

RESULTS. (DýC

LC~eL ~ ~ iC-35

Page 207: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcom LEAF SPQ'rGSs

j ILJ.-A SONIC. C-SCAM 1MSPCT,0AJ

REP. RATE *E-NEeG-4 2 AIM 40 dB A-mN. 12iJ dlý

Mrs- A O UTPUT 0.2v CArE DELAi ic)Pfe 1/5 CE WIDTH ________

.5CAW SIec" c•Lc pocpjj 0.025 in. "I 1V D1 REC7TJOJJ L16er7

2. 2.5% 9,cix ReFacr,6,j 2. /aq - Y A tS. So% 2ACX REPU-070AJ .3.,/1- 1 9. 614.

4.7% 8."/cs~e eEPi4WTIoA. 4. 1- Z $4.1100 */oo ACk SEFL.c~ThjAj S.2.4 Sa4. I'l. -

f( < ACM Fci FUCT o~ION 4.(<4

C-36

Page 208: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SPRINGS

ULTRASONIC C-Sci~j IAS~eTloAJ

SPRIkimG No. A-6 SX~l f41 X~- T106 0-YO Pp,.JAm.r--cs xDCSL FZE,$._______

REP. 'RAT SA1 2 -ER GAIM 40d B ArrN. JD- le dB

AY6. PhRi OUTPUT 0.d ArE DEL4'I W02 4P CAE&.OTH 5-1c -'

~n~j $p~rj L~S ~ Jp~j~ 0. 025 in.. -j VT

IN~sCATIOM LEVEL 42CI~~TIM A.tI. Norr bEQ.,amiia I. > Y- o.IM

2. 26% aeacx .CRej~,CraAj 2. '1'. Va sq.iit*.

3. SO% 82.CX REP4cl7OAJ 3. Ca ~. IN.

S. 100 *. BACk REPfl.CTJAM S.2-4 5A. I&'. -

'. ~~AC~~~UCIONI 4. <4 sa

RESUL.TS (3 Levfl 2 Zeq Oe-RT# ~~u' 'ee ,iZ)arOv

C-37 ~

Page 209: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

j ' TACOM LEAF SA'RINS

Uur2A SO NC C-cA~ INSPPCTI0AJ

10-31-80

S~km No. XDC.ILI ~. TYPE 0.50 PpmErlelcs xDCa FRSe. .51

REP. RATE .5l* E*NERG'4 2 gAl 4O.&t ATT7,N. F- /,dB

AYS. PEaw. OUTPUT 0_____2_ V ATE DELqy1 /0 20 t'f ATE LAJJOTI4 -,-/o A-IS

~~cnjLj 0p6 _____101c 0.025 in. NOZI D~E 0-T 10afJ

IMOMATtoAI LEVEcL /maJOicATOA AREA 5A- # '

1. Nov bFa~.7sljjb . > Xf SQ. I M.

32S5% BAC era W Yq 3. 2 4 -SQ I ft.

4S*. 7i%&'cle QEpcrion. 4. 1.-Z so. i m.

~.100 */. 8ACk Q.EPLC710A 1. 2-4 56. lIM.

a. ACM ggrLic-noptJ 4. <4 soIN

k6L - a-W 3 &V

II p 9

fie 2S7

Page 210: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SPRINGS

Ue-r2ASONI~C- C-SCAJ.j I ,.ISAECTIO'&

SPskiw~G No. XDO -P14 T'fP6 0.50 a~m~rkles e.~ M ______

REP. RATE .5*ENE2 2 q GAN 40rdB /6EN dB

AY6. PERIL OUTPUT 0.2V dATE DEL~f O-2,ovs69 (JiT WJODTH ___

~~~ ~ Jp 61P5x 7~JNc*Q 0.025 in.I~C-~~

11IN014ATIOIJ LEVEL. I/OC~A Ad

2. Nor aF-c,&mtCfbEmA 2. ~' / ~'. 25o% SACY. Rr)jac7dA-j 7 . 1/4 4. I

4. 7S 0 BAcit IQEPVW71Om. 4. i-Z $4. IN.~.100 */o SACkd PELCTAIJ S. 2.4 54. .J

<- ' aACK REPLECTIONI 4. <4 ~

A ESULTS: ) 6O iC.,,FI,c4A1r FS#RcA 'Ajo/Q,,qT'0,Ve

C-39

Page 211: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEýF SARIMGs

U'LTRASON.IC C-SCAM% lN~SA-:CT'I0AJ

SPRlk I we N. R<~s~ '7 XDC- 1P. 0.P Q50 1P;,-AmEre~c. xDek F5EQ. ___________

REP. RATE .5*EEGI 2GAIN A0 dB AMrN. ~-~

Ave. PERKt OUTPUT 0.2 V ArE DEL.Rj I -,0 0 vs 6,97E Wiorm -f10 a/s

55A peco D5 IN0cxKN l O. -0025'"in. IN'01 DIREC.TIO$J Vce'r

INOICRTIOM LEVEL 42CCT/AJ ARE '~vT/

1. Nor bF-aj"1,AJ-Fb P.a if5 . .

2. 2:5% Soc.c ArFLEcrKdA. 2.. 'Iq - V Q t3 So% 8Acc R 07oAJ 3. CA ~. .

4f. 7S/. a~c QEPLd7ohj 4. 1, Z so. i.6. 100% */ ACX REF46CTIAJ S .2.4 54 A. 1

i(. aAg iQE TI pJl 4. <4 50 am.

AI. Es-~ tcc-Z'1

2Y-

Page 212: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcOM LEAF SPING'Ss

UJLTPASONI'C C-ScAMj IN.SPECTION

SP'ki" No. R-7 Su1 . Xoe-P TYPE 0.TofAK P AneTPVC- XD~ FR- 2.2! Irn~z.

REP. RATE Sk FNERG11 GA,4, 4 0~ cB ATrHE. 12- 18dB £

AY&.- Phrn OUTPUT V______ loT DLj i-20 IJS 5-0k•

0~R~ ~ 6i .0 t2:5 in. TN 0E V DI RE 171 00J -VeC&

INWAIOTIOM LEVEL- IWOICATIOAJ 42A

1. N O Tr b V ICA M EAJ ~ j . > / -f s o I N S e I TI ýj -/ M ý 5 t2. 2s~% Sqcy. ReFtcr,... 2. '/q - sVa .

3. 50% RAc~c R~pecnaj 3. maI i.4. 760/. 6Acj, IEPL6C710mJ. 4. Z2 so.S. 1001/ 8Ack REFI.CTIOAJ 9.2.4 SA. mJ

I'. 4-aArx -qPcLECTIO?.J I4(.<4 sa

AESUL ®LTU-L 11jprn j2y-) ̂ 9,. 2 3' SPAe '3-.

C-41

Page 213: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcOM. LFAF SPRINSs

L)LTRASO?.ic- C-SCA M SToA

SeP 91 ic Na. 2-7 1 if 2 XDCPL TOGP 0-5-0 FAAAC xDcp. Fpse. 2.2G Ali

REP. RATE 5_____ ENERG4 2 GAIN 40 dB AnIN. /?9-A? dB

AY6. PEAK OuTPUT 0-2y rArE DEL4q'( /0O- 00VS 6~EWiDTH 5- IdA,15

SCAIqi Speco 6 -'P5 )sc Na0.2S in. I~~ IETo'

INRIeATIOAJ LEVEL /NDICqj-TIM 42CEA

1. NOT bEremica,¶E 1. > 'A $.1 M. _________________2. 2.5% BAKqFI.Ec7~a.8lj 7. /1f - Yz A~I.

3. S0% 8ACK REp~oatVAJ 3. 12. CIA.4

If. 76*/. eAct REPI4C7Oti 4. z- so. t3.

1.001/6 BACX REFIECTIOAJ .2-4 54.104. aAlCI q9FLEe-TlOjJ r.-<4 soit.

A esuLTs ® 5JrjA Lc6:5 Durs -70 cv)i~vrue& oi- -Hr s2'J6.q

1c9 j~-,5" :~-5'

C-4

Page 214: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SPRINGS

UJ..r A So iC C-SCAM INSPECTIONi

D re: /0 -2q -80

GPftimGi No. RN-7 sVi i:1 3 X r'Jt 050G ?AMArt1?J(S- xocit FSEa. 2.2 Mi)Jz.

AEP. RATE- Sk 2.K' GAIM .40dB AmnH. 9 16dB.

Aye.. PERIL fuTPUT . 02-' Y ejArE DEIAIf /0~- 20~J "17 -T0T Woo

6c q ~ 5pecS L~%~re Jvcq 0-2 n lNoa DIREC-naJ VEeTf

INODeJATIOAJ LEVSI INDICATIOAJ ARIrA 5AJ7 5/

I. r bETE A).¶,AZ I. > Mf S.C. I M.

2S% 9sC/. -ci RFLC71dAJ 2. 'I. - '/ZSq Iat3. SO% .8ACc RC~~n 3. Vj.' - * !a.Ift

4. 7S*/ sAcie IZEPV-77ot~j 4. 1* - $. 1 m.

S. 100%. SACX RELEjCTJA C2.24 U~. iso.

1(. -4 aACJX R-CUCTIOM - re.<4 saim

jESUL..S. (2 1Ilb'c-'rlc CA)5c.0 '1 SleiuI4L ?VO &~AJG &TU S3L~r-lr PUL-s.NO F44.. /0JIC~q77OAi

2,5

C-43

Page 215: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SPRINGS

lULT2ASoI4IC C-SCA". !INSPECTIOCIl

GP~kIP6 No. 5k i SXile4 ,. TYPE Q*5O 6fJA"Tt7VCS XDCM FZEQ. 2.21; M14Z.

REP. RATE .5k ENE~r.'I 2- AN 4 BATE./d-~ dB

Am Na. P OUTPUT A rAE DEL4, 10-2 IJ 6gAE WiJOr STH 10__415_

scmsec 6-INP5 IvJck a Q) 5 in. INIDI-A~ DIPECTIOINJ .~V6E4T

INOIICRTIop LEveL /MICmT/OA-oj 4Rx.

1. Nor beramisirb 1.> Q If ". f.4?A;HI

2. 2S%. S4cjc RFC7,'O 2. SI' I '4 t.'350% BACc~ RepJ67o0A. 3. Az I ft"'

764 75eAcit IEPLeCTm 4. 1~ -zso. I w

100 f/o BACk RErJ.6CTj0AJ .2.4 $A. 100.

a~ ACM qrrLge-riopj .<4 sa

ESUL.TS ® C Lc-(-3 M LeEA 22

()A/VO 414W ,,t/Dk-A-,77)A) I~~ti Le-c 3 Aic & p

101

C-44

Page 216: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcom LEAF SPRINGsS

UJLT2ASo NiC C-SCAM INS~eCTlOA1

D. C *1-3o-,qo

SP No. I ~ mG N ~ o TlfP 0.50 9JA~j1?.TJCS xDCA Fase. 2.2!9 mP1

R.EP. RATE SkEEG1GAIM 40~ dB AnrN. ?'-4 dB

AY6. PERM. OuTPUT 0'.2v (jTE DELdqj /10-20 AJS 6S9TE WOH _______

~CPII'JS~eNo 6 1N~cc J,~c Qe62S in.- INE D;REe-T-IotJ

I040SCAIom LEvEL 1NOICAT/OAJ 42A PEA soI. Nor bErmmoica~ I. > "'1 sa. I* M" "'.

2. 2:5%. SAM~ RF.C7,'~r.J 2. 'AI - '12 i1Q.a.

3. SO% 2Acx REpaauA.. 3. 'Azj-'C.i.+. 7S,/ eAcjte ~EJPLW~fow 4. 12 -ZSo. It.

~.100%*/ SACM REF4EC7IA S. 2.4 U6. I".'

'. a~ ~Ar~ LEt-nopA 4. <4 sa PA. I

R esuLTs Zonore 3 g ~r 2it(o&isf t,&Izvos)

C-45 >

Page 217: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TAcom LEAF SPQINGSc

ILJ7.2ASO,.iC C-SCAM. 19SPECTI0~J

SP~im~G No. R-)5N L6 CDJt TfPIE 0.50 PANAP~eTEKS xDCOL FPSQ. 2.25 02Z'.

AEP. RATE_______ FNERG'4 __p____- GAIM 40 dBE A7MN. "' (', dB

Avs. P~Rik OUTPUT 0.v6r, DEL41 /0 -.20 uf 67_ ATE iorT /0i Vi~5

SCrn.J s'ect Ms in.C 'INT)E DIREC.TIONJ ~

I,4OWeTIoM LEvEL /MOICATIOA) 4eA SAI1. N~or bF-eamisDfa 1. > 'Af 54' 1 M. i

2. 2:5 % O~cx q(F(.CrwjJ 2. '14 -'z541. 1#.3. SO% 9ACX REP-oC'7OAa I. V% CA1N4. 7SO. S~cm QEPVcnopj. 4. 1 -Zso. I m.

S. 100% B1 A"~ REPLaCThAJ S-2-4 '56. 11J.

(6. ( aAcm Pruc-ropi 1 . <4 sa tra. I

A esuLTs. - /, U&L2 ,4213 /

C-46

Page 218: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM LEAF SPRINGS

IJLTP-A$ON~IC- C-SCAM IN~SPECTION

/0-30-ec0

SPM".G No. 7I sXDI -? TYPE .5 sMr; xDCa MZS$. _____

REP. RATE •*ENEuG'4 2CAIN 40 dB AryrN. f9- 16dB

AY. ER~ Or~T 0. 2v 7;tE Df. /0- 2oA/s S~T WJT. /0____

4 ~ ~ JAD~g0 .025 in. DRTO, ve- -

hJOWARTtOpq LEvEI. -WANCqTCA IsE 9ýA,. 1-1 x1

3. So% 2ACX R~rpLcoAJ 3. ml -*

4. 76*4 eAcie JQEPL6C7106j 4. i-Z so. "i.

IS. 100% V.ACk REFaCTIOA 9'. 2.4 5&. Ill.

16, 8 Ar)X R-crLfcC'rl)J I C.-<4 sa m I

A ESULTS :&tu,-RAc LE'JC4 2 4-~xtý 1,2 ,It)A/c- 5'oVA2Lr,0it v, £4CPA- 5ýAUAC

'25

C 4:7 ____

Page 219: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

C-SCAN FOR COMPOSITE TUBES

C-48

Page 220: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM SNHAVT

5CARF- JOgITr C-5SCApJ

D ATE (7-

TUS.- SN )COCR TYPE ® O.5 2.26I7 4'V M 6.50 5.Onmc uf p..j - Tj4RV- TRANSMISSICN

Emre6v sA,-q" 40B J34r,-ra~ 24 dS aATEr wtonDy__ _ IgATE L)eLAY____

XNorx DIRCITIoN ______"Ct._ S'CANSPeDn

SCANf RIESUI:rs: END SCAN RE'SULYS - EJO®

14jo ,M(c/qA r lq44- ,pju4OAT/OMjs NO 57A6/v/F/CqAWr FLA"4e-' ,J~~rov

1A) 6RAPqlr/rA ~AO~~AI)(/P'T Oee&,vAe

o00

26 . 2o

18

12(

q . I

2 2.

o2 0

C-49

Page 221: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM H -A FTSCARF- JoAjT C-57CAPJ

D ATE:______

Tu! ari s )cR rt~pE MD52.25PMC- 4"T M 0.5 5.6nmC tf mw r~ TiR~JTASM ISSION

EmNFeRsq ____ AIAJ ___ A7~A MV ___ i;ATE L'J/arH____ GiTqE* IMLY__

INOEx DiRefCTIOIJ VZ~Ak'- ZINDEX _T"CP. 5 CAN Sp~eeoIlr 0

scaNj qEsut~rs: E~fh SAN S P. CS u Lr - E'm0

o00

220

12-1

9

2 2-

o2 &

C- 50

Page 222: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM SHA FT

SCARF- JOI~r C-S-CRIJ0 ATE :_____

TusEF sm _____"CR TrypL (A 0~.52-Ism?- 4"F O.S 5.om vf MwE j'..j TR- TgANSMISSION

ERAv 2-ea GAIqul 5AO-'d- Arrv"Af _____ GATE tiJIOPH____ £ DATEA'iY____

ITNi~x Dteccrtom -XT'DEX _TPJCR. _____ CAM. SPCeen____

SCAJ RcsU~rs: Edv SCAN RFSuLTS - rzMO

o00

12 .1

10 &

6-

0.O 0-4--0 ~ ~OBOND

C- 51

Page 223: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM SH-AFT

5CARF- JOiAJT C-5CAP.J

DATE : 14-9/Og

TrUSE' 5N____ XOCa TYPE ® ~ 4 ~; c ~ 7I hD~,!&

EMErRg~ 2 6G,' W~ i Armw~ Jlidig - 4ATEr Wlary_______ t4,qrE OaAy Of

XNDe~x Dieccriom JIAtuL.. NIAJOETFie,. *02-V' SCAN SPee eOI-4

SCANM qESUc-rs: E~fB SCAN RESULrM ENJO

0*

20 .~ ~a srot~20

18

(2 - - - -s - 7o -& e tos 0-1 12

10 10UA No NFLAW /i am 0 ON.OKSd 40 C16AIA -

SJSI A ifcR Me. OR-

q

0 w BN - -- 01

2917 HIGHWOODS SQULEVARO.PC BOX 95006- RA~LEIGH. NC 27625- PHONE ý919J 876-0ýSOA 01VISION OF EXXON CORPORATIV J

C-52

Page 224: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM S ttA FT

SCARF- JOINr C-S'CR,

D ATE: -09

TuuE st4 L. XCR TYiPE M AS"5 ~25,no 4 ® 0~~ -,r~ .fmeuF MO, 'rieu i rntT4m t gzo

,ENArie' 2 6,9iAI .40a. Ar7am -, 10dS GATE IjDirH /O~' -~ !M4rr OeLAy 4S ,vs'

JTNOex DIeecMOp TJ~r')S IPNDEX J- Z j025 S'CAN &,eez -4 IPS

SCAN. RIESUL-TS: E-,h SCAN ARESuLrS - Lm'DQ

NOrl-Awx o br.ýce-~D IA'

0-0

126

1221 2

lo 1

6- f U fj4CfL vols

2. r.

2917l+GA'OOS2OLEVA[)*O 50X9506,RLEIHNC762,P1,ýIE919,176005A2 iI;'lO XOICROAIY

2-5

Page 225: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

TACOM SHAFT

SCARF- JOIA~r C-5*CANS

D ATE:_____

TUBE sm XiL OCR TYPE M0~.5" 2.Zfme4"'f 5® 0 f 'yke- ox'- MWE-D H7/24u * n' d'

ENERIGY IGAIMr 40d' AA Ar7-A(- Pdd8 GAT 4Joi ?.GiT 4•,Ais

INDEJr DIReCCION ___ 327"DCIXJ5".e' J9AA SCN) S~P eD

SCAN~ q-SO~rS: END SCANu RESULT5 ENDO

20

(2 1

(00

90IW~e . .AJEAq 'IQ

4(W -t m~pPIeAloe eoiuD

q

0 P owD-- - 0- N D-~

2W~ HIGH.,vOODS BOULEVARD- P0 6OX C-5005e RA.LEIGH. N~C 27625- PHC'.E (9!9) 876-0050A DIVISION OF EXXON CO;;PORATION I

- - C-54.

Page 226: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

APPENDIX D

LEAF SPRING TEST PROCEDURE

D-1

Page 227: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

D-1. SCOPE

This test procedure presents the requirements for laboratory testing of aleaf spring assembly under vertical loading.

D-2. APPARATUS

D-2.1 Static Load and Rate Test: The spring assembly is to be positionedin the clamped condition in a Universal Testing Machine. The front andrear lengths for the spring assembly are to be the same as these lengthsin the suspension system of the vehicle.

D-2.2 Fatigue Portion of Test: The complete spring assembly is to beused for this portion of the test. It is to be clamped and set-up inan inverted position in a suitable machine at the attitude specifiedfor vehicle installation. The suspension system brackets and/or contactsupports are to be used in the test.

D-3. CONDITIONING

D-3.1 Conditioning: Condition the test specimens at 23 + 2"C (73.4 +3.6"F) and 50 + 10 percent relative humidity for not less than 40 hoursprior to test.

D-3.2 Test Conditions: Conduct tests in the Standard Laboratory Atmosphereof 23 + 2"C (73.4 + 3.6*F) and 50 + 10 percent relative humidity.

D-4. TEST PROCEDURE

D-4.1 Static Load and Rate Test:

D-4.1.1 The spring assembly is positioned clamped in a universaltesting machine. Load spring to 2000 pounds. The torque load ineach U-bolt at the clamp shall be 260 lb.-ft.

D-4.1.2 Release spring to no load position.

D-4.1.3 Compress the spring to the rated load. Rap the springthoroughly with a mallet and record the load reading and theheight.

D-4.1.4 An autographic record of load versus displacement is tobe performed: this is to be a slow-speed sweep of vertical loadfrom zero to 1.8 times the rated load and back to zero.

D-4.1.5 The clamped spring rate at the rated load shall bedetermined.

D-2

Page 228: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

D-4.2 Fatigue Test

D-4.2.1 The complete spring shall be clamped and set-up inan inverted position in a suitable machine at the attitudespecified for vehicle installation.

D-4.2.2 An autographic record of load versus displacementshall be made in accordance with D-4.2.7 before cyclic testingis begun.

D-4.2.3 Each sample shall be subjected to a vertical cyclicloading from 25% of the rated load (compression) to 1.8 timesthe rated load when clamped and shackled. Torque load on eachU-bolt at the clamp shall be 260 lb.-ft.

D-4.2.4 Each sample shall be tested to failure or a maximumof 150,000 cycles.

D-4.2.5 The clamp and nuts shall be re-tightened after theinitial 10,000 cycles and at least every 25,000 cycleshereafter.

D-4.2.6 The test speed shall be 25-110 CPM.

D-4.2.7 Before cycling and after every 25,000 cycles, an auto-graphic record of load versus displacement shall be performed.This is to be a slow-speed sweep of vertical load from zero to1.8 times the rated load and back to zero. The clamped springrate at the rated load shall be determined.

D-5. CALCULATIONS

D-5.1 Calculate the spring rate at the required load from the load-displacement curve:

K= PS

whereK - spring ratePS = slope of the load-displacement curve at the required load

D-6. REPORT

D-6.1 The report shall include the following:

D-6.1.1 Sample identification and fatigue life determined for eachassembly.

D-6.1.2 The autographic records of load versus displacement recordedduring the rate test.

D-6.1.3 The spring rates calculated as required.

D-6.1.4 Looseness of U-bolts at clamp.

D-3

Page 229: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

DISTRIBUTION LIST

COPIES

DEFENSE TECHNICAL INFORMATION CENTER 12ATTN: DTIC-CTACameron StationAlexandria, VA 22314

CommanderUS ARMY MATERIAL DEVELOPMENT AND READINESS COMMAND 1ATTN: DRCMT5001 Eisenhower AvenueAlexandria, VA 22333

DirectorUS ARMY MATERIALS AND MECHANICS RESEARCH CENTER 2ATTN: DRXMR-RCWatertown, MA 02172

PLASTECPicatinny ArsenalDover, NJ 07801

CommanderUS Army TACOMATTN: DRSTA-TSL 3

DRSTA-R 1DRSTA-NS 1DRSTA-RCKM 1DRSTA-G 1DRSTA-RSC 2

Warren, MI 48090

HQ, DEPT OF THE ARMY 1Deputy Chief of Staff for Research, Development and

AcquisitionATTN: DAMA-ARZ-EWashington, DC 20310

EXXON ENTERPRISES MATERIALS DIVISION 2PO Drawer HGreer, SC 29651

EWALD ASSOC, INC 119450 FitzpatrickDetroit, MI 48276

Page 230: I>I · 09/06/1980  · 4.1.1 Leaf Fabrication 93 4.1.2 Assembly 93 4.2 Propeller Shafts 93 4.2.1 Composite Tube Fabrication 93 4.2.2 Assembly 97 5 TEST PROGRAM 98 5.1 Non-Destructive

COPIES

CIBA-GEIGY 1Riggs Engineering Dept8245 A Ramson RoadSan Diego, CA 92111

UNIV OF WYOMINGATTN: D. F. AdamsRm 259, College of EngrLaramie, WY 82071

NAVAL MATERIAL COMMANDCode (MAT0424)Washington, DC 20360


Recommended