+ All Categories
Home > Documents > III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform...

III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform...

Date post: 26-Sep-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
21
Surface Processes and Landform Evolution (12.163/12.463) Fall, 96 - K. Whipple III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited and Weathering Limited Landscapes Transport-limited hillslopes: delivery of sediment to streams is limited by the rate at which soil and rock can be transported (supply » capacity). Hillslope form dictated by transport processes and their spatial variability (conservation of mass; divergence of sediment flux). Weathering-limited (detachment-limited) hillslopes: delivery of sediment to streams is limited by the rate of sediment production (supply « capacity) by the various mechanisms of chemical weathering, physical weathering, and erosional detachment (overland flow; mass movement). Hillslope form is dictated by weathering and erosional processes, conservation of mass and divergence of sediment flux are not relevant. B. Introduction to Hillslope Hydrology Flow Pathways: 1. Horton Overland Flow (HOF). Rainfall intensity exceeds infiltration capacity, overland flow occurs regardless of soil saturation state. Typically arid regions and bare bedrock slopes (small fraction of Earth's surface today). Sharply peaked hydrographs (minutes to channel): storm flow. HOF dominated early Earth history before landplants. 2. Subsurface Storm Flow (SSF) ("Throughflow"). Shallow groundwater flow. Infiltration capacity (rate) exceeds rainfall intensity, downslope flow in saturated zone, usually a thin soil above bedrock or other discontinuity in hydraulic conductivity. Flow rates cm/s - cm/hr, contributes to storm flow and base flow (most flow gets downslope in hrs - 10's hrs) -- strong rise in hydrographs. Dominant mechanism in humid/temparate regions (most of Earth's surface). 3. Return Flow and Direct Precipitation on Saturated Areas (RF, DPSA). Variable source area concept: saturated zones at base of hills (concave topography) grow during wet season/storms. When subsurface flow capacity ("transmissivity") is exceeded, SSF is forced 17 9/17/96
Transcript
Page 1: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

Surface Processes and Landform Evolution (12.163/12.463)Fall, 96 - K. Whipple

III. HILLSLOPE EVOLUTIONA. Definitions: Transport Limited and Weathering LimitedLandscapes

Transport-limited hillslopes: delivery of sediment to streams is limited by therate at which soil and rock can be transported (supply » capacity). Hillslopeform dictated by transport processes and their spatial variability (conservationof mass; divergence of sediment flux).

Weathering-limited (detachment-limited) hillslopes: delivery of sediment tostreams is limited by the rate of sediment production (supply « capacity) bythe various mechanisms of chemical weathering, physical weathering, anderosional detachment (overland flow; mass movement). Hillslope form isdictated by weathering and erosional processes, conservation of mass anddivergence of sediment flux are not relevant.

B. Introduction to Hillslope Hydrology

Flow Pathways:

1. Horton Overland Flow (HOF). Rainfall intensity exceeds infiltrationcapacity, overland flow occurs regardless of soil saturation state.Typically arid regions and bare bedrock slopes (small fraction ofEarth's surface today). Sharply peaked hydrographs (minutes tochannel): storm flow. HOF dominated early Earth history beforelandplants.

2. Subsurface Storm Flow (SSF) ("Throughflow"). Shallow groundwaterflow. Infiltration capacity (rate) exceeds rainfall intensity, downslopeflow in saturated zone, usually a thin soil above bedrock or otherdiscontinuity in hydraulic conductivity. Flow rates cm/s - cm/hr,contributes to storm flow and base flow (most flow gets downslope inhrs - 10's hrs) -- strong rise in hydrographs. Dominant mechanismin humid/temparate regions (most of Earth's surface).

3. Return Flow and Direct Precipitation on Saturated Areas (RF, DPSA).Variable source area concept: saturated zones at base of hills(concave topography) grow during wet season/storms. Whensubsurface flow capacity ("transmissivity") is exceeded, SSF is forced

1 7 9 / 1 7 / 9 6

Page 2: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

Surface Processes andLandform Evolution (12.163/12.463)Fall, 96 - K. Whipple

to return to the surface, contributing to overland flow and storm flowcomponent of hydrographs.

4. Groundwater flow. Slow vertical percolation of water in soil/rock.Rates from cm/hr to cm/yr. Important to chemical weathering ofbedrock, contributes to base flow only (minimal storm response).

C. Hillslope Transport Processes

Slow/Continual Processes

1. Soil Creep (humid/temperate - SSF)

Biogenic Mechanisms (Burrowing, Tree Throw, etc); FrostHeave; Shrink/Swell (clays); Rheologic Creep (slow plasticflow; solufluction -- freeze thaw or wet/dry)

2. Rainsplash/Sheetwash (arid - HOF)

Rainsplash - Rainflow - Sheetwash Continuum. Rain dropimpacts displace sediment "splash", net down-slope transport."Rainflow" is transport caused by disturbance of thin, laminarsheet flow by rain drop impacts. Will consider only unchanneledsheetwash initially.

Rapid/Stochastic Processes

1. Masswasting

Slumps, Earth flows, Landslides, Debris flows, Rock Fall, RockAvalanches

1 8 9 / 1 7 / 9 6

Page 3: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

Surface Processes andLandform Evolution (12.163/12.463)Fall, 96 - K. Whipple

D. Mathematical Description of Processes

Shear Stress

Stress = Force/Unit Area (Pa)

Basal Shear Stress is down-slope component of weight of an object per unitarea of bed [sketch]

F o r c e = W e i g h t W = p g A h

D o w n - s l o p e c o m p o n e n t F x = p g A h s i n O

FS h e a r S t r e s s x b = - £ - = p g h s i n . 0 « p g h S

This is also the basal shear stress exerted by a steady, uniform flow (any fluid)

Partial Differential Equations and Conservation of Mass

[Sketch]

Volume of sediment (V); Volume flux (qv); Mass flux (qs); Depth of soil (h); Ax; At

Vo lume o f sed iment in box (un i t w id th ) V=hAx

Change in volume of sediment in box: AV = AhAx = qvxAt-qvx+6xAt

A h _ _ q y ^ - q „ . d h _ d q v 1 d q sA t A x d t d x ( [ - X ^ d x

1 9 9 / 1 7 / 9 6

Page 4: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

Surface Processes andLandform Evolution (12.163/12.463)Fall, 96 ~ K. Whipple

E. Soil Mantled Slopes: Steady State Forms

Generic Transport Relationship

Kirkby (1971): qs = kqm'sn = kxT's"

Kirkby gives empirical evidence for m,n values for different hillslope processes.

We will (later) examine evidence and derive values from theory, developunderstanding of geologic, climatic and biotic control of various parameters.First we examine implications of different forms of the transport relationship forequilibrium hillslope form. Lab exercise will pursue numerical implementationto allow investigation of boundary conditions (link to rest of landscape) andhillslope responses to transients (e.g. change in climate)

Coupled with continuity equation - can derive relationships for steady-stateslope forms developed under different sets of processes (e.g. differentclimates)

So/7 Creep

Generally Humid/temperate conditions: lc » Rj; m=0, n=1

T r a n s p o r t l a w : q s = k c s = k c - —V ox)

kc = f(rainfall, windiness, freeze-thaw cycles, soil texture, clay mineralogy, etc)

d z 1 d q sContinuity: d t ( \ - X p ) d x

S u b s t i t u t e : D i f f u s i o n E q n — = - , l _■— ( - k —d t ( l - A _ ) M c d x ,- Y ° Z

2 0 9 / 1 7 / 9 6

Page 5: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

Surface Processes andLandform Evolution (12.163/12.463)Fall, 96 - K Whipple

S t e a d y S t a t e C o n d i t i o n : _ _ * _ _ - L = K —d t c d x 2

Integrate (w/ respect to x) : -Lx= K —+ C.c dx

B.C.: no flux across ridge: S=0 at x=0 C,=o ; -Lx=Kc —c dx

Separate variables, integrate -—Lx2 = Kcz + C2-W

B.C.: z=z0 at ridge top, x=0 C_ = Kcz0

Steady-state solution (parabola) -—Lx2 = Kcz+ Kcz0

Lx2z = z-2K.

How are boundary conditions reflected in this formulation? Geologic andclimatic factors?

Rainsplash-SheetwashA_J ; SkpLi^ „jk*r-<- >*)-*-, A * *- to-**-* jro^x

Near the ridge crest (x < xc; v. shallow HOF) rainsplash dominates, away fromridge crest (x > xc) sheetwash (unchanneled) dominates. Transition is due to:(1) sheetwash attains depth at which shear stress exceeds critical value toentrain sediment; (2) deepening sheetwash protects bed from raindropimpacts.

R a i n s p l a s h q s = k r s = k ( - ? L

kr - f(veg. cover, rainfall intensity, raindrop size, soil texture)

2 1 9 / 1 7 / 9 6

Page 6: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

96/LI/6 ££

:uo|;n|os -WS Apee^g

7 _ _ a C n

7X7 •0 -io; (qsB|dsuiej) °x = x \e z osn

b+7T_____IV=20-rt)7 9}bj69}ui pue seiqeuBA 9}B_Bd9s

7 f ¥

b = ^7- 5X = X }B 9}Bn|BA9 'LQ JO-J

. -l_j ._.) =b+J7 (x padsej /m) 9}bj69}U|

?_ ,('*-* ) ? - _ ■ - _ - - £c? ¥ :uo|j!puoo 9;bjs ApB9}s

(,(i>-*> *eCV-i) *( ? t ? ^ °x < x jo;

__*___*7

-"2 = 2 3x > x > o

(o}9 'J8A00 6sa 'ainprai jios 'Ajpedeo uo!}bj;|iju! 'Ajisuojui ||b;u|bj); = M>j

(f-)j['*-*)-f=«ff*-*)-r--» qsBM^eaqs

»/^*«_4_ _Y " P_» 7/^(£9P'Zl/£9VZl) uopnjOAg wjofpuvjptw sdssBooaj aovfung

Page 7: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

Surface Processes andLandform Evolution (12.163/12.463)Fall, 96 - K. Whipple

( x < X c ) : z = z 0 - 2K.

(x>Xc): ^^it'H^rr2f / . ; o ' o / i

F. S o i l C r e e p M e c h a n i c s : S S F R e g i m e V ^ ^ ^

Conditions: soil mantled slopes, almost all climates: humid tropical,temperate, periglacial, arid (alluvial fan surfaces)

Processes

Biogenic: Tree Throw, Burrowing mammals/insects/worms, Foot tread (Non-Rheologic Creep)

Soil Mechanics:

Non-Rheologic: Wet/dry and Freeze/thaw; Frost heave (grain-by-grain liftand fall); Shrink-Swell clays.

Rheologic or "True" creep fluxes (mass flow). Liquefaction (solufluction -- extreme case of freeze-thaw). Plastic or visco-plastic flow (mostly inclays, slow deformation of sand embankments also modeled this way).Note: Mass movement processes (Earth flow, landsliding) averagedover space and time can be modeled as non-linear diffusion (K = f(s)).

All mechanisms flux is dependent on slope, soil texture, and soil moisturecontent (though in different ways), some dependent on temperaturefluctuations, and/or soil depth.

Theoretical treatments: Davidson, 1889 (frost heave); Kirkby, 1967 (frost heave,shrink-swell); Mitchell ("Fundamentals of Soil Behavior": Statistical mechanics,analogy to thermal activation -- rheologic creep).

2 3 9 / 1 7 / 9 6

Page 8: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

Surface Processes andLandform Evolution (12.163/12.463)Fall, 96 - K. Whipple

Velocity Profiles and the importance of differentiating non-rheologic fromrheologic creep:

Sketch: Idealized non-rheologic soil creep (slope dependent only - onlysurface flux)

Sketch: Typical non-rheologic soil creep (velocity profile develops due todepth dependence on frequency and magnitude of distrubance [biogenicor freeze/thaw])

Sketch: Possible rheologic soil creep velocity profiles.

Assume rheologic creep can be approximately modeled as slow viscousflow:

d v i i . d z

/

d z p e f f " p e f f d x a

I n t e g r a t e t w i c e : q = - a 2 — —r^effdx

Note: effective topo. diffusivity (K) K = ^-H-fff•ff

Creep Rates (field/lab measurements)

Methods:

Young Pit (pins or thin metal plates in side wall of trench, refilled); RudbergColumn (column of wooden dowels inserted in auger hole); Flexible pipeoutfitted with tilt sensors (Fleming and Johnson, 1975).

Biogenic fluxes (burrowing and tree throw): estimate average volume (V) ofmaterial, average down-slope shift of center of mass (x), number of

2 4 9 / 1 7 / 9 6

Page 9: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

Surface Processes andLandform Evolution (12.163/12.463)Fall, 96 - K. Whipple

occurences (n) per unit time (dt) per unit area (A) in study site (Dietrich andDunne).

Volume x distance x n times / unit time / (Area study)

nVxQs = Adt

Longterm accumulation rates in topographic hollows (sediment budget:Dietrich and Dunne). Estimates by Reneau, Benda in PNW, generallyconsistent with other methods. Hollows are periodically flushed out bylandslides/debris flows; radiocarbon date from base of soil gives estimate offilling time.

Results:

Generally not that good: direct slope dependence difficult to demonstrate.Problems: distrubance, different density, moisture content, etc; inaccuratepossition measurements; differential transport of different size objects (dowels» soil grain size). [Sketches]

Examples: Kirkby (1969)

Creep Rates from Be10 Budgets

Be10 rapidly adsorbed onto soil particles (soil traps all of atmospheric fluxdelivered by rainfall, except overland flow loses). If no Be10 in bedrock, simpleBE10 mass budget can be used to estimate creep rates, and thus test slopedependence, depth dependence, soil moisture, etc. McKean et al (1993,Geology) describe simple balance assuming plug flow (constant velocity withdepth - flux should be depth dependent! - but only 20-25% difference to Be10budget).

jPBe(x)dx = jp(x1z)Vs(x,z)eBe(xtz)dz

Assumptions, integrating. CBe is vertically averaged concentration

2 5 9 / 1 7 / 9 6

Page 10: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

96/LI/6 9£

(ejBLUip-ojoiuj) uojjBjuauo dJBos puB ;u.6!aq dJBos uo ^Ajsn^ip,,jo aouopuodap pui; (S88-698 d 'Z6 '9861. 'ling VS9) ublu|oq pue'sojejd

•6u!T48s p|9y. jo; >j „9}Bjq!|Bo„ o\; ;o 9}biu!}S9 ;u9pu9d9pui pggu - pnpojd j>|;0 9JBUJ!;S9 S9AU9p A|UO uwn - S9|i;0Jd 9dO|S p9AJ9sqo o\ tt{i_[„ s|9poiu uoisnjjia

9sod9j ;o 9|6ub \e 9q o; poiunssB S9||;ojd |bj;ju|

uoiieuiuudidQ ab\/ djeos-yne-j ui osp

x3Bd ~nddiiiM _y -- 96 'md

(£9P'ZT/£9VZl) U01WJOA3 uuofpuvjpuv sassdoojj dovfing

Page 11: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

_ -'Wt' 'd 'S£6I "M-MIS ™OJj) -sonoBid ssm-pmq (o) pu. _3ao.3Atn:)3o3A (q) «.jnjx.j i_.i..ijip (.) J0 sjios joj S3A_n_ fcovdvo _on__inj_-r e-9 *ml_j

(sjnoq) ii-Juiej jo j_suo jsjje .uiijl

e 3 I 0

pu.| pauopucqg 'sjeqpuE[ pois-joj-amj

(sjnoqJ^EjuiBJ jo jssuo jsjje .mix

£ ^ i o e

1U3U13S.U.UJ oUtZ.Jo JOOJ

]U3UJ3_EU.UJ SurzEiS pooQ

- I 1 I I

spio'ico ui qou '|ios Xhop3JniX3.J-3Ulj

Ui.O| A"pUES 'X[|3AEJ9p3JniX'31-3SJB03

(B)

fr E"

tCSo/ojp.tjj991

*0I J31(_Eq3 DTI p3quos3p 3JEMogssEq pire jjouiu uuois oupEJEdss jo spoqi3j/>j -uisEq j3pmorp'-3-Bnbs-(X)l

. rao.j mjoisnrej e oj ssuodssj in A\og_.E3Jis jo qdEjSojpXH _"6 aJnSijj

0

, 0

9"0

.'0

MO[J 3SEQ

KooicuptCfj8SZ

Page 12: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

•>i-

scharge (cm/hr)

p_D3}U.

snou.A:m-pp tj?tit]MOrj

41 s/Aoqsjo ajoin

q atSnts■ j j n t _ j j o

^ l - i n i E SpH_T_3AOusq 'Mog1_J 3S_tfj;o STns_q?)1__ IT}tA\

srioi pn-BasriBoaq

aotj ptreisamp, §.tJJ33.I-T-3_i XjddiisS3ppO|3A

39

VW^fW/cY Jidc/

-IS

Page 13: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

-WHT-Bimi

269Runoff

Processes

Contour interval 10 feet

Summer

3 Autumn

Immediately aftersnowmelt period

Figure 9-12 Seasonal variation of pre-storm saturated areain a catchment with steep, well-drained hillsides and anarrow valley floor, Danville, Vermont. Compare thisseasonal change with the changes during a single rainstormon the same area in Figure 9-11.

Figure 9-12, which portrays the pre-storm saturated area at three times ofthe year for the basin shown in Figure 9-11. Because this runoff-producingzone occupies only a small proportion of the watershed, even small changescan cause important differences in the volume and rate of runoff when rainfall occurs. An even larger seasonal fluctuation of the pre-storm saturatedzone can be seen in Figure 9-13 for a catchment with gentle concave hillslopes and poorly drained soils.

The saturated "areas may not be easy to see, especially in dense forests.They are best seen during warm weather in early spring (see Figure 9-14).At that time the dead sjass on the well-drained areas dries quickly to a light

-

Page 14: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

TABLE IVariation of exponents m and n in the empirical relationship C cc am. (slope)" obtained

from equation (12)

Process m Sources

Soil creepRainsplash

00

Soil wash 1-3-1-7

Rivers 2"3

i*o C. Davison, 1889; Culling, 19631-2 Schumm, 1964; Kirkby and Kirkby

(unpublished data)1-3-2 Musgrave, 1947, U.S. Agric. Res. Serv., 1961;

Zingg, 1940; Kirkby, 1969.3 Derived from Leopold and Maddock, 1953

26 M.J. KIRKBY

figure 4. Dimensionless graph showing approximate characteristic-form solution for elevation 7/70 =y/Vo, in terms of /(x)//(xi), where

/(xH_V7w / Jx(equation 21); and for the exponent n taking values i-o, 2-0. The approximate solutions are obtained as themean of the upper and lower bounds in equation (20), with A chosen to satisfy the boundary condition at

base level (V = o at x = xt).

FIGURE 5. Dimensionless graph showing approximate characteristic-form slope profiles for a range ofprocesses from Table I, for the simplest case p= 1, k—▶ *», p-*co. Approximations are on the same basis asin Figure 4.

Page 15: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

*X[rEonJ3A ua\oi_ Arjusnbssqns 3AEq 'ju3UI3aoui sdo's jo pousd e Suunp pajiu X'qEujnsaid 'ssaij rreius 1*9

•d33JD nos J° SArjEorpur aq 01 ppq*A]31EJn3DE S/EA\rE JOU p_T 'AnJOUJ

-UJOD 33U3piA3 P13IJ JO S3dA*i. €'9 "«MJ

sdssdoouj puv s\vu3ivy$ ddo\si\\n £*7T

Page 16: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

0soo0ins(__+2rt.)(pm}ij7soo[('Hlzw)-U+zl)] + ,0

= _/

:s9UiOD3q usqi uonEnbs sdojs.JIUIIUI 3M5 OS UOlSSqOO l_3JEddB se p_*jB_od_o_uiSl'siOOJ JO 10SJJS 9-LL -*\&™* W m- P9U^3J 9JBsjooj S3J1 pu. sainpnns rBoSoppsd qotqM ut xoqjBsqs pi-ij 33jei _ iniM painsuaui si qiitois JBsqsnos s3doTS psissioj uo -mpiispu-i jo saipnis q•(6Z.6I 'znJD puu Aaold op) lizwg ui snos MopqsintM S3dolS daais uo SuipRspu-i -UlJOUIO.d SBpsimuspi uaaq snq uisnr.qo.ui X8ffB| Wfl ^objo pu.srauu-uo JOOJ Suop Monisiui ptre uonBJjnjut pid.JJOI SUOUipUOO 9piA0Jd SSSJ1 1SBJU100 Ag 'SUOSBSSAjP ui SuppBJO pub mo SuiAjp nos sqi }UOMldAbui pun jsuq JB31 irim nos *ll waoo osp Asqi• uon«imn nos lusASJd jo ABpp snqi Asqi pu . uoudso

•33X1 U3IJEJ

C jo ulaisXs looi Sinptsids Afl-IWH inq A-orrnqs 3-l 6'9

-jajui PUB uorjBJidsuBJj jo ipssj b sb siqsi jsibmam SuuaAvoi Aq 3Jnisioui nos *J!P0UI S39-I 00

•ajnriBj reijuaiod. io jsisiuusd aqj punoJB itreuodun fyMfta&ndsjb s;o3jj3 Suioiojupj pjanq *(6Q WX) EcPI O'cloi o' I J0 3§UEJ 3lP u* sira AnTjnsn M07qM n°S 3lp OJuoisaqoo ju3JBddE ub spuojd puB (8*9 s+bij) .poi-J31UI qorqM _3pOA-|9U JOOJ A\0rr_qS 3ABq SSSJ1 JSOUIsnos MonBqs ui inq >po_ jo nos SuiApapun sqi oitri9uoz ainnBj iBnu3iod sqi qSnojqi sPjbmumoP moj_siooj 3UioS "(6-9 ->TO) s^JOAM3U looj Aq papiA-Old si nos sqi jo iusuisojojuisj potuBqosjAT (£)

■(17961 'SU3A31SpuB doqsie) ^qi jpq moqB Aq ssaijs SuuEaqsaqi _utSB3J0tn 3rrqAA B«p| . Aq SSO-JS Ibuliou aqi3SB3J0UI ubo sadois 31-UB-moi uo S33J} psoBds Apsop'aSiBi ;qi§u3iis iooj Aq issjjo iou si sojoj *iu3i_msqi Aq psonpojd sssjis SuuEsqs Ul ssbsjoui aqi JiAiqiqBis oi r-iusuiuisp aq Abui Aaqi ar§tiB snqi ubiijjai.aig 3JB ssdois SJsqM mq >£ UBqi ssai jo ssdoisuo AimqBls ssbsjoui sssji aqi '(B9l"9 "3l_0 B<PiZ SI 1UBPAA 33U pub o9£ = ,0 'olduiBxs JOJ *M8qM

^uisj;

(0UBlCJSO3j:

•Aq psss3Jdx3 snqi si s.JBqoms aqi jo pajjsSOT *(S33J1 -in JO JU3I3M 3M1 SI J 3J3MM) £/SO0__Aq p3SB3J0ui si 30JOJ ptujou aqi arp.M tfuisx Aqadois b uo 'S3SS3J1S 3uuB3qs sqi aouaq puB sBnqo-jns aqi Suisbsjoui jo iosjjs .in 3ABq sssji (•_)

•(0Z.6I 'M^N PUE ?SH)3dois sqi UAVop Suimow si Puia\ q/uoi 06 E uaqMUSA3 sssssjis -UUBsqs sqi Ol BJ^ I UBqi SSSI SPPB

•3DUEJE313 J-1J - SJE3X 3Alj JS3IOJ p.Uinq PUE I3AOlnD 8*9

-■::l- V

1

11> I i'/.' os J° Suijsvfli ssvjM

1 ■<\-S*d 0-3^/13 35

Page 17: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

saiis 3n3_J3jnsE3ui sqi jo suopisod sqj Sui.woqs 'ssjgo.d sdojs D3.\3Ajnc;—*g -oij;

0005

133d N\ 3DNV1SI0 IVINOZIHOH0 0 G 2 0 0 0 2 0 0 5 1 0 0 0 1 O O S

1.3.0

0001

0021

- OOM

0091

mo

>CDO<mcnm>m<

mm

S3~lld0dd 3dO"lS QNV S31IS

ss.i.w jEnpiAipui io S3U3UJ3A0UI aqi pus >;.o*q ]ios AJOiEJoqE] aqx—'£ "Oil

I ° l U 0 2 I J 0 Hs J cm |0 loo i j t too |0 i | i u i t» IO. (pU| ©

r^ i ! ( j ) i o « j 9 x 0 2 ) x 3 0 i g n o s1U S U J J A O U ) V O | » | 0 3 S J O J » | 0 3 S

G r■ui_0,l' ' ' 1 ' " ' ' 1 I ' " 1 ■ 1

S O 0 " " 0 1 5 0

/ ! \ ° 0

i l v > \

^ ^ ~ ~ ^ ~ - ^ . I / O 0 . f o

O nr o ^ ^ \ ^

s 7

^ 7 ^ 2^7©T

/ \ \ - ^ / /*-«_ /s®y

H O l 3 Q _ _ (

'/Os*^ ^ r t ^ ' ^ s A / /- ^ \ y > - . — ' r <

Page 18: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

•jno.o 01 si uoijEpi'osuo. jsu ou jt 'justusAom sqj j_a"jj3_jos° sqj 'o ijuiod sqj joj ssdjoj jo 3|_ue;jj sqj 'q f'jos sqj ui juiod v je Suijde ssdjoj sqj_'.—■? -qij

jusujsaouj jo Xjjsujoaop) SSDJOJ JO 3|6U0IJX(Q) •J JUIOd O JO SSDJOJ(D)

•AJosqj jusssjd ujojj sjtjojd XjpopA psjDipsad 'p .'A'josqj uosiaeq ujojj D'uojd a'jidojsa psjDipsjd 'o !(uosia_(-jsjje) spijJEd jtos e jo qjEd ]EnjDE 'q '. (uosiaeq jsjje) spijjrd pos r jo qjcd rcoijsjosqjL 'v—*T 'OI_[

Page 19: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

UoL.3in

-oc

Br- 160

- 1 2 0

i i i I ' i — : : t i | r i ! i ' i i i i i i

2 0 ~ 0 6 0horizonto' distance (m)

1 0 0

c0)a>

_>

o vc *.2-di sUJ

T

\v.

\CLTP1

• ? C p P P .

*—_L-"- 0**__ - *c!s

/ V

- o ___ -

_ 1 2 3 —

^ ^ I 2 3 j ^ _ _ _ >

30 (m)_j

Figure 1. A: Hillslopeprofile (see B for location) wtth sol! horizondefined on vertically exaggerated right-handdepth scale. Inset figureshows 10Be and soilmass balance over someslope profile length Interval x P„ = hillslope"-Be deposition rate; soilcreep mass flux = p,V_tr,10Be mass flux =C__p.V_i*>; and soil production rate = p^ B:Black Diamond altetopography. CLTP1,CLTP2, and CLTP3 are'"Be sample locationson slope profile. ContourInterval = 1 m. Scale bar= 30m.

10Be concentration (Atoma/g)

0.0 5.0X106 1.0X1071_5X1072.0X1072_5X1073^)X1073_5X107

BOTTOM OFSOIL LAYER

CLTP1

CLTP2C LT P 3

D.a

100

150

200J?

UNWX ROCKSAMPLEVALUES

W X R O C KSAMPLEVALUES

SOIL SAMPLE VALUES

Rgure 2. Profiles of ,0Be-ration In tost ptts, BJ_ck Dtamc-K.MJnes Regional Preserve. Vertics.Mnes through data points represent sample depth Intervals. Eachdata point Is average of two duaft-cate measurements. Error bassrepresent maximum and minim—eAMS 1 o- uncertainty values fartwo duplicate samples. WX «weathered bedrock and UNWX =unweathered bedrock. Bottom efaoJI horizon In each test pKon vertical axis.

Page 20: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

■enbjuuoej u| AjupnJeoun %st- sisoipui sj»q joxrg *edof«ujeojed eoe ins puno.8 = s *Co) «;«J xnu d.*J_-i|Os *sa edois *C ejnBy

(%) ^<>\S! ? r o o r o s r o 0 1 * 0 s o * o 0 0 * 0

i i i i

/As 09€-*D

I■ /

y /

A

or

O f 3 .

09

08

001

Page 21: III. HILLSLOPE EVOLUTION A. Definitions: Transport Limited ...Surface Processes andLandform Evolution (12.163/12.463) Fall, 96 - K. Whipple D. Mathematical Description of Processes

35

3 0 -

10UJ -ruj 25ccO

S 2 0 -

<UJ2: 15

10-

5 -

N-FACING SCARPS0 =20.8 log ft-9.2n=24, r* = 0.95 / y

/

/

■v T .' x* \ S-FACING SCARPS

S \ 0 = 1 2 . 9 l o g / i + 7 . 2n-32,r, = 0.92#SD-1.5°

W-FACING SCARPS0-16.6 log/i*.^

n-3Q,r--Q.90,SD-.1.3o

ALL SCARPS0=15.9 log n «8.2n=rt92, r'°0.74, SD=32

3 4 5 1 0SCARP HElGHT(ft), IN METERS

20 • 30

25

!_. 20

<o •<zc

1 0 -

I y. n o t I n c l u d e d I n t n i f y t l t . ■, . ' . •

BONNEVILLE SHORELINE SCARPS_• "» 1.35/7+3.03n-69, rt 0.77, SD-2.14X10"*m*/yr

2 5x

W-FACING IDAHO SCARPScM.54/7'0.90n=30, r*--0.84. SD=1-24 X10**mVyf

- l —10 15

h (SCARP HEIGHT). IN METERS

I I t r

35

30-

25"

- 2 0 -

a. 15 -

10-

S-FACING SCARPSVr=2.1 h • 1.5

n=29, r'=0.92, SD=3.1 m' ,

N-FACING SCARPSVr - 0.8 n - 0.6n=24, ra-0.90, SD=1.2m'

5 1 0 1 5SCARP HEIGHT (ft), IN METERS

70-

60-

J5&0-GEU l - i

a 3 0 -

20-

SFACING SCARPS. • _ 3 . S O f t - 1 . 7 7 : - "n -32. ('.0.95, SO i4.07x1.-m7yf

* \N-FACINQ SCARPS

c'-0.47/)+2.12n=2.. r«-0.68. SO-M2x10'-Ti'/yT

0. ■*I T5 • 1 0

• h (SCARP HEIGHT), IN METERS

L / ) J


Recommended