+ All Categories
Home > Documents > III-V Nano-Optoelectronics for On- Chip Optical Interconnects · 2017. 9. 5. · 2 . Motivation...

III-V Nano-Optoelectronics for On- Chip Optical Interconnects · 2017. 9. 5. · 2 . Motivation...

Date post: 19-Feb-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
29
III-V Nano-Optoelectronics for On- Chip Optical Interconnects Wai Son (Wilson) Ko Fanglu Lu, Roger Chen, Billy Ng, Thai Tran, Kun Li, Stephon Ren, Connie Chang-Hasnain EECS Department University of California, Berkeley Nov 1 st , 2012 For Internal E3S Use Only These Slides May Contain Prepublication Data and/or Confidential Information.
Transcript
  • III-V Nano-Optoelectronics for On-Chip Optical Interconnects

    Wai Son (Wilson) Ko Fanglu Lu, Roger Chen, Billy Ng,

    Thai Tran, Kun Li, Stephon Ren,

    Connie Chang-Hasnain

    EECS Department

    University of California, Berkeley

    Nov 1st, 2012 For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 2 E3S Tele-Seminar – Nov 1st, 2012

    Motivation

    Integrated silicon photonics Inter- and intra-chip optical interconnects

    for better energy efficiency and speed Bio-sensing Lab-on-a-chip

    Silicon is an indirect bandgap material! III/V material – 2-3 order of magnitude

    higher in absorption and gain Challenges in integrations

    Lattice and thermal mismatch High temperature process

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 3 E3S Tele-Seminar – Nov 1st, 2012

    Lasers on Silicon

    III-V Nanostructures Low growth temperature Small footprint relieves mismatch problems

    Fang et al, Optics Express 14 (2006)

    Heterogeneous Integration Germanium Laser

    Camacho-Aguilera et al, Optics Express 20 (2012) Kunert et al, IPRM, 2011

    Ga(NAsP) Laser

    Chuang et al, Applied Physics Letters 90 (2007)

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 4 E3S Tele-Seminar – Nov 1st, 2012

    Outline

    Motivation New III-V growth mode on lattice-mismatched substrates Nanopillar Lasers

    InGaAs nanopillar laser on Si InGaAs nanopillar laser on MOSFET InGaAs nanopillar laser on silicon waveguide

    Room-temperature optoelectronic devices on Si GaAs APD with very high gain InGaAs LED InGaAs phototransistor

    Summary

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 5 E3S Tele-Seminar – Nov 1st, 2012

    Outline

    Motivation New III-V growth mode on lattice-mismatched substrates Nanopillar Lasers

    InGaAs nanopillar laser on Si InGaAs nanopillar laser on MOSFET InGaAs nanopillar laser on silicon waveguide

    Room-temperature optoelectronic devices on Si GaAs APD with very high gain InGaAs LED InGaAs phototransistor

    Summary

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 6 E3S Tele-Seminar – Nov 1st, 2012

    0 60

    time (min)

    ~ 4 mm

    0.6 mm

    GaAs Nanoneedle Growth Catalyst-free metal-organic chemical vapor deposition

    (MOCVD) growth (Tg~400°C) Hexagonal needle shape Single crystalline Wurtzite phase Core-shell growth mode

    500 nm

    HRTEM 3 lattice spacings at tip

    M. Moewe et al., APL 93 (2008) R. Chen et al., APL 96 (2010)

    LC Chuang et al., APL 93 (2008)

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 7 E3S Tele-Seminar – Nov 1st, 2012

    Outline

    Motivation New III-V growth mode on lattice-mismatched substrates Nanopillar Lasers

    InGaAs nanopillar laser on Si InGaAs nanopillar laser on MOSFET InGaAs nanopillar laser on silicon waveguide

    Room-temperature optoelectronic devices on Si GaAs APD with very high gain InGaAs LED InGaAs phototransistor

    Summary

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 8 E3S Tele-Seminar – Nov 1st, 2012

    Low index contrast and absorption loss by Si Helically-propagating modes naturally supported by nanopillars provide optical feedback High Q factors (~4,300) despite tiny footprints Growth parameters can be controlled

    to achieve nanopillar geometry Core-shell growth for suppression of surface velocity

    θ small

    Helical Modes in Natural Resonator

    TM m=5 TE m=4

    TE m=5 TM m=6

    Si n~3.6

    InGaAs

    n~3.7 Low index contrast interface

    Azimuthal components

    Total internal reflection faciliatating

    optical feedback 500 nm

    Silicon

    InGaAs coreGaAs shellGaAs shell

    Silicon

    Chen et al, Nature Photonics 5, 170–175 (2011)

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 9 E3S Tele-Seminar – Nov 1st, 2012

    Imaging Nanopillar Modes Direct confirmation of axial mode propagation Helical modes reflect strongly from InGaAs/Si interface axial standing waves

    attributed to helical modes

    1 µm

    1 µm

    1 µm

    Si

    InGaAs

    70°

    n=1

    n=2

    n=3

    Experimental results

    Chen et al, Nature Photonics 5, 170–175 (2011)

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 10 E3S Tele-Seminar – Nov 1st, 2012

    InGaAs Nanopillar Laser on (111)-Silicon Up to 25 mW peak power (21.7 mW average

    power) when pumped by Ti/Sapphire laser Room temperature optically pumped laser with

    10 mW peak power

    Q~200 β~0.01

    T=4K

    Pth=22 µJ/cm2 Nth~1x1018 cm-3

    1 10 100 1000

    1E-6

    1E-5

    1E-4

    1E-3

    0.01

    0.1

    1

    Peak

    Pow

    er (W

    )

    Pump fluence (mJ/cm2)

    850 900 950 1000

    0

    100

    200

    300

    Inte

    nsity

    (a.u

    .)

    Wavelength (nm)

    1.8 Pth 1.0 Pth 0.8 Pth 0.3 Pth 0.1 Pth

    Below threshold

    Above threshold

    Below threshold

    Above threshold

    0 50 100 150 200 0

    2

    4

    6

    8

    10

    Peak

    Pow

    er (m

    W)

    0

    10

    20

    30

    40

    50

    FWH

    M (nm

    )

    T=293 K

    Pump fluence (mJ/cm2)

    500 nm

    Chen et al, Nature Photonics 5, 170–175 (2011)

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 11 E3S Tele-Seminar – Nov 1st, 2012

    InGaAs Laser on MOSFETs Room temperature operation of naopillar laser

    P=0.74Pth

    P=1.48Pth

    Lu et al, Optics Express, Vol. 20, Issue 11, pp. 12171-12176 (2012)

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 12 E3S Tele-Seminar – Nov 1st, 2012

    MOSFET Compatibility No significant changes observed in MOSFET characteristics after nanopillar

    growth (1.5 hr @410C) Direct demonstration of CMOS compatibility

    Fanglu Lu, et.al., unpublished 2011 For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 13 E3S Tele-Seminar – Nov 1st, 2012

    Nanopillar Growth on Different Substrates

    Si (111) plane can be created on Si(100) or Si (110) substrate, where nanopillars preferentially grow along Si [111] direction nanopillar

    (111) plane

    (111) plane

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 14 E3S Tele-Seminar – Nov 1st, 2012

    Horizontal Nanopillar

    Significant amount of light emits from the bottom of nanopillar

    End-fire coupling is possible with horizontal nanopillar

    SiO2

    FDTD Simulation NP Laser intensity

    Si (110)

    Nanopillar

    Si (110)

    Light output

    Si waveguide

    Nanopillar

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 15 E3S Tele-Seminar – Nov 1st, 2012

    Growth Result

    Silicon waveguide: length~27μm, height~5μm, width~4μm

    Nanopillar: diameter~800nm, height~1.8μm Si (110) Si waveguide

    SiO2 Nanopillar

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 16 E3S Tele-Seminar – Nov 1st, 2012

    Laser Oscillation

    Optically-pumped pulsed lasers are achieved at low temperature 4K Emission wavelength at 915nm Side Mode Suppression Ratio ~ 20dB Threshold power density ~ 1.2kW/cm2 Average output power of 8.7μW (peak power ~ 10mW)

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 17 E3S Tele-Seminar – Nov 1st, 2012

    Waveguide Coupling Result

    Focused ion beam technique is used to create a 45ο inclined facet on the back end, to reflect light upwards

    13% of laser emission couples into waveguide

    Light output

    45ο inclined facet

    Silicon (110)

    Si waveguide Nanopillar

    Vertical Si (111) plane

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 18 E3S Tele-Seminar – Nov 1st, 2012

    Outline

    Motivation New III-V growth mode on lattice-mismatched substrates Nanopillar Lasers

    InGaAs nanopillar laser on Si InGaAs nanopillar laser on MOSFET InGaAs nanopillar laser on silicon waveguide

    Room-temperature optoelectronic devices on Si GaAs APD with very high gain InGaAs LED InGaAs phototransistor

    Summary

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 19 E3S Tele-Seminar – Nov 1st, 2012

    Ohmic Contacts of P-NN and n-NN on Si

    No barrier was observed between GaAs-Si interface Excellent Ohmic behavior

    Current scales with number of NNs Estimated ~1018 /cm3 from I-V curves

    n-NN on n-Si p-NN on p-Si

    L. C. Chuang, et.al., Nano Lett. 11, 385-390 (2010)

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 20 E3S Tele-Seminar – Nov 1st, 2012

    Avalanche Photodiode with High Gain

    p-Shell contacted by top metal n-Core contacted through n-Si Light can only be coupled in

    through the uncoated openings

    L. C. Chuang, et.al., Nano Lett. 11, 385-390 (2010)

    Light

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 21 E3S Tele-Seminar – Nov 1st, 2012

    Avalanche Photodiode with High Gain

    Light can only be coupled in through the uncoated openings High current gain M >250 at -8 V Linear gain with voltage

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 22 E3S Tele-Seminar – Nov 1st, 2012

    Photo Carrier Collection Clear evidence of Si absorption and collection in GaAs NN-APD Exponential decay in off-pad photocurrent limited by the hole

    diffusion length in n-type Si. Experimental hole diffusion length (Lp) of ~340 µm in good

    agreement with published value.

    l=980 nm, 0.26 W/cm2

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 23 E3S Tele-Seminar – Nov 1st, 2012

    Internal E-field Enhanced Carrier Collection

    E-field enhancement by highly curved, cylindrical shape Reaching breakdown field 4x105 V/cm at low reverse voltages Built-in field in vertical direction to help collect carriers

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 24 E3S Tele-Seminar – Nov 1st, 2012

    InGaAs/GaAs/AlGaAs LED Structure on Si Structure begins with n-GaAs nanoneedle core on n-Si In0.3Ga0.7As stops the nanoneedle vertical growth

    transforming needles into pillars P-Al0.2Ga0.8As cladding used to passivate GaAs surface

    As-grown pillar LEDs

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 25 E3S Tele-Seminar – Nov 1st, 2012

    Turn on < 1 V

    Room-Temp InGaAs LED on Si All standard fabrication

    processes As-grown double

    heterostructure diode Excellent LI and IV at room

    temperature

    I-V curve

    L-I curve

    Chuang, Chang-Hasnain, et. al., Nano Letters, DOI: 10.1021/nl102988w (2010)

    0 1 2 3 4 50

    50

    100

    150

    200

    P

    ower

    (a.u

    .)

    Bias current (mA)

    1 µm

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 26 E3S Tele-Seminar – Nov 1st, 2012

    Receiver-less Detector Design

    Logic circuit needs voltage I → V with trans-impedance amplifier

    Photodiode + trans-impedance amplifier = phototransistor Eliminate wire capacitance between photodiode and amp Lower capacitance → higher sensitivity

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 27 E3S Tele-Seminar – Nov 1st, 2012

    InGaAs Nanopillar HBT on Silicon Substrate

    InGaAs nanopillar HBT monolithically grown on silicon substrate

    High optical absorption of III-V material allows small detector

    Small detector offers small capacitance and high sensitivity 2.7

    µm

    1.2 µm 30° Tilt

    Si(111)

    collector, n-InGaAs, 600 nm base, p-InGaAs, 200 nm

    emitter, n-GaAs, 100 nm

    VE

    VC

    emitter base

    collector

    n-GaAs

    p-InGaAs n-InGaAs

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 28 E3S Tele-Seminar – Nov 1st, 2012

    InGaAs Nanopillar HBT on Silicon Substrate

    Leverage nanopillar on silicon as platform to realize highly sensitive III-V HBT on silicon substrate

    Device can be scaled down further to reduce capacitance

    n-Si(111)

    collector, n-InGaAs base, p-InGaAs

    emitter, n-GaAs

    VE

    VC

    Detection area

    1 µm

    Detection area VE

    For Internal E3S Use Only

    These Slides May Contain Prepublication Data and/or Confidential Information.

  • UC Berkeley, Wilson Ko 29 E3S Tele-Seminar – Nov 1st, 2012

    Summary

    Silicon

    InGaAs coreGaAs shellInGaAs Core GaAs shell

    Silicon

    Nanolaser on silicon

    Avalanche photodetector

    Nanolaser on MOSFET Nanolaser on waveguide

    Nanopillar LED

    n-Si(111)

    collector, n-InGaAs base, p-InGaAs

    emitter, n-GaAs

    VE

    VC

    Nanopillar HBT

    Thank you


Recommended