+ All Categories
Home > Documents > IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120 Rev2 3G new - store.comet.bg

Date post: 01-Oct-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
16
IKW25T120 TrenchStop ® Series IFAG IPC TD VLS 1 Rev. 2.3 12.06.2013 Low Loss DuoPack : IGBT in TrenchStop ® and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode Approx. 1.0V reduced V CE(sat) and 0.5V reduced V F compared to BUP314D Short circuit withstand time – 10s Designed for : - Frequency Converters - Uninterrupted Power Supply TrenchStop ® and Fieldstop technology for 1200 V applications offers : - very tight parameter distribution - high ruggedness, temperature stable behavior NPT technology offers easy parallel switching capability due to positive temperature coefficient in V CE(sat) Low EMI Low Gate Charge Very soft, fast recovery anti-parallel Emitter Controlled HE diode Qualified according to JEDEC 1 for target applications Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type V CE I C V CE(sat),Tj=25°C T j,max Marking Code Package IKW25T120 1200V 25A 1.7V 150C K25T120 PG-TO-247-3 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage V CE 1200 V DC collector current T C = 25C T C = 100C I C 50 25 A Pulsed collector current, t p limited by T jmax I Cpuls 75 Turn off safe operating area V CE 1200V, T j 150C - 75 Diode forward current T C = 25C T C = 100C I F 50 25 Diode pulsed current, t p limited by T jmax I Fpuls 75 Gate-emitter voltage V GE 20 V Short circuit withstand time 2) V GE = 15V, V CC 1200V, T j 150C t SC 10 s Power dissipation T C = 25C P tot 190 W Operating junction temperature T j -40...+150 C Storage temperature T stg -55...+150 1 J-STD-020 and JESD-022 2) Allowed number of short circuits: <1000; time between short circuits: >1s. G C E PG-TO-247-3
Transcript
Page 1: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 1 Rev. 2.3 12.06.2013

Low Loss DuoPack : IGBT in TrenchStop® and Fieldstop technology with soft,fast recovery anti-parallel Emitter Controlled HE diode

Approx. 1.0V reduced VCE(sat)

and 0.5V reduced VF compared to BUP314D Short circuit withstand time – 10s Designed for :

- Frequency Converters- Uninterrupted Power Supply

TrenchStop®

and Fieldstop technology for 1200 V applicationsoffers :

- very tight parameter distribution- high ruggedness, temperature stable behavior

NPT technology offers easy parallel switching capability due topositive temperature coefficient in VCE(sat)

Low EMI Low Gate Charge Very soft, fast recovery anti-parallel Emitter Controlled HE diode Qualified according to JEDEC

1for target applications

Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/

Type VCE IC VCE(sat),Tj=25°C Tj,max Marking Code Package

IKW25T120 1200V 25A 1.7V 150C K25T120 PG-TO-247-3

Maximum Ratings

Parameter Symbol Value Unit

Collector-emitter voltage VC E 1200 V

DC collector currentTC = 25CTC = 100C

IC

5025

A

Pulsed collector current, tp limited by Tjmax IC p u l s 75

Turn off safe operating area

VCE 1200V, Tj 150C

- 75

Diode forward current

TC = 25C

TC = 100C

IF

50

25

Diode pulsed current, tp limited by Tjmax IF p u l s 75

Gate-emitter voltage VG E 20 V

Short circuit withstand time2)

VGE = 15V, VCC 1200V, Tj 150C

tS C 10 s

Power dissipation

TC = 25C

P t o t 190 W

Operating junction temperature T j -40...+150 C

Storage temperature T s t g -55...+150

1J-STD-020 and JESD-022

2)Allowed number of short circuits: <1000; time between short circuits: >1s.

G

C

E

PG-TO-247-3

Page 2: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 2 Rev. 2.3 12.06.2013

Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260

Page 3: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 3 Rev. 2.3 12.06.2013

Thermal Resistance

Parameter Symbol Conditions Max. Value Unit

Characteristic

IGBT thermal resistance,

junction – case

R t h J C 0.65 K/W

Diode thermal resistance,

junction – case

R t h J C D 1.0

Thermal resistance,

junction – ambient

R t h J A 40

Electrical Characteristic, at Tj = 25 C, unless otherwise specified

Parameter Symbol ConditionsValue

Unitmin. typ. max.

Static Characteristic

Collector-emitter breakdown voltage V ( B R ) C E S VG E=0V, IC=500A 1200 - - V

Collector-emitter saturation voltage VC E ( s a t ) VG E = 15V, IC=25A

T j=25C

T j=125C

T j=150C

-

-

-

1.7

2.0

2.2

2.2

-

-

Diode forward voltage VF VG E=0V, IF=25A

T j=25C

T j=125C

T j=150C

-

-

-

1.7

1.7

1.7

2.2

-

-

Gate-emitter threshold voltage VG E ( t h ) IC=1mA,VC E=VG E

5.0 5.8 6.5

Zero gate voltage collector current IC E S VC E=1200V ,

VG E=0V

T j=25C

T j=150C

-

-

-

-

0.25

2.5

mA

Gate-emitter leakage current IG E S VC E=0V,VG E=20V - - 600 nA

Transconductance g f s VC E=20V, IC=25A - 16 - S

Integrated gate resistor RG i n t 8 Ω

Page 4: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 4 Rev. 2.3 12.06.2013

Dynamic Characteristic

Input capacitance C i s s VC E=25V,

VG E=0V,

f=1MHz

- 1860 - pF

Output capacitance Co s s - 96 -

Reverse transfer capacitance C r s s - 82 -

Gate charge QG a t e VC C=960V, IC=25A

VG E=15V

- 155 - nC

Internal emitter inductance

measured 5mm (0.197 in.) from case

LE - 13 - nH

Short circuit collector current1) IC ( S C ) VG E=15V, tS C10s

VC C = 600V,T j = 25C

- 150 - A

Switching Characteristic, Inductive Load, at Tj=25 C

Parameter Symbol ConditionsValue

Unitmin. typ. max.

IGBT Characteristic

Turn-on delay time td ( o n ) T j=25C,VC C=600V, IC=25AVG E=0/15V,RG=22 ,L

2 )=180nH,

C2 )

=39pFEnergy losses include“tail” and diodereverse recovery.

- 50 - ns

Rise time t r - 30 -

Turn-off delay time td ( o f f ) - 560 -

Fall time t f - 70 -

Turn-on energy Eo n - 2.0 - mJ

Turn-off energy Eo f f - 2.2 -

Total switching energy E t s - 4.2 -

Anti-Parallel Diode Characteristic

Diode reverse recovery time t r r T j=25C,

VR=600V, IF=25A,

diF /d t=800A/s

- 200 - ns

Diode reverse recovery charge Q r r - 2.3 µC

Diode peak reverse recovery current I r r m - 21 A

Diode peak rate of fall of reverserecovery current during tb

di r r /d t - 390 - A/s

1)Allowed number of short circuits: <1000; time between short circuits: >1s.

2)Leakage inductance L and Stray capacity C due to dynamic test circuit in Figure E.

Page 5: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 5 Rev. 2.3 12.06.2013

Switching Characteristic, Inductive Load, at Tj=150 C

Parameter Symbol ConditionsValue

Unitmin. typ. max.

IGBT Characteristic

Turn-on delay time td ( o n ) T j=150CVC C=600V, IC=25A,VG E=0/15V,RG= 22 ,L

1 )=180nH,

C1 )

=39pFEnergy losses include“tail” and diodereverse recovery.

- 50 - ns

Rise time t r - 32 -

Turn-off delay time td ( o f f ) - 660 -

Fall time t f - 130 -

Turn-on energy Eo n - 3.0 - mJ

Turn-off energy Eo f f - 4.0 -

Total switching energy E t s - 7.0 -

Anti-Parallel Diode Characteristic

Diode reverse recovery time t r r T j=150C

VR=600V, IF=25A,

diF /d t=800A/s

- 320 - ns

Diode reverse recovery charge Q r r - 5.2 - µC

Diode peak reverse recovery current I r r m - 29 - A

Diode peak rate of fall of reverserecovery current during tb

di r r /d t - 320 A/s

1)Leakage inductance L and Stray capacity C due to dynamic test circuit in Figure E.

Page 6: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 6 Rev. 2.3 12.06.2013

I C,

CO

LLE

CT

OR

CU

RR

EN

T

10Hz 100Hz 1kHz 10kHz 100kHz0A

10A

20A

30A

40A

50A

60A

70A

TC=110°C

TC=80°C

I C,

CO

LLE

CT

OR

CU

RR

EN

T

1V 10V 100V 1000V

0,1A

1A

10A

DC

10µs

tp=3µs

50µs

500µs

20ms

150µs

f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE

Figure 1. Collector current as a function ofswitching frequency(Tj 150C, D = 0.5, VCE = 600V,VGE = 0/+15V, RG = 22)

Figure 2. Safe operating area(D = 0, TC = 25C,Tj 150C;VGE=15V)

Pto

t,P

OW

ER

DIS

SIP

AT

ION

25°C 50°C 75°C 100°C 125°C0W

50W

100W

150W

I C,

CO

LLE

CT

OR

CU

RR

EN

T

25°C 75°C 125°C0A

10A

20A

30A

40A

TC, CASE TEMPERATURE TC, CASE TEMPERATURE

Figure 3. Power dissipation as a function ofcase temperature(Tj 150C)

Figure 4. Collector current as a function ofcase temperature(VGE 15V, Tj 150C)

Ic

Ic

Page 7: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 7 Rev. 2.3 12.06.2013

I C,

CO

LLE

CT

OR

CU

RR

EN

T

0V 1V 2V 3V 4V 5V 6V

0A

10A

20A

30A

40A

50A

60A

70A

15V

7V

9V

11V

13V

VGE

=17V

I C,

CO

LLE

CT

OR

CU

RR

EN

T

0V 1V 2V 3V 4V 5V 6V

0A

10A

20A

30A

40A

50A

60A

70A

15V

7V

9V

11V

13V

VGE

=17V

VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE

Figure 5. Typical output characteristic(Tj = 25°C)

Figure 6. Typical output characteristic(Tj = 150°C)

I C,

CO

LLE

CT

OR

CU

RR

EN

T

0V 2V 4V 6V 8V 10V 12V0A

10A

20A

30A

40A

50A

60A

70A

25°C

TJ=150°C

VC

E(s

at)

,C

OLLE

CT

OR

-EM

ITT

SA

TU

RA

TIO

NV

OLT

AG

E

-50°C 0°C 50°C 100°C0,0V

0,5V

1,0V

1,5V

2,0V

2,5V

3,0V

IC=25A

IC=50A

IC=15A

IC=8A

VGE, GATE-EMITTER VOLTAGE TJ, JUNCTION TEMPERATURE

Figure 7. Typical transfer characteristic(VCE=20V)

Figure 8. Typical collector-emittersaturation voltage as a function ofjunction temperature(VGE = 15V)

Page 8: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 8 Rev. 2.3 12.06.2013

t,S

WIT

CH

ING

TIM

ES

0A 10A 20A 30A 40A1ns

10ns

100ns

tr

td(on)

tf

td(off)

t,S

WIT

CH

ING

TIM

ES

1 ns

10 ns

100 nstf

tr

td(off)

td(on)

IC, COLLECTOR CURRENT RG, GATE RESISTOR

Figure 9. Typical switching times as afunction of collector current(inductive load, TJ=150°C,VCE=600V, VGE=0/15V, RG=22Ω, Dynamic test circuit in Figure E)

Figure 10. Typical switching times as afunction of gate resistor(inductive load, TJ=150°C,VCE=600V, VGE=0/15V, IC=25A,Dynamic test circuit in Figure E)

t,S

WIT

CH

ING

TIM

ES

0°C 50°C 100°C 150°C10ns

100ns

tr

tf

td(on)

td(off)

VG

E(t

h),

GA

TE-E

MIT

TT

RS

HO

LD

VO

LT

AG

E

-50°C 0°C 50°C 100°C 150°C0V

1V

2V

3V

4V

5V

6V

7V

min.

typ.

max.

TJ, JUNCTION TEMPERATURE TJ, JUNCTION TEMPERATURE

Figure 11. Typical switching times as afunction of junction temperature(inductive load, VCE=600V,VGE=0/15V, IC=25A, RG=22Ω, Dynamic test circuit in Figure E)

Figure 12. Gate-emitter threshold voltage asa function of junction temperature(IC = 1.0mA)

Page 9: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 9 Rev. 2.3 12.06.2013

E,

SW

ITC

HIN

GE

NE

RG

YLO

SS

ES

10A 20A 30A 40A0,0mJ

2,0mJ

4,0mJ

6,0mJ

8,0mJ

10,0mJ

12,0mJ

14,0mJ

Ets*

Eoff

*) Eon

and Etsinclude losses

due to diode recovery

Eon

*E

,S

WIT

CH

ING

EN

ER

GY

LO

SS

ES

0 mJ

2 mJ

4 mJ

6 mJ

8 mJ

Ets*

Eon

*

*) Eon

and Ets

include losses

due to diode recovery

Eoff

IC, COLLECTOR CURRENT RG, GATE RESISTOR

Figure 13. Typical switching energy lossesas a function of collector current(inductive load, TJ=150°C,VCE=600V, VGE=0/15V, RG=22Ω, Dynamic test circuit in Figure E)

Figure 14. Typical switching energy lossesas a function of gate resistor(inductive load, TJ=150°C,VCE=600V, VGE=0/15V, IC=25A,Dynamic test circuit in Figure E)

E,

SW

ITC

HIN

GE

NE

RG

YLO

SS

ES

50°C 100°C 150°C0mJ

1mJ

2mJ

3mJ

4mJ

5mJ

6mJ

7mJ

Ets*

Eon

*

*) Eon

and Ets

include losses

due to diode recovery

Eoff

E,

SW

ITC

HIN

GE

NE

RG

YLO

SS

ES

400V 500V 600V 700V 800V0mJ

1mJ

2mJ

3mJ

4mJ

5mJ

6mJ

7mJ

8mJ

9mJ

10mJ

Ets*

Eon

*

*) Eon

and Ets

include losses

due to diode recovery

Eoff

TJ, JUNCTION TEMPERATURE VCE, COLLECTOR-EMITTER VOLTAGE

Figure 15. Typical switching energy lossesas a function of junctiontemperature(inductive load, VCE=600V,VGE=0/15V, IC=25A, RG=22Ω, Dynamic test circuit in Figure E)

Figure 16. Typical switching energy lossesas a function of collector emittervoltage(inductive load, TJ=150°C,VGE=0/15V, IC=25A, RG=22Ω, Dynamic test circuit in Figure E)

Page 10: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 10 Rev. 2.3 12.06.2013

VG

E,

GA

TE-E

MIT

TE

RV

OLT

AG

E

0nC 50nC 100nC 150nC 200nC0V

5V

10V

15V

960V240V

c,

CA

PA

CIT

AN

CE

0V 10V 20V10pF

100pF

1nF

Crss

Coss

Ciss

QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGE

Figure 17. Typical gate charge(IC=25 A)

Figure 18. Typical capacitance as a functionof collector-emitter voltage(VGE=0V, f = 1 MHz)

t SC,

SH

OR

TC

IRC

UIT

WIT

HS

TA

ND

TIM

E

12V 14V 16V0µs

5µs

10µs

15µs

I C(s

c),short

circu

itC

OLLE

CT

OR

CU

RR

EN

T

12V 14V 16V 18V0A

50A

100A

150A

200A

VGE, GATE-EMITTETR VOLTAGE VGE, GATE-EMITTETR VOLTAGE

Figure 19. Short circuit withstand time as afunction of gate-emitter voltage(VCE=600V, start at TJ=25°C)

Figure 20. Typical short circuit collectorcurrent as a function of gate-emitter voltage(VCE 600V, Tj 150C)

Page 11: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 11 Rev. 2.3 12.06.2013

VC

E,

CO

LLE

CT

OR

-EM

ITT

ER

VO

LT

AG

E

0V

200V

400V

600V

0A

20A

40A

60A

1.5us1us0.5us0us

IC

VCE

I C,

CO

LLE

CT

OR

CU

RR

EN

T

0V

200V

400V

600V

0A

20A

40A

60A

1.5us1us0.5us0us

IC

VCE

t, TIME t, TIME

Figure 21. Typical turn on behavior(VGE=0/15V, RG=22Ω, Tj = 150C,Dynamic test circuit in Figure E)

Figure 22. Typical turn off behavior(VGE=15/0V, RG=22Ω, Tj = 150C,Dynamic test circuit in Figure E)

Zth

JC,

TR

AN

SIE

NT

TH

ER

MA

LR

ES

IST

AN

CE

10µs 100µs 1ms 10ms 100ms10

-3K/W

10-2K/W

10-1K/W

single pulse

0.01

0.02

0.05

0.1

0.2

D=0.5

Zth

JC,

TR

AN

SIE

NT

TH

ER

MA

LR

ES

IST

AN

CE

10µs 100µs 1ms 10ms 100ms10

-2K/W

10-1K/W

100K/W

single pulse

0.01

0.02

0.05

0.1

0.2

D=0.5

tP, PULSE WIDTH tP, PULSE WIDTH

Figure 23. IGBT transient thermal resistance(D = tp / T)

Figure 24. Diode transient thermalimpedance as a function of pulsewidth(D=tP/T)

R , ( K / W ) , ( s ) 0.229 1.10*10-1

0.192 1.56*10-2

0.174 1.35*10-3

0.055 1.52*10-4

C 1=1 /R 1

R 1 R2

C 2=2 /R 2

R , ( K / W ) , ( s ) 0.282 1.01*10-1

0.317 1.15*10-2

0.294 1.30*10-3

0.107 1.53*10-4

C 1=1 /R 1

R 1 R2

C 2=2 /R 2

Page 12: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 12 Rev. 2.3 12.06.2013

t rr,

RE

VE

RS

ER

EC

OV

ER

YT

IME

400A/µs 600A/µs 800A/µs 1000A/µs0ns

100ns

200ns

300ns

400ns

500ns

TJ=25°C

TJ=150°C

Qrr,

RE

VE

RS

ER

EC

OV

ER

YC

HA

RG

E

400A/µs 600A/µs 800A/µs 1000A/µs0µC

1µC

2µC

3µC

4µC

5µC

TJ=25°C

TJ=150°C

diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPE

Figure 23. Typical reverse recovery time asa function of diode current slope(VR=600V, IF=25A,Dynamic test circuit in Figure E)

Figure 24. Typical reverse recovery chargeas a function of diode currentslope(VR=600V, IF=25A,Dynamic test circuit in Figure E)

I rr,

RE

VE

RS

ER

EC

OV

ER

YC

UR

RE

NT

400A/µs 600A/µs 800A/µs 1000A/µs0A

5A

10A

15A

20A

25A

30A

TJ=25°C

TJ=150°C

di rr

/dt,

DIO

DE

PE

AK

RA

TE

OF

FA

LL

OF

RE

VE

RS

ER

EC

OV

ER

YC

UR

RE

NT

400A/µs 600A/µs 800A/µs 1000A/µs-0A/µs

-100A/µs

-200A/µs

-300A/µs

-400A/µs TJ=25°C

TJ=150°C

diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPE

Figure 25. Typical reverse recovery currentas a function of diode currentslope(VR=600V, IF=25A,Dynamic test circuit in Figure E)

Figure 26. Typical diode peak rate of fall ofreverse recovery current as afunction of diode current slope(VR=600V, IF=25A,Dynamic test circuit in Figure E)

Page 13: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 13 Rev. 2.3 12.06.2013

I F,

FO

RW

AR

DC

UR

RE

NT

0V 1V 2V0A

20A

40A

60A 150°C

TJ=25°C

VF,

FO

RW

AR

DV

OLT

AG

E

-50°C 0°C 50°C 100°C0,0V

0,5V

1,0V

1,5V

2,0V

25A

15A

IF=50A

8A

VF, FORWARD VOLTAGE TJ, JUNCTION TEMPERATURE

Figure 27. Typical diode forward current asa function of forward voltage

Figure 28. Typical diode forward voltage as afunction of junction temperature

Page 14: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 14 Rev. 2.3 12.06.2013

Page 15: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 15 Rev. 2.3 12.06.2013

Ir r m

90% Ir r m

10% Ir r m

di /dtF

tr r

IF

i,v

tQS

QF

tS

tF

VR

di /dtr r

Q =Q Qr r S F

+

t =t tr r S F

+

Figure C. Definition of diodesswitching characteristics

p(t)1 2 n

T (t)j

11

2

2

n

n

TC

r r

r

r

rr

Figure D. Thermal equivalentcircuit

Figure E. Dynamic test circuitLeakage inductance L =180nHand Stray capacity C =39pF.

Figure A. Definition of switching times

Figure B. Definition of switching losses

Page 16: IKW25T120 Rev2 3G new - store.comet.bg

IKW25T120TrenchStop® Series

IFAG IPC TD VLS 16 Rev. 2.3 12.06.2013

Published byInfineon Technologies AG81726 Munich, Germany© 2013 Infineon Technologies AGAll Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or

characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or

any information regarding the application of the device, Infineon Technologies hereby disclaims any and all

warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual

property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearestInfineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on thetypes in question, please contact the nearest Infineon Technologies Office.The Infineon Technologies component described in this Data Sheet may be used in life-support devices orsystems and/or automotive, aviation and aerospace applications or systems only with the express writtenapproval of Infineon Technologies, if a failure of such components can reasonably be expected to cause thefailure of that life-support, automotive, aviation and aerospace device or system or to affect the safety oreffectiveness of that device or system. Life support devices or systems are intended to be implanted in thehuman body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonableto assume that the health of the user or other persons may be endangered.


Recommended