+ All Categories
Home > Documents > Image at: .

Image at: .

Date post: 21-Jan-2016
Category:
Upload: junior-pierce
View: 219 times
Download: 0 times
Share this document with a friend
59
image at: www.telescopes.net/doc/30200
Transcript
Page 1: Image at: .

image at: www.telescopes.net/doc/30200

Page 2: Image at: .

image at: www.mpifr-bonn.mpg.de/public/eff_e.html

Page 3: Image at: .
Page 4: Image at: .

image at: www.mpifr-bonn.mpg.de/public/eff_e.html

Page 5: Image at: .

 Technical Data of the Effelsberg Radio Telescope Reflector Diameter 100 mAperture 7,850 m²Number of Surface Elements (Panels) 2,352Accuracy of Surface <0.5 mmFocal Length in Prime Focus 30 mSecondary Mirror Diameter 6.5 mResolution (Beam Width)

21cm (1.4 GHz) 9.4' (arc min) 3cm wavelength (10 GHz) 1.15'(arc min)3.5mm wavelength (86 GHz) 10" (arc sec)

Setting Accuracy of Track +/- 0.25 mmMaximum Rotation Speed 32°/min.Maximum Tilt Speed 16°/min.Total Weight 3,200 tConstruction Period 1968-1971

Page 6: Image at: .
Page 7: Image at: .

Computer-generated image of an Airy disk. The outer rings of the Airy pattern have been enhanced in intensity.

From Wikipedia

Page 8: Image at: .

Full width at half maximum

FWHM FWHM

=1.03 /R

Page 9: Image at: .

Computer-generated image of an Airy disk. The outer rings of the Airy pattern have been enhanced in intensity.

From Wikipedia

Page 10: Image at: .

/R

Page 11: Image at: .

image at: www.telescope-optics.net/telescope_resolution.htm

1.22/R /R

Page 12: Image at: .

1.22/R /R

Page 13: Image at: .

Resolution

Angular Resolution

Resolving Power

Page 14: Image at: .

Harry Kroto 2004

*

*

All stars are so far away that all rays from the same star are effectively parallel

*

Focus*

Page 15: Image at: .

Harry Kroto 2004

**

**

The angular resolution is determined by the angle between two just-resolved

objects and is interference limited i.e. = (/R)

Page 16: Image at: .

Harry Kroto 2004

**

d>

R

**

Essentially the opposite side of the triangle d > or ideally 1.22

Page 17: Image at: .

Harry Kroto 2004

**

R= (/R)

**

The angular resolution is determined by the angle between two just resolved objects and is

interference limited i.e. = (/R)

Page 18: Image at: .

Harry Kroto 2004

*

d

Page 19: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 20: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

or R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 21: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

or R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 22: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

or R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 23: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

or R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0. 12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 24: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

or R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 25: Image at: .
Page 26: Image at: .
Page 27: Image at: .
Page 28: Image at: .
Page 29: Image at: .
Page 30: Image at: .
Page 31: Image at: .

at: www.nasaimages.org/luna/servlet/detail/nasaNA...

Page 32: Image at: .
Page 33: Image at: .

image at: www.telescope-optics.net/telescope_resolution.htm

1.22/R /R

Page 34: Image at: .
Page 35: Image at: .
Page 36: Image at: .

image at: www.telescope-optics.net/telescope_resolution.htm

Page 37: Image at: .

Computer-generated image of an Airy disk. The gray scale intensities have been adjusted to enhance the brightness of

the outer rings of the Airy pattern.

Page 38: Image at: .

The total project costs of about 34 million DM were essentially covered by a foundation (Volkswagen-Stiftung). Additional financing was provided by the state of Nordrhine-Westfalia and the Max-Planck-Gesellschaft. The federal ministery for science and technology ( Bundesministerium für Bildung und Forschung paid for some special parts of the equipment.  Technical Data of the Effelsberg Radio Telescope Reflector Diameter100 mAperture7,850 m²Number of Surface Elements (Panels)2,352Shape Accuracy of Surface< 0.5 mmFocal Length in Prime Focus30 mSecondary Mirror Diameter (Gregory-Reflector)6.5 mAperture Stop - in Prime Focusf/0.3- in Secondary Focusf/3.85Angular Resolution (Beam Width) - at 21cm wavelength (1.4 GHz)9.4' (arc minutes)- at 3cm wavelength (10 GHz)1.15' (arc minutes)- at 3.5mm wavelength (86 GHz)10" (arc seconds)Azimuth Track Diameter64 mSetting Accuracy of Track+/- 0.25 mmAzimuth Range480°Maximum Rotation Speed32°/min.Power Output of the 16 Azimuth-Drives17.5 kW eachRadius of Elevation Gear Track28 mElevation Movementfrom 7° to 94°Maximum Tilt Speed16°/min.Power Output of the 4 Elevation-Drives17.5 kW eachTotal Weight3,200 tConstruction Period1968-1971Height of Track above Sea Level 319mCommencement of OperationAugust 1st, 1972Constructed byArbeitsgemeinschaft KRUPP/MAN

Page 39: Image at: .

The total project costs of about 34 million DM were essentially covered by a foundation (Volkswagen-Stiftung). Additional financing was provided by the state of Nordrhine-Westfalia and the Max-Planck-Gesellschaft. The federal ministery for science and technology ( Bundesministerium für Bildung und Forschung paid for some special parts of the equipment.  Technical Data of the Effelsberg Radio Telescope Reflector Diameter100 mAperture7,850 m²Number of Surface Elements (Panels)2,352Shape Accuracy of Surface< 0.5 mmFocal Length in Prime Focus30 mSecondary Mirror Diameter (Gregory-Reflector)6.5 mResolution (Beam Width) - at 21cm wavelength (1.4 GHz)9.4' (arc minutes)- at 3cm wavelength (10 GHz)1.15' (arc minutes)- at 3.5mm wavelength (86 GHz)10" (arc seconds)Setting Accuracy of Track+/- 0.25 mmMaximum Rotation Speed32°/min.Maximum Tilt Speed16°/min.Total Weight3,200 tConstruction Period1968-1971

Page 40: Image at: .

image at: www.telescope-optics.net/telescope_resolution.htm

Page 41: Image at: .

image at: www.telescope-optics.net/telescope_resolution.htm

Page 42: Image at: .

Computer-generated image of an Airy disk. The outer rings of the Airy pattern have been enhanced in intensity.

From Wikipedia

Page 43: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

or R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 44: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

or R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 45: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

or R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 46: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

or R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 47: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

or R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 48: Image at: .

From Wikipedia, the free encyclopedia  (Redirected from Airy pattern)Longitudinal sections through a focused beam with (top) negative, (center) zero, and (bottom) positive spherical aberration. The lens is to the left.In optics, the Airy disk (or Airy disc) and Airy pattern are descriptions of the best focused spot of light that a perfect lens with a circular aperture can make, limited by the diffraction of light.The diffraction pattern resulting from a uniformly-illuminated circular aperture has a bright region in the center, known as the Airy disk which together with the series of concentric bright rings around is called the Airy pattern. Both are named after George Biddell Airy, who first described the phenomenon. The diameter of this pattern is related to the wavelength of the illuminating light and the size of the circular aperture.The most important application of this concept is in cameras and telescopes. Due to diffraction, the smallest point to which one can focus a beam of light using a lens is the size of the Airy disk. Even if one were able to make a perfect lens, there is still a limit to the resolution of an image created by this lens. An optical system in which the resolution is no longer limited by imperfections in the lenses but only by diffraction is said to be diffraction limited.The Airy disk is of importance in physics, optics, and astronomy.

Page 49: Image at: .

Harry Kroto 2004

HOMEWORK Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

or R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 50: Image at: .

Harry Kroto 2004

HOMEWORK Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

or R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 51: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

or R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 52: Image at: .
Page 53: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

R (cm) R(cm) /R (rad) (o)

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 54: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5

0.0014

NB = c = 3x1010 cm

thus 120 GHz ≡ = 3x1010/120 x 109 cm = 0.25 cm

Page 55: Image at: .

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5 0.0014

NB = c = 3x1010 cm

thus 120GHz ≡ = 3x1010/120x109cm = 0.25 cm

Page 56: Image at: .

Harry Kroto 2004

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5 0.0014

NB = c = 3x1010 cm

thus 120GHz ≡ = 3x1010/120x109cm = 0.25 cm

Page 57: Image at: .

Harry Kroto 2004

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5 0.0014

NB = c = 3x1010 cm

thus 120GHz ≡ = 3x1010/120x109cm = 0.25 cm

Page 58: Image at: .

Harry Kroto 2004

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5 0.0014

NB = c = 3x1010 cm

thus 120GHz ≡ = 3x1010/120x109cm = 0.25 cm

Page 59: Image at: .

Harry Kroto 2004

Harry Kroto 2004

Consider the resolution = (/R) of:

a) The Bonn 100m Radio Telescope operating at the 21cm H spin flip line

b) Kitt Peak 12m Radio Telescope operating at the J=1 - 0 rotational line of CO at 120 GHz

c) Galileo's 2cm optical telescope observing Saturn in the visible at 500nm.

R (cm) R(cm) /R (rad) (o)

21cm 100m 21 10000 21/104 2.1x10-3

0.12

120GHz 12m 0.25 1200 0.25/12x102 2.1x10-4

0.012

500nm 2cm 500x10-7 2 5x10-5/2 2.5x10-5 0.0014

NB = c = 3x1010 cm

thus 120GHz ≡ = 3x1010/120x109cm = 0.25 cm


Recommended