+ All Categories
Home > Documents > IMPACT OF HYBRID STRATEGY ON TAIL PIPE EMISSIONS€¦ ·  · 2015-08-20IMPACT OF HYBRID STRATEGY...

IMPACT OF HYBRID STRATEGY ON TAIL PIPE EMISSIONS€¦ ·  · 2015-08-20IMPACT OF HYBRID STRATEGY...

Date post: 16-May-2018
Category:
Upload: vudan
View: 219 times
Download: 2 times
Share this document with a friend
31
25/03/2013 IMPACT OF HYBRID STRATEGY ON TAIL PIPE EMISSIONS PSA PEUGEOT-CITROEN
Transcript

25/03/2013

IMPACT OF HYBRID STRATEGY ON TAIL PIPE EMISSIONSPSA PEUGEOT-CITROEN

2

INTRODUCTION

BACKGROUND THEORY

IMPACT OF HYBRID STRATEGY ON EMISSION

CONCLUSION

SUMMARY

Thermo-chemical simulation of an after-treatment system

Functional conception constraints:

Take into account the thermal phenomena

Take into account the chemical phenomena

Reduce calculation time

Compatibility for both gasoline and Diesel engines

Immediate gains expected :

Rapid evaluation of emissions systems in terms of after-treatment without using prototypes (different geometrical and chemical configurations)

Targets:

Acceleration of the conception & validation process of an emissions systems

Investigation of new after-treatment technologies

Points of vigilance:

Model limitation: The model is precise for certain conditions

Engine start and shut-off

3

INTRODUCTION

GT-SUITE users conference 2013 – France

Study of after-treatment system validation

Simulation � DOC

Phenomena taken into account

• Thermal

• Chemical

Model calibration on WLTP drive cycle

Model validation on NEDC drive cycle

Results

• Thermal

• Chemical

Impact of hybrid strategy on emissions

4

INTRODUCTION

5

Drive Cycles : NEDC and WLTP (partial)

Constant convection coefficientSCR FAP

DO

C

Thermal simulation - Exhaust temperature after catalyst

0 200 400 600 800 1000 1200 1400 1600 1800Time (s)

6

Drive Cycles : NEDC and WLTP (partial)

Constant convection coefficient

SIMULATIONTEST

INPUT DATA

WLTPNEDC

Vitesse véhicule

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Temps (s)

Vitesse (km/h)

SCR FAP

DO

C

NEDC

WLTP

3,42 % 2,31 %

Thermal simulation - Exhaust temperature after catalyst

Drive Cycles : NEDC and WLTP (partial)

Constant convection coefficient

Pollutants simulated CO, C3H6, C3H8, NO et NO2

7

SCR FAP

DO

C

WLTPNEDC

Vitesse véhicule

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Temps (s)

Vitesse (km/h)

0 200 400 600 800 1000Time (s)

NEDC

SIMULATIONTEST

INPUT DATA

CHEMICAL SIMULATION - CO

0 200 400 600 800 1000 1200 1400 1600 1800Time (s)

Drive Cycles : NEDC and WLTP (partial)

Constant convection coefficient

Pollutants simulated CO, C3H6, C3H8, NO et NO2

8

SCR FAP

DO

C

WLTPNEDC

Vitesse véhicule

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Temps (s)

Vitesse (km/h)

WLTP

SIMULATIONTEST

INPUT DATA

CHEMICAL SIMULATION - CO

Drive Cycles : NEDC and WLTP (partial)

Constant convection coefficient

Pollutants simulated CO, C3H6, C3H8, NO et NO2

9

SCR FAP

DO

C

WLTPNEDC

Vitesse véhicule

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Temps (s)

Vitesse (km/h)

0 200 400 600 800 1000Time (s)

NEDC

0 200 400 600 800 1000 1200 1400 1600 1800Time (s)

WLTP

16,10 %8,86 %

SIMULATIONTEST

INPUT DATA

CHEMICAL SIMULATION - CO

10

Drive Cycles : NEDC and WLTP (partial)

Constant convection coefficient

Pollutants simulated CO, C3H6, C3H8, NO et NO2

WLTPNEDC

Vitesse véhicule

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Temps (s)

Vitesse (km/h)

SCR FAP

DO

C

0 200 400 600 800 1000Time (s)

NEDC

CHEMICAL SIMULATION - HC

SIMULATIONTEST

INPUT DATA

11

Drive Cycles : NEDC and WLTP (partial)

Constant convection coefficient

Pollutants simulated CO, C3H6, C3H8, NO et NO2

WLTPNEDC

Vitesse véhicule

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Temps (s)

Vitesse (km/h)

SCR FAP

DO

C

0 200 400 600 800 1000 1200 1400 1600 1800Time (s)

WLTP

CHEMICAL SIMULATION - HC

SIMULATIONTEST

INPUT DATA

12

Drive Cycles : NEDC and WLTP (partial)

Constant convection coefficient

Pollutants simulated CO, C3H6, C3H8, NO et NO2

WLTPNEDC

Vitesse véhicule

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Temps (s)

Vitesse (km/h)

SCR FAP

DO

C

0 200 400 600 800 1000Time (s)

NEDC

0 200 400 600 800 1000 1200 1400 1600 1800Time (s)

WLTP

20,5 %7,4 %

CHEMICAL SIMULATION - HC

SIMULATIONTEST

INPUT DATA

13

Drive Cycles : NEDC and WLTP (partial)

Constant convection coefficient

Pollutants simulated CO, C3H6, C3H8, NO et NO2

WLTPNEDC

Vitesse véhicule

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Temps (s)

Vitesse (km/h)

SCR FAP

DO

C

0 200 400 600 800 1000Time (s) 0 200 400 600 800 1000 1200 1400 1600 1800Time (s)

NEDCWLTP

5,95 % 8,26 %

CHEMICAL SIMULATION - NO

SIMULATIONTEST

INPUT DATA

14

Drive Cycles : NEDC and WLTP (partial)

Constant convection coefficient

Pollutants simulated CO, C3H6, C3H8, NO et NO2

WLTPNEDC

Vitesse véhicule

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Temps (s)

Vitesse (km/h)

SCR FAP

DO

C

NEDC WLTP

49,38 %21,53 %

CHEMICAL SIMULATION - NO2

SIMULATIONTEST

INPUT DATA

15

Drive Cycles : NEDC and WLTP (partial)

Constant convection coefficient

Pollutants simulated CO, C3H6, C3H8, NO et NO2

WLTPNEDC

Vitesse véhicule

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Temps (s)

Vitesse (km/h)

SCR FAP

DO

C

0 200 400 600 800 1000Time (s) 0 200 400 600 800 1000 1200 1400 1600 1800Temps (s)

NEDC WLTP

3,13 %3,63 %

CHEMICAL SIMULATION - NOx

SIMULATIONTEST

INPUT DATA

16

INTRODUCTION

BACKGROUND THEORY

IMPACT OF HYBRID STRATEGY ON EMISSION

CONCLUSION

SUMMARY

17

Automotive Catalyse

Catalyst :

Change the reaction speed without being consumed

Automotive Catalyse � Heterogeneous

Solid Phase : catalyst

Gaseous Phase : reactive

The catalyst is composed macroscopically

Brick catalytic in ceramic material

One or more insulator in alumina fiber

Canning in stainless steel

Microscopically:

Catalyst cells composed of a neutral Alumina washcoat (Al2O3)

The washcoat contains the precious metals (Platinum, Palladium, Rhodium). The precious metals loading is expressed in (g/ft3)

Zeolite for storage and adsorption of HC at cold conditions

Cerium for oxygen storage

BACKGROUND THEORY

18

POLLUTANTS CONVERSION

Pollutant conversion efficiency:

Me : Pollutant mass before catalyst

Ms : Pollutant mass after catalyst

Light-off temperature: Temperature which correspond to 50 % of pollutant conversion

Exhaust flow hypothesis

Exhaust flow temperature depends on the conduction, convection and radiation

Hypothesis of incompressible fluid

Quasi-static flow

Gasoline Catalyse

Three-way catalyst (CO/HC/NOx)

Optimum conversion rate at lambda 1

Diesel Catalyse

Diesel engine works at lambda > 1

Catalyst for oxidation (DOC : Diesel Oxide Catalyst)

Catalyst for reduction for NH3 (SCR : Selective Catalyst Reduction)

GAZ

SUBSTRAT

ISOLANT

CANNING

BACKGROUND THEORY

19

Three-way catalyst simulation

Chemical species concerned

CO, C3H6, C3H8, CO2, NO, O2, N2, H2, H2O

Global chemical simulation � 60 equations in average

Reactions of the TWC

CO + 1/2 O2 ���� CO2 (1)H2 + 1/2 O2 ���� H2O (2)C3H6 + 9/2 O2 ���� 3CO2 + 3H2O (3)C3H8 + 5 O2 ���� 3CO2 + 4H2O (4)CO + NO ���� CO2+ 1/2 N2 (5)

BACKGROUND THEORY

Speed on space:

Arrhenius

O2 Storage

A : Pre exponential factor � function of reaction

Ea [J] : Activation energy

R [J/mol/K] : Constant of gas

T [K] : Exhaust gas temperature

The term Ea/(R*T) can be expressed as Ta/T, Ta [K] the activation temperature20

BASES THÉORIQUES

OHOCeHCeO

OHCOOCeHCCeO

OHCOOCeHCCeO

COOCeCOCeO

NCeONOOCe

CeOOOCe

23222

232832

232632

2322

2232

2232

43714

33612

2/12

42

+→+++→+++→+

+→++→+

→+

21

INTRODUCTION

BACKGROUND THEORY

IMPACT OF HYBRID STRATEGY ON EMISSION

CONCLUSION

SUMMARY

IMPACT OF HYBRID STRATEGY ON EMISSIONS

Engine type: gasoline

Evaluation on WLTP drive cycle

Evaluation of energetic scenario (internal combustion engine +

hybridisation, time to shut-off the internal combustion engine)

Exhaust line thermal behaviour

Tailpipe emissions

Methodology to evaluate the scenarios

22

Pollutantsgeneration

ScenarioConditions

Speed / Torque

After-treatmentsimulation

Internal combustion

engine usage

Raw pollutants

emissions

• Exhaust line thermal behaviour

• Tailpipe pollutant emissions

THREE-WAY CATALYST MODEL

23

Input data to the model:

Exhaust gas mass flowPollutants concentration Exhaust gas temperatureAmbient temperatureVehicle speed

IMPACT OF HYBRID STRATEGY ON EMISSIONS

Energetic scenario evaluation (internal combustion engine + hybridisation)

Impact of catalyst thermal behaviour

24

Catalyst Temperature

Impact

tailpipe

emission

CO

HC

NOx

Thermal reductionScénario 1 -10,48%

Scénario 2 -15,48%

Scénario 3 -21,54%

Reference scenario 4

IMPACT OF HYBRID STRATEGY ON EMISSIONS

Evaluation of energetic scenarios (ICE + hybridisation)

Impact on CO conversion

25

CO emissions increaseScénario 1 9,74%

Scénario 2 34,35%

Scénario 3 78,18%

Reference scenario 4

Integral CO

Catalyst Temperature

IMPACT OF HYBRID STRATEGY ON EMISSIONS

26

HC emissions increase

Scénario 1 20,91%

Scénario 2 47,07%

Scénario 3 92,85%

Reference scenario 4

Evaluation of energetic scenarios (ICE + hybridisation)

Impact on HC conversion

Integral HC

Catalyst Temperature

IMPACT OF HYBRID STRATEGY ON EMISSIONS

27

NOx emissions increaseScénario 1 19,64%

Scénario 2 42,23%

Scénario 3 86,29%

Reference scenario 4

Evaluation of energetic scenarios (ICE + hybridisation)

Impact on NOx conversion

Integral NOx

Catalyst Temperature

28

INTRODUCTION

BACKGROUND THEORY

IMPACT OF HYBRID STRATEGY ON EMISSION

CONCLUSION

SUMMARY

29

Advantages of using GT-SUITE

Easy to use

Different after-treatment technologies available

Easy coupling with other tools (such as MATLAB-SIMULINK)

Software updates constantly

Data post processing tool directly incorporated and easy to use

Good thermal results

Good chemical results

Fast evaluation of different technologies by simulation

Fast evaluation of different configuration

CONCLUSION

30

THANK YOU FOR YOUR ATTENTION

BIBLIOGRAPHY

31

http://www.km77.com/marcas/peugeot/motores/16hdi/gra/04.asp

http://www.basf.com/group/corporate/en/brand/BASF_SCR

http://www.huihuang-packing.com

http://www.jom.de/products/gb/Vehicle-Types/Peugeot/207/Exhausts/Muffler/Steel-muffler/Muffler-Peugeot-207-14-14-16V-16-16V-14-Hdi-16-Hdi-all-

from-2001-up-to-2006-2-x-76-mm-EC-approved.html

http://www.eostis.com/kw/equipements-accessoires-flexible-echappement-406__a96450198

http://www.bmcatalysts.co.uk/diesel_particulate_filters.php

GT-POWER user ‘s manual


Recommended