+ All Categories
Home > Documents > Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de...

Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de...

Date post: 30-Jul-2019
Category:
Upload: vannhu
View: 214 times
Download: 0 times
Share this document with a friend
20
Impact of the use of segregated streets in the elemental carbon concentrations in Santiago de Chile E. GRAMSCH Departamento de Física, Universidad de Santiago, Avda. Ecuador 3493, Santiago, Chile Corresponding author; e-mail: [email protected] P. OYOLA Centro Mario Molina Chile, Avda. del Valle 662, Santiago, Chile D. VON BAER Departamento de Química, Universidad de Concepción, Concepción, Chile I. ORMEÑO Departamento de Física, Universidad de Santiago Avda. Ecuador 3493, Santiago, Chile Received December 23, 2006; accepted September 10, 2007 RESUMEN Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno han impulsado al gobierno a implementar varias medidas para reducir la contaminación. Una de las estrategias fue cambiar las direcciones de tránsito, y los privilegios en varias calles. La avenida principal (Alameda) con cinco líneas por lado, fue segregada de tal manera que en tres de ellas, sólo pueden circular buses públicos y las otras dos pueden ser utilizadas por los demás vehículos. Al circular los buses más libremente, pueden reducir sus emisiones. Durante el invierno del 2001, se han determinado las concentraciones de carbono elemental (CE) en la Alameda y varias otras calles con un equipo que mide la absorción óptica del aire cons- truido en la Universidad de Santiago. El pico de la hora punta de la mañana puede verse claramente todos los meses del año, indicando que la influencia del tráfico es alta. La concentración de CE durante la hora punta representa en promedio un 25% de la concentración total. Además, el promedio de concentraciones de carbono elemental en las vías sin tráfico segregado durante la hora punta es más alto que el aumento en las vías segregadas. Sin embargo, la gran variabilidad en los datos no nos permite concluir con significancia estadística que hay una reducción en la contaminación por CE durante la hora punta. Se han determinado las concentraciones de CE en cuatro estaciones, y dos de ellas tienen concentraciones más altas, las otras dos Atmósfera 21(1), 101-120 (2008)
Transcript
Page 1: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

Impact of the use of segregated streets in the elemental carbon concentrations in Santiago de Chile

E.GRAMSCH

Departamento de Física, Universidad de Santiago,Avda. Ecuador 3493, Santiago, Chile

Correspondingauthor;e-mail:[email protected]

P.OYOLACentro Mario Molina Chile, Avda. del Valle 662, Santiago, Chile

D.VONBAERDepartamento de Química, Universidad de Concepción,

Concepción, Chile

I.ORMEÑODepartamento de Física, Universidad de Santiago

Avda. Ecuador 3493, Santiago, Chile

ReceivedDecember23,2006;acceptedSeptember10,2007

RESUMEN

LasaltasconcentracionesdematerialparticuladoqueseobservanenSantiagodeChileduranteelinviernohanimpulsadoalgobiernoaimplementarvariasmedidasparareducirlacontaminación.Unadelasestrategiasfuecambiarlasdireccionesdetránsito,ylosprivilegiosenvariascalles.Laavenidaprincipal(Alameda)concincolíneasporlado,fuesegregadadetalmaneraqueentresdeellas,sólopuedencircularbusespúblicosylasotrasdospuedenserutilizadasporlosdemásvehículos.Alcircularlosbusesmáslibremente,puedenreducirsusemisiones.Duranteelinviernodel2001,sehandeterminadolasconcentracionesdecarbonoelemental(CE)enlaAlamedayvariasotrascallesconunequipoquemidelaabsorciónópticadelairecons-truidoenlaUniversidaddeSantiago.Elpicodelahorapuntadelamañanapuedeverseclaramentetodoslos meses del año, indicando que la influencia del tráfico es alta. La concentración de CE durante la hora puntarepresentaenpromedioun25%delaconcentracióntotal.Además,elpromediodeconcentracionesde carbono elemental en las vías sin tráfico segregado durante la hora punta es más alto que el aumento en las vías segregadas. Sin embargo, la gran variabilidad en los datos no nos permite concluir con significancia estadísticaquehayunareducciónenlacontaminaciónporCEdurantelahorapunta.SehandeterminadolasconcentracionesdeCEencuatroestaciones,ydosdeellastienenconcentracionesmásaltas,lasotrasdos

Atmósfera 21(1), 101-120 (2008)

Page 2: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

102 E.Gramschet al.

tienenvaloresmenoresquedependendelaubicacióndentrodelaciudad.Estosresultadospermitendibujarloslímitesaproximadosdeunsectorconaltasconcentracionesdecarbonoelemental.

ABSTRACT

ThehighparticleconcentrationsthatareobservedinSantiagodeChileduringwinterhavepromptedthegovernmenttopursueseveralapproachestoreducethecontamination.Oneofthesestrategieswastochangethe traffic direction, and privileges in several streets. The main avenue (Alameda), which has 5 lanes each way,wassegregatedsuchthatinthreeofthem,onlypublicbusescancirculateandtheothertwolanescanbeusedbyothervehicles.Theobjectiveisthatthebusescancirculatemorefreely,thusreducingemissions.Duringwinterof2001,wehavemeasuredtheelementalcarbon(EC)concentrationalongAlamedaAvenueand several other streets with a light-absorption coefficient equipment built at the University of Santiago. The morning rush hour peak can be seen for all months indicating that the influence of traffic in this area is high. TheECconcentrationduringrushhourrepresentsanaverageof25%ofthetotalconcentration.Inaddition,the average in EC concentration (for all months) due to rush hour traffic is higher in the street with no segre-gated traffic than the other two stations that have segregated traffic. However, the large variability in the data does not allow concluding with statistical significance that there is a reduction in EC pollution during rush hour.Theaveragevaluesoftheelementalcarbonconcentrationin4stationshavebeenmeasured,andtwoofthemshowhighvalues,theothertwoshowlowervaluesthatdependonthelocationacrossthecity.Theseresults,allowdrawingapproximatelythelimitsofanareawithhighelementalcarbonconcentration.

Keywords: Traffic, diesel emissions, elemental carbon, light absorption coefficient.

1. IntroductionSantiagodeChilehassevereairpollutionproblemsduringwinter,partlyduetostrongtemperatureinversionsandlowwindspeeds,andpartlyduetotherapidgrowthofthecity.Santiagohasabout5millioninhabitantsanditislocatedinavalleysurroundedbytheAndesmountainsontheeastsideandseveralhighhillsonthewestandnorthsides.Asaconsequenceoftheactivitiesofthecityanditstopography,particleconcentrationlevelsareoneofthehighestinSouthAmerica(Kavouraset al.,1999;Artaxoet al.,1999).Thecoarseparticulatemattercanreachupto500µg/m3ondayswithstronginversion(CONAMA,2003).Fineparticle(PM2.5),elemental(EC)andorganiccarbon(OC),andcarbonmonoxide(CO)levelsarealsoquitehigh(Gramschet al.,2006).Thehealthproblemsassociatedwithhighpollution levels are alsowell known. InSantiago, increases inrespiratorydeseasesinchildrenafewdaysafterhighpollutionepisodesarecommon(Ilabacaet al.,1999;Leeet al.,2000).TherearealsoseveralstudiesrelatingtheeffectsofpollutionondailymortalityinSantiago(Sanhuezaet al.,1999;Ostroet al.,1999;Cifuentes,2000).Theseriousnessof theproblemprompted theauthority toenactaPlanforPreventionandDecontaminationoftheMetropolitanAreainSantiago(PPDA).Underthisplan,thatbeganin1996,severalcontrolstrategies have been implemented: A gradual replacement of the old fleet of buses, most industries intheMetropolitanRegionhadtoreducetheiremissionandarepermanentlymonitored,mostwoodstovescannotbeused,restrictiontocirculateonedayperweek(notincludingweekends)fromMarchtoDecemberforallpassengervehicleswithoutcatalyticconvertedwasimplemented,manystreetswerepaved,biomassburninginfarmswasrestricted inanextendedareaaroundthemetropolitanarea,etc.Tomonitortheeffectivenessofthesescontrolstrategies,acitywide

Page 3: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

103EC pollution due to traffic

monitoringnetworkwaslaiddownin1997(MacamNetwork).ThenetworkhaseightstationsthatmonitorPM10,CO,SO2andO3withonehourintervals.Somestationsalsomeasureelementalandorganiccarbon,NOxandPM2.5.Atthesametime,theChileanlegislaturethroughtheComisiónNacionaldelMedioAmbiente(CONAMA)establishedaprogramtoforecastPM10concentrationsandtoinformthepublicofimpendinghealthimpact.Thismodeliscurrentlybeingusedduringthe winter period (April to September) to establish restrictions to traffic, linked to the severity of theforecastedPM10levels.Duringdayswithhighpollutionlevelsadditionalrestrictionsapply,accordingtothelastdigitinthelicenseplate.

InAprilof2001,sulphurlevelsinthedieselfuelwasreducedfromamaximumof1200to300ppm,andthemaximumlevelofleadindieselfuelwasalsoreducedfrom300tolessthan5ppm.This change is very important because a large fraction of the elemental carbon and fine particle pollutioninSantiagoisduetothebusesforpublictransportation,whichusedieselfuel.Astudyconducted by the CONAMA indicated that approximately 21% of the fine particle concentration is due to public transportation (Jorquera et al., 1998).Another control measurement recentlyestablished is the change in the traffic direction of several streets according to the time of day and strength of the vehicular flux. In Santiago there are a large number of people going to work from theperipherytodowntown.Therefore,severaltwo-waystreetshavedirectiontowardsdowntowninthemorning(7:30-10:00h)andtowardstheperipheryintheafternoon(17:00-21:00h).Themost important street inSantiago,AvenidaLibertadorBernardoO’Higgins (Alamedaavenue)wassegregatedsuchthatthreelanesareexclusiveforusebypublictransportationbusesandtherestofvehiclescanusetheothertwolanes.Theusesofotherstreetswerechangedsuchthatonlypublictransportationcancirculateduringthemorningrushhour(7:30-10:00h).Theobjectiveofthischangeindirectionandsegregationwastoreducecongestionandimprovetheaveragedrivingspeedofvehicles.Thisfactreducestheemissionlevelsbecausegreaterparticulatemassemissionoccursduringacceleration.ThesegregationofthelanesinAlamedawasaimedatimprovingtheaveragedrivingspeedofpublicbusesthatrunexclusivelyondieselfuel.Becausealargefractionof the fine particle mass (PM2.5) in Santiago comes from this source (Kavouraset al., 1999),improving driving speeds should reduce it. A large fraction of the fine particles emitted by diesel busescorrespondstoelementalcarbon,whichinturnisthecomponentthathasthelargestlightabsorption coefficient (σa)intheaerosol(Horvath,1993).Thusagoodtracerfortheemissionfrom the diesel buses is the light absorption coefficient.

InordertogetabetterunderstandingofthedynamicsofpollutionindowntownSantiago,wehave performed a study integrating several instruments to measure the effect of traffic restrictions inthelocalparticlemassconcentration.TheMacamNetworkhasthreestationsneardowntownthatprovidemeasurementsofPM10,PM2.5andorganicandelementalcarbon.Thenetworkhasbeen complemented with 5 instruments that measure the light absorption coefficient, placed close to the streets with modified traffic conditions. By integrating results from all these instruments, weexpecttodeterminetheimpactoftheimplementationofsegregatedstreetsandthechangeintraffic direction on the emission pattern and quantity in Santiago.

Page 4: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

104 E.Gramschet al.

2. Experimental methods 2.1 Instrumentation The study was performed using instruments that belong to the citywide monitoring network(Macam Network) and several low-cost light absorption coefficient systems (Simca) built at the UniversityofSantiago(Usach)(Gramschet al.,2000).All stations are located in open spaces andAllstationsarelocatedinopenspacesandthemeteorologicalparametersweremeasuredataheightof3mfromtheground.

CoarseparticlemassPM10 and fine particle mass PM2.5weremeasuredwithTaperedElementOscillating Microbalance (TEOM) monitors available at the Macam Network stations.Theseinstruments utilize an oscillating hollow tube with the free end attached to a filter element. As the filter mass changes due to accumulation of particles, the oscillating frequency changes providing a measurement of the mass. The tapered tube, filter and sampled air are kept at 50 °C and the samplingintervalissetto15min.CarbonconcentrationwasmeasuredwithanAmbientCarbonParticulateMonitor5400fromRupprecht&PatashnickCo.ThelastinstrumentallowsadirectmeasurementofcarbonthroughdetectionoftheCO2producedbyhightemperatureoxidationofthecarbonspeciespresentinthesample.Aseparationofthehighervolatilityorganiccarbonfromthelowervolatilityelemental(black)carbonisachievedbythermalseparation.Atemperatureof340 °C is used as the separation point. Hence, the organic component is defined as the material that volatilizesfromthesamplebelowthistemperature.Theremainingcarbonfractioncorrespondstoelementalcarbonalongwithlowvaporpressure,highlypolymerizedcarbonmaterial.

Oneofthestrategiesoftheauthoritytoreducepollutionfromvehicleswastosetupstreetswithtraffic restrictions. To monitor the efficacy of this approach, we placed several instruments close the streets with restrictions. These devices measure the light absorption coefficient σa,whichisverysensitivetotheamountofblackcarbonpresentinairborneparticles(Linet al.,1973).Becausediesel vehicles emit large amounts of black carbon, the absorption coefficient is a good tracer for pollutioncomingfromthesevehicles(Gramschet al.,2000).

WehaveusedaninstrumentbuiltatUsachthatusesavariationoftheintegratingplatemethod(Gramschet al.,2000;Linet al.,1973) tomeasureσa.Thesystemtomeasure theabsorptioncoefficient (Simca) has been described previously (Gramsch et al.,2004),butabriefaccountisgiven below. It is made up of a head containing a filter, lamp, two photodetectors and a pump. A computercontrolsthepumpandreadsthephotodetectorsthroughaninterfacebox.Thedesignoftheheadisavariationoftheintegratingplatemethod(Linet al.,1973),whichhasbeenusedtomeasure the absorption coefficient, σa.Inourinstrument,airispumpedfor1minthrougha25mmdiameter nuclepore filter (pore diameter 0.2 µm)thatcollectsparticlespresentintheairandtheintensity of light passing through the filter is measured. This process is repeated every 20 min for 2 to 5 days. In this way, we obtain one value of the absorption coefficient every 20 min. using the same filter. The hourly data are obtained by averaging three points per hour. The filter is changed when the intensity of the light reaches about 50% of the intensity with a clean filter, in order to avoid too much carbon accumulation. There is a second detector placed on the side of the filter that monitorstheintensityofthelamp.Theoutputfromthisdetectorisusedtocorrectforchangesinthe lamp or gain in the amplifier due to temperature, or other effects.

Page 5: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

105EC pollution due to traffic

Fig. 1. Map of downtownand the western part ofSantiago with the locationof the monitoring stations(blackcrosses)andthesta-tionsfromMacamNetwork(blackdots).

2.2 Site descriptionThestudywascarriedoutatdowntownSantiago,becausethisisanareawithhighpopulationdensityandveryhighPM10concentrationduringwinter.Previousstudieshaveshownthataconsiderablefractionofthispollutionisduetotransportation(Gramschet al., 2000). The city has a fleet of about7000dieselbusesforpublictransportation,andmostofthemhavearoutepassingthroughdowntown.Thesebusesarenotalwayswellmaintainedandtheiremissionsarehigh.DatafromtheMacamNetworkhasbeenusedtoobtainoverallpollutiontrends(PM10andPM2.5) and help define sites that have a strong traffic influence. The map in Figure 1 shows the location of the stations of the Macam Network (black dots) and the location of the light absorption coefficient monitors (Simca)areshownwithblackcrosses.AllSimcaswereplacedneardowntowninthevicinityofstreets with traffic restrictions.

Forpolicymakers,thestreetthatisrelevanttostudyisAlameda,becauseithasthehighesttraffic density and crosses the city from east to west. The flux in this street (both ways) in a location neartheUniversityofSantiago(Usach)stationis79200±2700vehiclesperday(theaveragehasbeencalculatedoveroneweek,notincludingSaturdayorSunday).Thestreethas5laneseachwayanditwassegregatedsuchthatinthreelanesonlypublicbusescancirculateandothertypesofvehiclescanusetheothertwolanes.Thisrestrictionappliesduringallday.ThreeSimcamonitorswereplacedalongAlameda:Usach,AlamedaandProvidenciastations.

UsachisastationlocatedatthePhysicsDepartmentoftheUniversityofSantiago,about100mnorthfromthemainstreet(Alameda),andabout20mfromasmallerstreetwithabout9800±390vehiclesperday.Previousstudiesconductedatthissiteshowthatitisheavilyaffectedbytraffic (Gramsch et al., 2000). Alameda has the highest flux of buses in the city. There is a lot of commercialactivity,retailandsomelightindustriesaroundthissite.Atthispoint,thelanesin

XX

USACH XAlameda

XLa Paz

Reco

leta

2000

Alameda

Av.

San CristobalhillMapocho

river

XProvidencia

Pudahuel

La Estre

lla

Blanco

Norte-Sur

Highw

ay

SanPablo

ParqueO'Higgins

San Diego

Cerrillos

Page 6: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

106 E.Gramschet al.

Alamedaaresegregated(threelanesforbusesandtwoforvehiclesineachdirection).Thealtitudeofthissiteoversealevelis530m.Simca-Awasplacedatthissite.

Alamedastationislocatedabout30mnorthfromAlamedaavenue,about2.5kmeastfromUsach,itislocatedabout1kmwestofdowntownSantiago.Thissitehaslesscommercialactivity,but it has many office buildings, the vehicular flux is the same as Usach. The segregation at this pointisthesameasintheUsachsite.Thealtitudeofthissiteoversealevelis550m.Simca-Gwasplacedatthissite.

Providenciastationislocatedabout20msouthfromProvidenciaavenue,about3kmeastfromAlamedastationand2kmfromdowntown.ThisstreetisthecontinuationofAlamedaandhasslightly less vehicular flux. The street is not segregated at this point. This site represents a mix of business activity (mostly offices) and residential area. The altitude of this site over sea level is 600 m.Simca-Dwasplacedatthissite.

SanDiegoisastreetsouthofdowntownalsoforuseexclusivelybybusesfrom7:30-10:00h,withtraffic direction from south to north (towards downtown). During the rest of the day any vehicle can usethestreet.Thestationislocatedabout20mwestofSanDiegostreet,andabout1.2kmsouthofdowntown.Thestreethasalotofcommercialactivity,retailandsomelightindustriesaround.Thesiteissurroundedbymediumsizebuildings(10stories)thatmaypreventgoodventilation.The vehicular flux is 21300 ± 700 per day. The altitude of this site over sea level is 540 m. Simca-Fwasplacedatthissite.

Recoleta is a two-way street located north of downtown with a flux of 19300 ± 740 vehicles perday.However,duringrushhour,itisan“exclusivestreet”foruseonlybypublicbuses(7:30-10:00 h), and with traffic direction going from north to south. During the remainder of the day, anyvehicleinbothwayscanusethestreet.Thedetectorislocatedinsideaschoolabout50mfromthestreetandabout200mfromanotherbusystreet.Theareahasalotofcommercialactivityandthereareseveralhospitalsnearby.Thealtitudeofthissiteoversealevelisabout560m.Simca-Ewasplacedatthisstation.

3. Results and discussion3.1 Instrument calibrationIn order to use the data from the Simcas to determine the efficacy of the traffic restrictions, simultaneousmeasurementsbetweentheSimca,aTeommonitorwitha2.5µmcutpointandacarbonmonitor(model5400fromRupprecht&Patachnick)weredoneinwinterof2000(Gramschet al., 2004). The results allowed finding a relationship between the light absorption coefficient σaandtheconcentrationofelementalcarbonofthetype:

sa[1/km]=aEC[mg/m3] (1)

whereECistheconcentrationofelementalcarbon,andα is the mass absorption coefficient for Santiago.Inthisequation,wehaveassumedthatmostofthelightabsorptionintheatmosphereisduetoEC.GaseslikeozoneandNO2 can absorb light, but the absorption coefficient of 100

Page 7: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

107EC pollution due to traffic

ppbofozone(Gast,1960;Hodkinson,1966)at550nmisabout0.001[1/km],for50ppbofNO2is0.01[1/km],whileforparticles(Horvath,1993),is0.1[1/km].Thus,theabsorptionbythesegases is negligible.Forparticles, previousmeasurementsbyConama (2003), have found thatabout8%oftheparticlemass(PM10)correspondstoEC,9%toorganiccarbon,48tonaturalandcitydust,7tochlorine,8tosulphate,11tonitrate,8toammoniumand3%toothers.Fromthesecomponents,onlyECandorganiccarbon(OC)canabsorblight,theotherseitherscatterlightoraretransparent.MostorganiccarboncomponentsabsorbintheIRparofthespectrum,butsomeheavyhydrocarbonsalsoabsorbinthevisibleregion.AstudyperformedbyRappenglucket al.(2000)in1996inSantiagoindicatethattheconcentrationofthesecomponentsislessthan0.5µg/m3,whichismuchlessthantheECconcentration.

Arelationshiplikeeq.(1)isusefulifonewantstoobtainelementalcarbonconcentrationwiththe instrument described in the instrumentation section. The conversion coefficient for EC is α=4.46m2/g ± 0.1. This value was used to calculate the EC concentrations shown in the figures below from the measured light absorption coefficient.

Beforeplacingtheinstrumentsinthesites,simultaneousmeasurementswereperformedattheUsach site in order to verify that the absorption coefficient obtained was similar. These measurements wereperformedfromFebruary23toMarch4,2001.AllSimcasshowsimilarfeatures,inparticular,the traffic dependence of the absorption coefficient was seen, with a pronounced peak at 8:00 h, andamoreextendedpeakbetween19:00and22:00h.3.2 Particulate matter concentration in the center and the western part of SantiagoArecentstudy(Gramschet al.,2006)usingdatafromtheMacamNetwork(Conama)indicatesthatthesectorswithlargestPM10concentrationsinwinteraredowntown(ParqueO’Higgins)andthewestofthecity(Pudahuel).TheseareasareindicatedinthemapofFigure1.Pudahuelisanimportantmonitoringsitebecauseithasthehighestlevelsduringwinter,andisthestationthattriggers most of the “exception events” (days with traffic restrictions). The monthly average PM10levelsforthesestationsareshowninFigure2.ThehighestPM10levelsintheyear2001areseenduringMayandJune,whicharecoldmonthswithlittlerain.DuringJulyandAugust,thehourlypeaklevelsmayalsobehigh,buttheaverageisgenerallylowerbecausethereismorerainthatbringsdowntheparticleconcentration.

AninterestingfeatureseeninFigure2,isthatPudahuelhashigherPM10levelsthanParqueO’Higgins in the first part of the year (January-June), but their levels are similar during the second partoftheyear(July-December).Incontrast,PM2.5averagelevelsaresimilarforbothstationsformostoftheyear.Thedifferenceseemstobethesourceofparticles.MostoftheraininSantiagofallsbetweenJuneandJuly,thereforevegetationgrowsinunpavedareasofthecityanditssurroundingsandthesoilremainswetforseveralmonths.Becauseofthesefactors,thereislessnaturaldustintheairduringwinterandspring(July-December).Duringsummerandfall(January-May)thereisverylittlerainandhotwhether,thevegetationdriesoutandthenaturaldustiseasilyresuspended.BecausehigherPM10 isnotseen in thedowntownstation(Parque),probablymostof thedust

Page 8: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

108 E.Gramschet al.

comesfromoutsidethecityandthevicinityofPudahuelstation.This increaseisnotseenforPM2.5,indicatingthattheresuspendenddustcorrespondstocoarseparticles.Asimilarpattern(notshown)forPM10andPM2.5hasalsobeenobservedintheyear2000.CarbonmonoxideandNOxarecontaminantsthatareemittedmostlyfrommotorvehicles,andconstitutegoodtracergasesfortransportationinapollutedcity.InFigure3wehaveplottedCOconcentrationintwoofthestationsoftheMacamNetworkandNOxinoneofthestations(ParqueO’HigginsandCerrillos).CerrillosistheonlystationclosetodowntownthatmonitorsNOxanditislocatedabout2kmsouthofthepointindicatedinthemapofFigure1.Figures2and3showthatCO,NOxandPM2.5concentrationshaveverysimilarshape.ThecorrelationbetweenCOandNOxinCerrillosis0.997,thecorrelationbetweenCOandPM2.5inParqueis0.973.ThisfactindicatesthatmostofPM2.5couldbeassociatedtovehicularemissions.

Fig. 3. Monthly average CO andNOx levels in Parque O’HigginsandCerrillosduring2001.

3.3 Dependence of the EC concentration with wind directionSince the monitors were located at a certain distance from traffic roads there might be a dependence oftheconcentrationwiththewinddirection.Tostudythiseffect,wehavecalculatedfrequencyandconcentrationwindrosesintheParqueO’Higginsstation.ThereisnowindspeedordirectiondataforthesiteswheretheSimcamonitorsarelocated,butbecauseallthestationsarelocatedneardowntown,lessthan6kmfromParqueO’Higgins,weexpectthewindpatterntobesimilarandtheconclusionstoapplytoallSimcasites.

TheParqueO’Higginssiteislocatedabout300mwestofahighwayand300msouthofastreetwithabout22000±820vehiclesperday.ThewindrosesforParqueO’HigginsareshowninFigure4fordifferenttimesofthedayforthemonthsofAprilthroughJuly.Duringtheafternoon(14:00-18:00h),thereisacleardirectionofthewindcomingfromthesouthwestdirection(theconventionusedis:southwindmeansthatthewindcomesfromthesouthandgoestowardsthe

Fig. 2. Monthly PM10 and PM2.5average levels in Santiago during2001inthreestationsoftheMacamNetworknearmeasurementsited.

0

20

40

60

80

100

120

140

160

Janu

ary

February

March

April

MayJu

ne July

Augus

t

Septem

ber

Octobe

r

Novem

ber

Decem

ber

Month

Con

cent

ratio

n ( µ

g/m

3 )

Pudahuel, PM10Parque, PM10Parque, PM2.5Pudahuel, PM2.5Providencia, PM10

0

20

40

60

80

100

120

140

160

Janu

ary

February

March

April

MayJu

ne July

Augus

t

Septem

ber

Octobe

r

Novem

ber

Decem

ber

Month

Con

cent

ratio

n ( m

g/m

3 )

Pudahuel, PM10Parque, PM10Parque, PM2.5Pudahuel, PM2.5Providencia, PM10

0

0.5

1

1.5

2

2.5

3

3.5

Janu

ary

Februa

ry

March

April

MayJu

ne July

Augus

t

Septem

ber

Octobe

r

Novem

ber

Decem

ber

CO

con

cent

ratio

n (µ

g/m

)

0

50

100

150

200

250

300

Cerrillos, COParque, COCerrillos NOx

3

Month

Page 9: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

109EC pollution due to traffic

north, etc.). More than 80% of the time the wind blows in this direction (~180-270°). However, at night (22:00-5:00 h) the main component of the wind comes from the southeast direction (~110°), i.e.fromthecenterofthecitytowardsthewest,buthereisstillasmallsouthwestcomponentofthewind.Duringthemorningrushhour(6:00-11:00h)thewindpatternisverysimilartothenightwindpatternwithanaveragespeedaround0.7m/s,asseeninFigure5.ThewindspeedinParqueO’Higginshasapronounceddependencewiththetimeoftheday,withstrongerwindoccurringduringtheafternoon(speedsupto3m/s)andlowerwindspeedsduringtherestoftheday(Fig.5).Thestandarddeviationofthehourlyaverageisverylargeindicatingthatthevariabilityofthewindspeedishigh.IntheParqueO’Higginsstationitispossibletoseeatypicalvalley-mountainwindpattern(Fig.4);thatis,duringthedaythewindblowsfromthevalleytowardsthemountain,andatnightthedirectionreverses.AtPudahuel,whichisfurtherawayfromthemountain,thispatterncannotbeseen.

Fig. 4. Frequency wind roses for ParqueO’Higgins site (downtown) for the afternoon(14:00-18:00 h), morning (6:00-11:00 h) andnight(22:00-2:00h)fromApriltoJulyof2001.

0

20

40

60

800

30

60

90

120

150180

210

240

270

300

330

0

20

40

60

80

Parque O'Higgins

Win

d fre

quen

cy

22:00 - 2:00 h

0102030405060

030

60

90

120

150180

210

240

270

300

330

0102030405060

Win

d Fr

eque

ncy

6:00 - 11:00 hParque O'Higgins

0

50

100

1500

30

60

90

120

150180

210

240

270

300

330

0

50

100

150

Win

d fre

quen

cy14:00 - 18:00 hParque O'Higgins

0

20

40

60

800

30

60

90

120

150180

210

240

270

300

330

0

20

40

60

80

Parque O'Higgins

Win

d fre

quen

cy

22:00 - 2:00 h

0102030405060

030

60

90

120

150180

210

240

270

300

330

0102030405060

Win

d Fr

eque

ncy

6:00 - 11:00 hParque O'Higgins

0

50

100

1500

30

60

90

120

150180

210

240

270

300

330

0

50

100

150

Win

d fre

quen

cy14:00 - 18:00 hParque O'Higgins

0

20

40

60

800

30

60

90

120

150180

210

240

270

300

330

0

20

40

60

80

Parque O'Higgins

Win

d fre

quen

cy

22:00 - 2:00 h

0102030405060

030

60

90

120

150180

210

240

270

300

330

0102030405060

Win

d Fr

eque

ncy

6:00 - 11:00 hParque O'Higgins

0

50

100

1500

30

60

90

120

150180

210

240

270

300

330

0

50

100

150

Win

d fre

quen

cy

14:00 - 18:00 hParque O'Higgins

Page 10: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

110 E.Gramschet al.

TheconcentrationroseforECinParqueO’HigginsisshowninFigure6.Duringthemorninghours(6:00-11:00h)theconcentrationshowslittledependencewiththewinddirection.Becausethewindspeedisverylow,thevehicularemissionstendtodiffuseinalldirections.Inthemorningthere is some influence from the largest streets, which are located towards the east (highway) and towardsthenorth(Blancostreet).Duringtheafternoon(14:00-18:00h)thelowestconcentrationoccurs when the wind comes from the southwest direction (180-240°), this wind brings clean air fromthecoast.Whenthewindblowsfromtheotherdirections,higherconcentrationisobserved.When the wind points in the southwest direction (180-240°), there is a lower EC concentration, becausetheairfromthisdirectioniscleaner.Theconcentrationroseforthemorninghours(6:00-11:00h)showsthattheECconcentrationmeasuredbytheSimcamonitorisnotgoingtobestronglyinfluenced by the location of the monitor with respect to the street.

Fig.5.Averagewindspeed(inalldirections)inParqueO’Higginssiteforthewintermonthsof2001.The bar indicates the standard deviationofthemean.

Fig.6.ECconcentrationwindrosesintheParqueO´HigginssitefromMarchthroughJuly,2001.(Continuesinthenextpage)

Parque O'Higgins, 2001

0

0,5

1

1,5

2

2,5

3

0 2 4 6 8 10 12 14 16 18 20 22 24Time

Win

d Sp

eed

(m/s

)

AprilMayJuneJuly

Parque O'Higgins, 2001

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20 22 24Time

Win

d Sp

eed

(m/s

)

AprilMayJuneJuly

5

10

15

200

30

60

90

120

150180

210

240

270

300

330

5

10

15

20

EC c

once

ntra

tion

(ug/

m3 )

6:00 - 11:00 h

05

10152025

030

60

90

120

150180

210

240

270

300

330

05

10152025

EC c

once

ntra

tion

(ug/

m3 )

14:00-18:00 h

Time (h)

Page 11: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

111EC pollution due to traffic

TheECconcentrationatnight(22:00-5:00h)alsohassomedependencewithwinddirection.Theconcentration is higher in the ~80° to 150° direction, i.e.whenthewindcomesfromthehighway.However,itisnotclearthatthehighwayisthecauseofthehigherECconcentration,becausethesameeffectisnotseenwhenthewindcomesfromthenorth,whereanotherlargestreetislocated(Blanco).Instead,thehigherconcentrationsmaybeduetothemanysourceslocatedinthecenterand east of the city. It seems that in Parque O’Higgins, the influence of the nearby streets on the ECconcentrationatnightisnothigh.

3.4 Temporal variation of the EC concentrationTheECconcentrationdependsonmanyvariables–accordingtothetimeofday–anditalsovarieswiththedayoftheweekandtheseasonoftheyear(Gramschet al.,2000).Duringweekdaysthe traffic has a stronger influence on the rush hour concentrations; during Saturdays, the rush houroccurstwohourslaterthanweekdays;onSundaythereisnomorningrushhour.Becausethe influence of traffic is higher during weekdays, our analysis will be done using data only from weekdays.Figure7showsthenormalizedECconcentration(EC/EC0,withEC0theaverageforthemonth)atthreesites,forallmonthsmeasured.Duringcoldmonths(April-July),thelowaveragewindspeedandthereducedheightofthemixinglayerareresponsibleforhigherECconcentrationthaninwarmmonths.ThispatternhasbeenobservedpreviouslyinSantiago(RutlandandGarreaud,1995;Gramschet al.,2000).ThedailypatternoftheECconcentrationcanbeassociatedtodifferentsourcesandmeteorologicalconditions.Thereisapronouncedpeakat8:00hthatcanbeassociatedalmost exclusively with traffic because is well correlated with an increase in vehicular flux. The traffic pattern in Alameda (near Alameda monitoring site) shown in Figure 8, indicates that there is an increase in vehicular flux around 6:00-7:00 h that decreases around 9:00-10:00 h and remains relativelyconstantduringtherestoftheday.TheincreaseinECconcentrationaround8:00amcanbe attributed to the rush hour traffic.

05

10152025

030

60

90

120

150180

210

240

270

300

330

05

10152025

EC c

once

ntra

tion

(ug/

m3 )

22:00-5:00 h

Fig.6.ECconcentrationwindrosesintheParqueO´HigginssitefromMarchthroughJuly,2001.(Continued)

Page 12: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

112 E.Gramschet al.

Fig.7.NormalizedhourlyECconcentrationaverageforthesitesalongAlameda/ProvidenciaavenuesfromApriltoJulyof2001.Thebarindicatesthestandarddeviationofthemean.

June

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20 22 24Time

EC/E

C0

Providencia UsachAlameda

(h)

July

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20 22 24Time

EC

/EC

0

ProvidenciaUsachAlameda

(h)

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20 22 24Time

EC/E

C0

ProvidenciaUsachAlameda

April

(h)

May

0

0.20.4

0.60.8

11.2

1.41.6

1.8

0 2 4 6 8 10 12 14 16 18 20 22 24Time

EC/E

C0

ProvidenciaUsachAlameda

(h)

Fig. 8. Total vehicle flux in Alameda avenueinbothdirections.

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16 18 20 22 24Time

No

of v

ehic

les

/ 15

min

West-EastEast-West

DirectionMonday

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16 18 20 22 24Time

No

of v

ehic

les/

15 m

in

West-EastEast-West

DirectionMonday

(h)

Duringtheafternoon,thereisadecreaseinECconcentration(12:00-18:00h),whichtoasmallextent can be related to a decrease in traffic, but mostly is due to an increase in the wind speed. BecausetherearenomeasurementsofwindspeedordirectionintheUsachorAlamedasites,the

Time (h) Time (h)

Time (h)

EC

/EC

0

Page 13: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

113EC pollution due to traffic

dataforParqueO’Higgins(Fig.5)isgoingtobeused.TheUsachsiteisabout2.5kmawayfromParque,andAlamedaisonly1.3kmfromParque,sothewindspeedissimilarinallthreesites.AsseeninFigures5and6,thewindincreaseintheafternoon(12:00-18:00h)explainsthelowEClevelsseeninthispartofSantiago.

ThereisalargevariabilityintheECconcentration,ascanbeevidencedbytheerrorbarsinFigure7.ThisvariabilityisalsoseeninthePM10measurementsfromothermonitoringstations.Asanexample,theaveragestandarddeviationinPM10duringAprilinParqueO’HigginsdividedbytheaveragePM10is0.64.TheaveragestandarddeviationinECduringAprilinProvidenciadividedbytheaveragePM10is0.56.Thesimilarityofthesenumbers,indicatethatthevariabilityisrelatedtochangesinconcentrationandnottoproblemsinthemonitors.OnevariablethathashighvariabilityandishighlyrelatedtotheECorPM10concentrationisthewindspeed.ThevariabilityofthewindspeedcanbeseeninFigure5,andtheaveragestandarddeviationinwindspeedduringAprilinParqueO’Higginsdividedbytheaveragewindspeedis0.48,somostofthevariabilityintheconcentrationdatacanbeexplainedbythevariabilityinthewindspeed.

ThepeakinECconcentrationduringtheeveningandnight(18:00-20:00h)canbeattributedto the traffic (evening rush hour), but also to an accumulation of pollution due to a reduction in the heightoftheinversionlayer(RutlandandGarreaud,1995)andadecreaseinthewindspeed.Atthistime,duringwinter,thereisalsoalotofwoodandkeroseneburningforheatingthatcanbealargesourceofelementalcarbon,whichincreasestheECconcentrationlevels.

The morning rush hour peak (8:00 h) can be seen in the EC curves for all months (Fig.7), indicating that the influence of traffic in the downtown area is high. The daily average EC concentrationhasbeencalculatedforMarchthroughJuly.Ithastobenotedthattheareaunderthepeakfrom6:00to11:00hrepresents29%ofthetotalareainMarch.Thisfractiondecreasesinthecoldermonths,being27.3%inApril,22.1inMay,23.6inJuneand20.7%inJuly.Theaverageforthesemonthsis24.5%.Althoughincoldermonthsthisfractiondecreases,thedataindicatetheimportanceofthevehicularemissionontheelementalcarbonbudgetforSantiago.

3.5 Influence of the segregated lanes on the EC concentrationAs mentioned before,Alameda has three segregated lanes that can be used only by publictransportationbusesandtwolanesusedbyallothervehicles.Providencia,whilealsohaving5lanes, is not segregated. Both avenues have similar traffic characteristics, i.e. a mixture of buses, privatevehiclesandlighttrucks,heavytrucksarenotallowed.Mediumsizebuildingssurroundbothavenues.Themeteorologicalconditions(windspeedanddirection,temperatureandrelativehumidity)areverysimilarbecausethethreesitesareclosetoeachother(Fig.1).AlamedaandProvidenciaarepartsofalongavenuethatcrossesthecityfromeasttowest,andthisisthemostimportantavenueinthecitywiththehighestdensityofbusesandprivatevehicles.

AsseeninFigure1,theUsachandAlamedasitesarenotfarfromParqueO’Higgins(Usachis2.5kmfromParque,andAlamedaisonly1.3kmfromParque)thusitcanbeassumedthattheaveragelevelsofPM10,PM2.5measuredinParqueO’HigginsarerepresentativeforUsachand

Page 14: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

114 E.Gramschet al.

Alameda.FromFigure2,itcanbeseenthatPM10inProvidenciais,onaverage,lowerthaninParqueO’Higgins.Thus,thePM10,PM2.5andEClevelsinProvidenciaareonaveragealwayslowerthanAlamedaorUsach,andapossiblereductionintheemissionduringrushhourcannotbeseenbyadirectcomparisonofthedatafromthesestations.Forexample,theECconcentration,measuredwiththeSimcamonitorinAprilwas29%lowerinProvidenciathaninUsachand23%lowerthaninAlameda,andfortheothermonthsthepercentagesaresimilar.Thelowerconcentrationis partly because Providencia district has less traffic and is about 70 m higher than the other sites. Because the average concentration levels are different and the traffic density is different, a direct comparisonoftheEClevelsinthesestreetscannotbemade.ThusacomparisonofthenormalizedECconcentrationfortherushhourperiod(7:00-9:00h)willbedone.Weareassumingthatiftherewerenosegregationofthestreets,thenthenormalizedrushhouraverageswouldbesimilarforthesethreesites.

InordertocomparetheconcentrationlevelsfromthestationsalongAlameda/Providencia,wehavecalculatedthehourlyaveragenormalizedbythemonthlyaverage(E0)ofeachstation.Thedata,forthemonthsofApril-July,areshowninFigure7.ItcanbeseenthatProvidenciahasthesameorslightlyhighernormalizedECconcentration(EC/EC0)thantheothertwostationsduringthemorningrushhour(7:00-9:00h)forallmonths.Inaddition,theincreaseinECconcentrationduringtherushhourisalsolargerfortheProvidenciastation.Theincreasewascalculatedas:

I= (2)

where⟨8.9⟩mistheaverageoftheECconcentrationat8:00and9:00AMforthemonth,etc.Thisincrease is caused largely by the rush hour traffic. Table I presents the average increase, the standard deviation,numberofdatapoints,andmaximumandminimumforeachmonth.ThelargeerrorisindicativeofthelargevariabilityintheECconcentrationfromonedaytoanother;thisistobeexpectedbecausethemeteorologicalconditionshavelargechangesovershortperiodsoftime.

⟨4.5⟩m

⟨8.9⟩m⟨4.5⟩m

Prov./Alameda Prov./Usach April 0.027 1.175 2.02May 0.091 1.778 2.02June 2.908 2.989 2.02July 0.556 0.880 2.02

Calculatedtvalue t-value for 95% confidenceTable I. Average increase during rush hour (as defined in Eq. 2) in the stations along Alameda/Providencia Avenue.

ToevaluateiftheincreaseduringrushhourinProvidenciaishigherthantheothertwosites,thet-Studenttestwasappliedtothemeanincreaseofthestations(Eq.2).ProvidenciawithAlamedaand Providencia with Usach were compared to assess if the means of these stations are significantly different. A difference between two means is significant (at the given probability level) if theA difference between two means is significant (at the given probability level) if the calculatedtvalueis greaterthan avaluegivenbythet-testtable.Fora95%probability(p=0.05)thatthetwomeansaredifferent,atvalueof2.02isneeded.

Page 15: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

115EC pollution due to traffic

Thecalculatedt-valuesforpairsofstationsareshowninTableII.Itcanbeseenthatformostmonths,thet-valueislowerthan2.02whichisthemaximumt-value allowed for a 95% confidence thatthemeansaredifferent.Thet-valueisgreaterthan2.02onlyduringJune.AlthoughthemeanincreaseinProvidenciaishigherthanAlamedaorUsach,thecalculationindicatesthatwecannotconclude with statistical significance that the mean values are different. The large variability in the data does not allow resolving with statistical significance if there is a reduction in the emission fromsegregatedstreets.

n Increase Std.dev. Max. Min.AprilProvidencia 20 1.903 1.63 7.82 -0.49Alameda 20 1.916 1.32 4.78 0.07Usach 18 1.383 1.05 3.01 -0.39May Providencia 23 2.477 2.09 7.75 0.05Alameda 23 2.407 3.02 14.62 0.08 Usach 21 1.422 1.84 7.33 -0.43June Providencia 21 3.834 4.35 18.20 0.12 Alameda 21 0.990 1.09 4.63 -0.37 Usach 21 0.928 0.98 4.04 -0.16 July Providencia 17 3.379 4.19 13.52 -0.79 Alameda 20 5.148 13.48 57.09 -0.69 Usach 20 2.247 3.52 13.04 -0.47

TableII.Calculatedt-value for pairs of stations for the increase (as defined by equation 2) during rush hour.

ApossiblereasonthatthesegregationofthestreetshasonlyasmalleffectinthereductionofECconcentrationisthatthebusesmayaccelerateharderbecausetheyhavemorespace.Whenthereislesscongestionthebusesmaytrytoreachthenextstopinlesstimewithharderaccelerationthatgeneratesmoreemissions.Thisissuemaybeinvestigatedbymeasuringthespeedofbusesinasegregatedandnotsegregatedstreet.Anotherreasonmaybethatthecongestioninthelaneswithpassengervehicles(becausetheyhaveonlytwolanesavailable)resultsinincreasedemissions.

Theeffectofthelocationofthemonitoringstationwithrespecttothestreetwasalsoinvestigated.Providenciastationislocatedsouthofthestreet,whileAlamedaandUsacharelocatednorth.Ifthewindblowsinthenorth-southdirectiontheremaybeastrongerimpactinProvidenciastation.MeasurementsofwinddirectionandspeedhavebeentakeninPudahuelandParqueO’Higgins,butthelateststationisrepresentativefordowntownSantiago,becausePudahuelisfarthesteast.WindfrequencyrosesforParqueareplottedinFigure4andtheyindicatethatduringtherushhour(7:00-9:00h)theprevalentwinddirectioniseast-westandwest-east.Inaddition,thewindspeedis very low: 0.6-0.8 m/s as shown in Figure 5, so the location of the stations does not influence the concentrationsduringthesehours.

Page 16: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

116 E.Gramschet al.

BecauseoftherestrictionstopassengervehiclesinAlameda,thecongestioninnearbystreetsisprobablyhigher,anditseffectshouldbeinvestigated.UsingthedatafromtheMacamnetwork(Conama,2003),wehavefoundnoevidenceofareductionorincreaseinpollution(PM10orPM2.5)inothersectorsofthecity.

AcomparisonofnormalizedECconcentrationduringrushhourbetweenAlamedaandtheotherstreets (San Diego or Recoleta) was not performed because they have different traffic pattern. In themorningonlybusescanusethesestreets,whilealltypesofvehiclesuseAlameda.Inaddition,thewinddirectionduringthemorninghours(6:00-11:00h,Fig.4)isperpendiculartoRecoletaandSanDiego,whichhaveanorth-southdirection.Alamedahasthesamedirectionasthewindspeedduringthesehours.SanDiegoisastreetsurroundedbyseveralmediumsizebuildings,andRecoletaismoreopen.ItisdeemedthatthesecharacteristicsofRecoletaandSanDiego(direction,size, number and type of vehicles, etc.) make difficult to perform a comparison with Alameda or amongthem.

3.6 High EC levels in San Diego streetWhentheabsoluteECconcentrationisanalyzed,itisfoundthatSanDiegostationhasveryhighECconcentrationduringrushhour.SanDiegoisaone-waystreetwithanorth-southdirection,inwhich the vehicular flux was changed such that only public transportation buses could circulate in themorningrushhour(7:30-10:00h).Itislocatedinabusydistrictwithseveralmidsizebuildings(10stories),alotofcommercialactivityandsomelightindustriesaround.TheSimcawaslocatedin the eastern part of the street in the 5th floor of a building. A plot of the hourly average EC concentrationmeasuredinSanDiego,AlamedaandRecoletaisshowninFigure9.Thisplotallowsto make a comparison of the EC concentration between these stations and to visualize the traffic patterninthesestreets.ThehighestvalueoftheECconcentrationoccursinSanDiegoat10:00h,whileinAlamedaandRecoletaitoccursat9:00h.ItalsocanbeseenthatforAprilandJune,theSanDiegomonitoringsitehasthehighestrushhourpeakcomparedtotheotherstreets.MayandJulyarenotshownbuttheyhavesimilarfeatures.TheECconcentrationfrom7:00to11:00hcanbecalculatedandtheresultsarethatinApril,SanDiegois20%higherthanAlamedaand18%higherthanRecoleta.InMay,itis2%lowerthanAlamedabut9%higherthanRecoleta,inJuneitis46%higherthanAlamedaand76%higherthanRecoleta,andinJulyitis30%higherthanAlamedaand3%higherthanRecoleta.Thesehighconcentrationsareprobablyduetothebuildingsthatsurroundthestreetandpreventgoodventilation.Inaddition,inthemorningthewinddirectioninthisareaisperpendiculartothestreet(Fig.4),whichalsocontributestopoorventilation.Therushhourpeakisevenhigherthantheeveningpeakduringthecoldmonths(JuneandJuly).Allthesefeaturesofthedataindicatethatoperationofexclusivelanesforpublictransportationdoesnothaveaneffectinthisstreet.

Page 17: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

117EC pollution due to traffic

3.7 Extent of an area with high EC pollutionThemonthlyaverageECconcentrationinfourmonitoringsites(Usach,Alameda,RecoletaandProvidencia)allowsdeterminingwhetherthereisanareawithhigherconcentrationinSantiago.ThemonthlyaverageshowsthatRecoleta,whilehavingslightlyhigherEClevelsthanProvidencia,itisstilllowerthanAlamedaandUsach.ItisalsoclearthatstationslocatedtowardstheeasthavelowerECconcentration.Thedifferencebetweenthesitescanbeseenmoreclearlyifweplotthevariation of EC along the day, because the influence from the local sources can be distinguished moreclearly.Figure10showsacomparisonofthehourlyECaverageforAprilandJune.Itcanbeseenthatintheearlymorning(1:00to6:00h)andduringtheevening(18:00-24:00h)thereisacleardifferencebetweenthestationsinthewest(AlamedaandUsach)andtheeast(Providenciaand Recoleta). The EC concentration during these hours is not influenced by traffic, but it can be attributedtoheatingsourcesandtothereducedheightoftheinversionlayer.Duringthesehours,ProvidenciaandRecoletahavealwayslowerlevelsthanUsachandAlameda.Thereasonforthisbehaviormaybethatthesetwostationsarelocatedtowardstheeastinaslightlyhigherpartofthe city. Most of the business in this section of the city corresponds to offices and retail stores, while around the Usach and Alameda sites there are more small industries, as well as offices and retail.TheECconcentrationduringrushhourdoesnotshowacleardifferencebetweentheeasternandwestern stations,because theconcentrationduring thesehours isdeterminedby the localtraffic. The data shown in Figure 10 allow us to divide the sector in two parts: one with higher EC concentrationthantheother,asshowninFigure11.Towardstheeastofthelines,theelementalcarbonconcentrationdecreases,andtowardsthewest(arrowdirection)itincreases.Inaddition,becauseelementalcarbonishighlycorrelatedwithPM2.5,wecanalsoexpectasimilarbehaviorforthispollutant.

Fig.9.HourlyECaverageinthestationslocatedinthenorth-southdirectionforAprilandJune.MayandJuly(notshown)havesimilarfeatures.

April

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24

EC

(g/

m3 )

RecoletaAlamedaSan Diego

June

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20 22 24

EC

(g/

m3 )

RecoletaAlamedaSan Diego

Time (h) Time (h)

Page 18: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

118 E.Gramschet al.

Fig.11.Divisionofthecityinto two sectors accordingto the EC concentration.Towardstheeastofthelinesthe concentration decreasesandtowardsthewest(arrowdirection)inincreases.

4. Conclusions Fivesemi-automaticsystemsbuiltattheUniversityofSantiagohavebeenusedtomonitortheelemental carbon concentration (by measuring the light absorption coefficient) during winter of 2001.Thismonitoringcampaignwascarriedouttoassesstheeffectivenessofthesegregationofthemainavenue(Alameda).ThreemonitoringstationswereplacedalongAlameda/Providenciaavenues,onetowardsthenorthandonetowardsthesouthofAlameda.Thelocationofthemonitoringstationwith respect to the streetdoesnot affect theconcentrationsbecause thewind speed isverylowduringthesehours.Thedataindicatethatthemorningrushhourpeakcanbeseenforall months showing that the influence of traffic in this area is high. The EC concentration during

Fig.10.HourlyECaverageforProvidencia,Recoleta,UsachandAlamedaforAprilandJune.

April

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22 24

EC

(g/

m3 )

Providencia AlamedaRecoleta Usach

June

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24

EC

(g/

m3 )

Providencia AlamedaRecoleta Usach

Time (h) Time (h)

X San Diego

XUSACH

Alameda

XLa Paz

Rec

olet

a

2000

San Cristobal hillMapochoriver

XProvidencia

ParqueO'Higgins

Pudahuel

Blanco

Alameda

Av.

X

Page 19: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

119EC pollution due to traffic

rushhourrepresentsanaverageof25%ofthetotalconcentration.TheECdatafromweekdaysfromApriltoJulyof2001(winter)inAlameda/ProvidenciaindicatethattheremaybeareductionintherushhourECconcentrationlevelsinAlameda(streetthathassegregatedlanes)ascomparedwithProvidenciathathasnosegregatedlanes.However,itisnotpossibletoconcludewithstatisticalsignificance that the mean value in Providencia is higher than Alameda or Usach. It was also found thatonestreetthathasexclusivelanesduringthemorning(SanDiego),hashigherEClevelsthantheotherstreets.Thisisprobablyduetothebuildingsthatsurroundthestreetandpreventgoodventilation,evidencingthatinthisstreettheoperationofexclusivelanesforpublictransportationdoesnothaveanoticeableeffect.WhentheEClevelsfromthedifferentmonitoringsitesarecompared,itcanbededucedthatpartofthecityhathasloweraverageelementalcarbonconcentrationlevels.ThedistrictwithlowerEClevelshasslightlyhigheraltitudeandfewersmallindustries.

Acknowledgements ThisworkwassupportedbyComisiónNacionaldelMedioAmbiente,ConamaRM,undercontractBIP:20127600-2andbyFondecytProjectNo.1040170.

References ArtaxoP.,P.OyolaandR.Martínez,1999.Aerosolcompositionandsourceapportionment in

SantiagodeChile.Nucl. Instrum. Meth.150,409-416.Cifuentes L. A., J. Vega, K. Kopfer and L. B. Lava, 2000. Effect of the fine fraction of particulate

matterversusthecoarsemassandotherpollutantsondailymortalityinSantiago,Chile.J. Air Waste Manag. Assoc. 50,1287-1298.

CONAMA,2003.Evolutionof theairqualityinSantiago,1997-2003.ComisiónNacionaldelMedioAmbiente,ConamaRM,Santiago,Chile.

GastP.R.,1960.Thermal radiation.Handbook of Geophyics.Macmillan,NewYork,1621pp.Gramsch E., L. Catalán, I. Ormeño and G. Palma, 2000. Traffic and seasonal dependence of the

light absorption coefficient in Santiago de Chile. Appl. Optics.39,4895-4901.GramschE.,F.Cereceda-Balic,I.Ormeño,G.Palmaand P. Oyola, 2004. Use of the light absorp-andP.Oyola,2004.Use of the light absorp-Useofthelightabsorp-

tion coefficient to monitor elemental carbon and PM2.5.Example of Santiago de ChileExampleofSantiagodeChileJ. Air Waste Manag. Assoc.54,799-808.

GramschE.,F.Cereceda-Balic,P.OyolaandD.VonBaer,2006.ExaminationofpollutiontrendsinSantiagodeChilewithclusteranalysisofPM10andozonedata.Atmos. Environ.40,5464-5475.

HodkinsonR.J.,1966.CalculationofthecolorandvisibilityofinurbanatmospherespollutedbygaseousNO2.Int. J. Air Water Pollut.10,137-144.

HorvathH.,1993.Atmosphericlightabsorption-Areview.Atmos. Environ.27,293-317.HorvathH.,L.CatalánandA.Trier,1997.AstudyoftheaerosolofSantiagodeChileIII:Light

absorptionmeasurements.Atmos. Environ. 31,3737-3744.

Page 20: Impact of the use of segregated streets in the elemental ... · Las altas concentraciones de material particulado que se observan en Santiago de Chile durante el invierno ... , and

120 E.Gramschet al.

IlabacaM.,I.Olaeta,E.Campos,J.Villaire,M.M.Tellez-RojoandI.Romieu,1999.Associationbetween levels of fine particulate and emergency visits for pneumonia and other respiratory illnessesamongchildreninSantiago,Chile.J. Air Waste Manag. Assoc.49,154-163.

JorqueraH.,R.Pérez,A.Cipriano,A.Espejo,M.V.LetelierandG.Acuña,1998.ForecastingdailymaximumlevelsatSantiago,Chile.Atmos. Environ.32,3415-3424.

KavourasI.G.,J.Lawrence,P.Koutrakis,E.G.StephanouandP.Oyola,1999.MeasurementofparticulatealiphaticandpolynucleararomatichydrocarbonsinSantiagodeChile:Sourcereconciliationandevaluationofsamplingartifacts.Atmos. Environ.33,4977-4986.

LeeS.A.,T.Hastie,P.F.Mancilla,P.O.AstudilloandW.G.Kuschner,2000.Fineparticulateairpollution(PM2.5)andmedicalvisitsforlowerrespiratorytractillnessesamongchildreninSantiago,Chile.J. Invest. Med.48,524.

Lin C. I., M. B. Baker and R. J. Charlson, 1973. Absorption coefficient of the atmospheric aerosol: amethodformeasuring.Appl. Optics12,1356-1363.

OstroB.D.,G.S.Eskeland,J.M.SánchezandT.Feyzioglu,1999.Airpollutionandhealthef-fects:AstudyofmedicalvisitsamongchildreninSantiago,Chile.Environ. Health Persp.107,69-73.

RappengluckB.,P.Oyola,I.OlaetaandP.Fabian,2000.TheevolutionofphotochemicalsmoginthemetropolitanareaofSantiagodeChile.J. Appl. Meteor.39,275-290.

RutlandJ.andR.Garreaud,1995.Meteorologicalair-pollutionpotentialforSantiago,Chile-To-wardsanobjectiveepisodeforecasting.Environ. Monit. Asses.34,223-244.

SanhuezaP.,C.VargasandJ.Jiménez,1999.DailymortalityinSantiagoanditsrelationshipwithairpollution. Rev. Med.127,235-242.


Recommended