+ All Categories
Home > Documents > Implementation strategies for digital design · Implementation strategies for digital design Chip...

Implementation strategies for digital design · Implementation strategies for digital design Chip...

Date post: 23-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
15
Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: Design gap Compound complexity growth rate (#transistors/chip): 58%/Year Compound productivity growth rate (Transistor/Person-month): 21%/Year à Team size increases (now 1000) Productivity leaps are due to the introduction of new design technologies Time: 70s Programmable Logic Arrays Standard cells Macro cells, module compilers Gate arrays Reconfigurable hardware
Transcript
Page 1: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

ImplementationstrategiesfordigitaldesignChipcomplexitygrowsfasterthandesignproductivity

From1980:DesigngapCompoundcomplexitygrowthrate(#transistors/chip): 58%/Year

Compoundproductivitygrowthrate(Transistor/Person-month): 21%/Year

à Teamsizeincreases(now1000)

Productivityleapsareduetotheintroductionofnewdesigntechnologies

Time:70s

ProgrammableLogicArrays

Standardcells

Macrocells,modulecompilers

Gatearrays

Reconfigurablehardware

Page 2: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

ComplexdigitalICs(e.g.Microprocessors)

Memory

Datapath

ControlInterconnects

andI/O

To e

xter

nal w

orld

Combinatorialfunctions,arithmeticoperators,(customcellsorautomatedstandardcells)

[RO,RW][single-portaccess,multiportaccess][DRAM,SRAM,NVM](regularmacrocells) FiniteState

Machine(standardcells)

Onchip-buses,meshinterconnects(macrocells)

Semiautomaticplacementandrouting

Memory

Datapath

ControlInterconnects

andI/O

To e

xter

nal w

orld Somewhat

regular

Very regular structure

Ad hoc structure

Very regularstructure

Powerandclockdistributionsare

criticalandrequiredforallgates.

Page 3: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

Intel4004– customdesign

Courtesy Intel

2300PMOS

10µmprocess

Clock:108KHz

Area:3mmx4mm

TransitiontoAutomationandRegularStructures

Intel 4004 (‘71)Intel 8080 Intel 8085

Intel 8286 Intel 8486Courtesy Intel

Page 4: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

Tradeoffbetweenflexibilityandefficiency

- Reusabledesignofmultipleapplications

- Generichardwarewithupgradablesoftware

DISADVANTAGES:- Lossinperformance:

largeoverheadandsloweroperation(instructiondecoding)

- Increaseinenergyconsumption:samereason.

CustomHardwired(fixedatmanufacturing)

ConfigurableHW(parameters)

Applicationspecificprocessor(DSP,GPU)

Embeddedmicroprocessor

Energyefficie

ncy Flexibility

ADVANTAGESofFlexibility(Programmability):

Costofanintegratedcircuit

Totalcostof1chip=

RecurringExpenses(Variablecosts)

ProportionaltotheSalesvolume

NonRecurringExpenses(Fixedcosts)

IndependentoftheSalesvolume

+

Variablecostof1chip + fixedcosts#ofchips

Page 5: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

NRE(Fixed Costs)andRE(Variable Costs)

NRE= Time&Person Months required forthedesign+productionequipment related tothespecific chip

costofdie + costofdietest + costofpackagingfinaltestyieldRE=

% of good chips

costofdie = costofwafer#diesperwafer×dieyield

% of good dies

DieYieldEmpiricalformula(foramodern CMOSprocess <~3)

Dieyield = 1 + #defectsperunitarea×diearea<AB

Forexample:1defect/cm2

Diearea Yield0.025cm2 99%0.25cm2 78%2.5cm2 16.2%

0%

20%

40%

60%

80%

100%

0 0,5 1 1,5 2 2,5

DieYield(%)vsDieArea(cm2)

Page 6: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

Implementation approaches todigital design

Customdesign Semi-customdesign

Cellbased

Standardcells Macrocells

Arraybased

Gatearray Reconfigurablelogic (FPGA)

Customdesign

Transistorbytransistordesignofcompletecircuit• [+]Highperformance• [-]Timeconsumingà Highcost ofdesign

à Hightimetomarket

WHEN Blocks that have tobeused many times

e.g.Library Cells

Very high volumeICs e.g.MicroprocessorsCost is not anissue e.g. defenseapplications

e.g.supercomputingapplications

Page 7: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

Cell-based semicustom design

We need alibrary ofcells tobeused forthedesign

Type oflibraryStandard cells Logic gates,

MSIcircuits:Decoders,multiplexes,encoders

Macrocells MemoryBankMegacells Microprocessor, DSP,PCIinterface

1st generationStandardCell— Example

[Brodersen92]

Rows for cells

Rows for cells

Routing channel

Not very dense– lot ofspace used bytherouting channels

Page 8: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

StandardCell– TheNewGeneration

Cell-structurehidden underinterconnect layers

Much denser structure: no space occupied by routing channelsRouting occurs through higher interconnect layers

Designat ahighlevel ofabstractionHardwaredescriptionlanguage

Logicsynthesystools

Gate-leveldesign

Placementandrouting

toolsStandardcell

layoutTofoundry

Page 9: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

Suitable toFabless industry model

Fabless company Design+Testing +Sale

e.g.Marvell, QualcommDialog Semiconductor,Altera,Xilinx

Foundry Fabrication +Standard cells forFabless

e.g.TSMC, UMC, SMIC

IDM (IntegratedDeviceManufacturer)

Design+Fabrication +Testing +Sale

e.g.INTEL, SamsungSTM

IPVendor Macro cell librarySoftMacromodulesIP

e.g. ARM

Macrocells orMacromodules

HardMacrocells

Customdesignedfor aspecific CMOSprocess

Predetermined functionalityANDPredetermined physicalimplementatione.g.embeddedmicroprocessor,embeddedmemory

SoftMacrocells

Portable todifferentCMOSProcesses(GateNetlist)

Predetermined functionalitybut NOphysical implementationTypically provided byIPvendors [withsoftwaretools,testing procedures andtools]

Page 10: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

MacroModules

256´32 (or 8192 bit) SRAMGenerated by hard-macro module generator

SoftMacroModules andIP

Synopsys DesignCompiler

Page 11: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

Semicustomdesignflow

1. Designcapture Schematic+VHDL+IPblocks

2. LogicSynthesys Gate netlist+Placementandroutingconstraints

3. Pre-layoutsimulationandverification

4. Floorplanning5. Placementand

routingLayoutandMasks

6. Electrical circuitextraction

7. Post-layoutsimulationandverification

Array-basedimplementation

Donotrequireacompletemanufacturingrun

Gatearray(orSeaofgates)

Mask Programmablearrays

Prediffusedwafers,ONLYMetallayersaremissing

FieldProgrammableGateArray(FPGA)

Completeseparation betweenthemanufacturingphaseandtheimplementationphase

Manufacturing phasehaslargevolumes[+]ShortTime-to-marketandLOWNRE[- ]PerformancelossandHIGHRE

Page 12: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

Howarecellsprogrammed

Fuse-basedFPGA[WriteOnce]– Fuse: Normallyshortcircuits(ahighcurrentcanblowupthefuse)

– Antifuse:NormallyOPENcircuit(ahighvoltagecancauseoxidebreakdownandshortcircuit)

NonvolatileFPGA

SRAM-basedFPGA

Whattypeoflogiccanbeprogrammed?

Array-basedprogrammablelogic(e.g.PLA,PAL)

Any combinatorialfunction[any AND-ORFunction]

Page 13: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

Cell-basedprogrammablelogic

Out

ln1 ln2

Memory In Out

00 00

01 1

10 1

11 0

Look Up Table based logic cells: Any combinatorial logic

Seaofgates

Random Logic

MemorySubsystem

LSI Logic LEA300K(0.6 µm CMOS)

Courtesy LSI Logic

Page 14: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

RAM-basedFPGA

Xilinx XC4000ex

Courtesy Xilinx

XilinxVirtex UltraScale

Page 15: Implementation strategies for digital design · Implementation strategies for digital design Chip complexity grows faster than design productivity From 1980: ... Complex digital ICs

ICProduction– Installedcapacity

ICProductionBreakdownbyRegion

Korea, Japan ~ 2x EuropeTaiwan ~ 3x Europe


Recommended