+ All Categories
Home > Documents > Importance of controlling microbes during sugar production from cane and its effect on sugar yield...

Importance of controlling microbes during sugar production from cane and its effect on sugar yield...

Date post: 25-Feb-2016
Category:
Upload: whitby
View: 97 times
Download: 1 times
Share this document with a friend
Description:
Importance of controlling microbes during sugar production from cane and its effect on sugar yield & losses of sugar. By V. M. Kulkarni 6 th International Sugar Conference, November 10 – 13, 2012. Aswan, Egypt. Sugar / Sucrose. - PowerPoint PPT Presentation
73
Importance of controlling microbes during sugar production from cane and its effect on sugar yield & losses of sugar By V. M. Kulkarni 6 th International Sugar Conference, November 10 – 13, 2012. Aswan, Egypt WWW.VM BIOTECH.COM
Transcript
Page 1: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Importance of controlling

microbes during sugar production from cane and its effect

on sugar yield & losses of sugar

ByV. M. Kulkarni

6th International Sugar Conference, November 10 – 13, 2012. Aswan, Egypt

WWW.VM BIOTECH.COM

Page 2: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Sugar / Sucrose

It is known that sugar is not “manufactured” by us in sugar factory; but it is produced in the plant – Sugarcane cultivated by the farmer in the field.

We, in sugar factory, extract, purify and separate sucrose.

During this process, we can’t separate all sucrose in to bag as some sucrose is lost due to presence of impurities in sugarcane juice and other parameters.

Thus it is impurities that determines fate of sucrose – to be in bags or to be in molasses.

Page 3: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Sugar losses Sugar losses are of 4 types

Chemical, due to changes in pH and temperature – can be reduced only by strict control on parameter

Microbial, due to direct consumption of sugars for growth

Enzymatic – microbial and invertase present in sugarcane cells and

Indirect losses due to microbial metabolites.

http://www.vmbiotech.com

Page 4: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Philosophy of V.M.Biotech• We have introduced the new thought of

giving importance to impurities rather than purity and paper presented in ISSCT 2005 at Guatemala received good response

• ‘Prevention is better than Cure’ is a base of our new process

• We aim to use technology to prevent impurity formation rather than remove them later

www.vmbiotech.com

Page 5: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Our philosophy is “prevention is better than cure” and selection on the basis of natural logical principals We have observed during microbial control studies in more than 100 factories that proper control on microbial activity is essential to control impurity development including colorLet us look at this most crucial factor

www.vmbiotech.com

What is appropriate chemicals

Page 6: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Microorganisms

Are microscopic, can’t be seen by necked eye, requires microscope with 1000 X magnification (oil immersion lens).Their surface to volume ratio is very high.They multiply very rapidly, and hence can exert impact on environment.They are omnipresent, omnipotent and omnivorous …… just like GOD !

Page 7: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Microbes and God.

Microbes are present every where – from dry, hot dessert to the cold’s of Antarctica.They can grow in absence of oxygen.They can grow at :

1. 1050 C, Yellowstone National Park Geezers to – 500 C at Antarctica.

2. pH 0.5, Thiobacillus to many alkalophiles at pH11.53. Distill water to high salinity of the Dead Sea, They

also are known to cause foaming / deterioration of molasses 900 Brix in storage tanks.

Page 8: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Microbes and God. They can degrade KCN, and can

produce toxin few hundred times toxic than KCN.

They are so versatile that they can degrade all most any thing.

When they are angry – they produce epidemics which kills many people, and when are worshiped, we are blessed with antibiotics.

Without them our daily food requirements are incomplete and improper use can have food poisoning.

www.vmbiotech.com

Page 9: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Thus microorganisms are Funny little entities, they won’t grow

if they don’t want to – even if you all dance on table; and they will continue to grow if they want to grow – even if you all dance on the table.

Dr. A. D. Agate, Professor of Microbiology.

Page 10: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Microorganisms and survival

Microbes do have phenomenal ability to sustain adverse conditions for very long time, and they grow rapidly as soon as favorable conditions returns. Microorganisms are known to survive under totally abnormal conditions for 7.5 billion years! Desulfovibro.Microbes form colonies, too difficult to penetrate – called biofilm

Page 11: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Survival of Microbes• Microbes Protect Themselves in

nature by:• 1. growing as biofilms

• Resistant to penetration by antimicrobials, important in sugar mills

• Modifying or excluding antibacterial agent

• 2. Forming spores• Most resistant form of

bacteria. Generally found in sugar

Page 12: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Biofilms Bacteria have the ability to colonize process

surfaces this leads to build up of slime materials or

biofilms. The biofilm can become an ecosystem with a widevariety of pathogenic andspoilage microorganisms and a penetration barrier for biocides.

Rod-shaped bacterium

Page 13: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Bacterial Biofilms

SEM image of six day old Pseudomonas aeruginosa biofilm.

Page 14: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Microorganisms in Sugar Industry.

Sugar cane and mill house products are most nutritive for many microbes to grow rapidly and consume sugar to produce various metabolites which hinders in sugar production by causing process difficulties and adversely affects sugar quality.Many of them are not eliminated by boiling juice for clarification and in fact some grow at clarifier and continue to grow during further process.

Page 15: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Microorganisms in Sugar Industry.

Microbes gain entry via cut ends of harvested cane and continue their growth till they are eliminated.Depending on environmental conditions, PJ contains about 106 to 109 cfu per ml.They vary qualitatively form place to place and season to season, cold climate favors yeast while Lactobacillus predominates in summer.

Page 16: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Microorganisms in Sugar Industry.

These microbes grow and consume sugar at rapid rate and it is believed that more than 1% on cane sugar is lost during cut – to – mill delay.Further, microbes produce various metabolites that interferes in the process and affects sugar recovery and sugar quality adversely.

Page 17: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Microorganisms Associated with Sugar ProcessSr. Organism No.

Site Activity

1. Xanthomons Cane Organic acid

2. Aerobacter Cane Organic acid

3. Aspergillus fumigatus Air Organic acid

4. Brevibacterium imperiale Cane Red pigmentOrganic acid

5. Lactobacills fermentum PJ, MJ Lactic acid

6. Lactobacillus Cellubioscus PJ, MJ Lactic acid 7. Leuconastoc mesenteroids PJ, MJ Lactic acid,

Dextran

8. Pichia spp MJ Fermentation 9. Hansenula spp MJ Fermentation10. Saccharomyces spp MJ Fermentation11. Bacillus spp MJ Levan production12. Leuconostoc dextranium MJ Dextran13. Pleocyta sacchari MJ Fermentation14. Candida spp MJ Fermentation

Page 18: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

15. Saccharo coccus thermophilus Diffuser Lactic acid

16. Bacillus spp Syrup Massecuite

Leven Prodn.

17. Bacillus stearothermophilus DiffuserSYP-80’C

Organic acid

18. Thermophilic actinomycetes Diffuser80’C

Lactic acid

19. Staphylococcus spp Syrup Massecuite

Fermentation

20. Aspergillus spp Syrup Massecuite

Organic acidaflatoxin

21. Bacillus megatherium Diffuser80’C

Organic acid

22. Micrococcus spp Syp./M/C Oxidation

23. Clostridium spp Syp. Organic acids

24. Coliform bacteria Sugar & Syrup Heterolacticfermentation

25. Staphylococcus spp Mesophillic Bacilli Yeasts

Centrifugewash water

-

Microorganisms Associated with Sugar ProcessSr. Organism No.

Site Activity

Page 19: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Microorganisms Associated with Sugar ProcessSr. Organism No.

Site Activity

26. Clostridium thermosachharolyticum

Sugar Organic acids

27. Staphylococcus Sugar Organic acids

28. Bacillus mesentricus Sugar Organic acids

29. Bacillus megaterium Sugar Organic acids

30. Bacillus cereus Sugar Organic acids

31. Bacillus thermodiasticus Sugar Organic acids

32. Aerobacter aerogens Sugar Organic acids

33. Mucor spp Sugar Organic acids

Page 20: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Microbial Population of Mill Juice (Bevan & Bond)

Sample Juice Temp.

Brix Yeasts on SAB 300 C.

Leuconostoc on STA 300 C.

TVC on DTA 300 C.

Cr J 26 18.3 6 x107 1 x 109 2 x 1010

MJ 29 14.2 5 x 108 2 x 108 3 x 109

Mill 2 34 7.7 3 x 109 5 x 108 7 x 108

Mill 5 35 2.0 5 x 108 7 x 108 4 x 109

SAB : Saboured agar. STA : Sucrose tryptone agar.

DTA : Dextrose tryptone agar.

Page 21: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Products of microbial metabolism. Inversion of sucrose to reducing

sugars. Alcohol generation – Yeasts CO2 gas formation Production of various acids. Polymerization of glucose /

fructose to form dextran, oligosaccharides, leavan and other polysaccharides.

Page 22: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

REDUCING SUGARS. Also present naturally in cane, concentration

depends on variety, growing conditions, maturity and degree of freshness.

Microbes produce enzyme invertase (also present in sugarcane cells) which converts to reducing sugars.

Higher reducing sugars indicate that sucrose is lost either after harvesting or during milling.

Usually fresh mature cane have RS % Bx 2.00, more RS is due to stale cane.

Page 23: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Acids.

Present naturally in cane. They are produced by degradation of

reducing sugars by many microbes. Concentration depends on cane maturity and

freshness of cane. High concentration indicates sugar losses,

consequently more sucrose is lost in molasses.

Fresh, mature cane juice has TA 7.5 % Bx.

Page 24: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Coloring matter.

Present naturally in cane. Concentration depends on cane variety,

maturity and freshness of cane. Trash and tops contains coloring matter in

large quantity. Higher coloring matter are found to be

associated with higher acidity, staleness and higher microbial count.

Page 25: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Polysaccharides - Dextran : Origin• Dextran is present in cane / juice

as a result of the infection of bacteria Leuconostoc (Lactobacillus group)

• Concentration mainly depends on cut – to – mill delay; poor housekeeping also forms dextran.

• Hot humid conditions favors dextran formation.

• Burnt cane, small billets, damaged cane also favors dextran formation.

Page 26: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Dextran : Processing• Increases viscosity – dextran’s physical

property.• Poor clarification – act as protective

colloids & hinders aggregation & settling of Ca phosphate.

• Decreases crystal growth rate.• Drop in boiling house performance.• Deteriorates molasses exhaustion.• Decreased pan and centrifugal capacity.• Pol increases are possible.

Page 27: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Dextran : some consequences du Boil SASTA 2001Mixed juice S lost MJ

PolMJ Purity

mg/kg Bx

mg/ lit.

g/ 100 ml

S / Bx P / Bx

0 0 - 10.0 85.0 85.0100 12 - 10.0 85.0 85.01000 123 0.05 9.96 84.6 84.72500 307 0.12 9.91 84.0 84.25000 615 0.25 9.82 82.9 83.4

Assume 85 pty, S 10% >>> Bx. 11.8Literature : lose 1 g / L for 250 mg / L dextran made.

Page 28: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Dextran : some yardsticks.• Each 250 ppm in juice represents direct

sucrose loss of 1000 mg.• 1000 ppm on Bx inflates molasses purity by

3.15 (eq. 0.75 units per 1000 ppm on Bx in molasses)

• For every 300 ppm in syrup a purity increase 1 unit can be expected in final molasses.

• 1000 ppm on brix in molasses (250 ppm on brix in mixed juice) gives a loss of exhaustion performance of 1.2 to 1.4 units of purity.

• Dextran in sugar is about one tenth of that in syrup.

• White sugar with > 150 ppm dextran will produce distorted candy

Page 29: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Oligosaccharides : These are small molecules of about 2 to

10 monosaccharide (M.Wt. < ca 1600). They are mainly ketoses and

theanderose. They are formed during cut – to – mill

delay and during process. Concentration in juice depends on

climatic conditions and cane burning.

Page 30: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Oligosaccharides : processing.

Dominant crystal habit modifiers. Reduces rate of crystallization. Accumulates rapidly in burnt cane. Hygroscopic – similar to invert. Some strongly incorporated in crystals.

- about 50 X more than invert. Slight effect on pol. Effect can be reduced by minimizing cane

delays and good mill sanitation.

Page 31: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Other polysaccharides : Levans.

These are high molecular wt., mostly water soluble polysaccharides (B-2-6 linked polyfructosans.)

Exhibit negative optical rotation. Formed by action of levansucrase on

sucrose, produced by bacteria (Bacillus species)

This fructose polymer is of factory origin than field origin and can be controlled by effective mill sanitation.

Page 32: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Rules of Sucrose Degradation.

Clarke et al. 1997 Sucrose degrades in acid more easily than in

alkali, and invert is more reactive in alkali than in acid.

In acid, the rate of sucrose hydrolysis is faster than the rate of degradation of its inversion products.

In alkali, the rate of sucrose degradation is much less than the rate of glucose and fructose degradation.

Alkaline degradation (pH<8.5) of sucrose does not result inversion products, hence the loss of sucrose to invert is a consequence of the acid hydrolysis which provides glucose and fructose for further alkaline degradation.

Page 33: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Microbial degradation of sugars Sucrose is first converted to glucose and

fructose, which are then degraded / utilized by microbes to produce various metabolites.

Glucose is utilized to form dextran, acids, alcohol, gas and other polysaccharides.

Fructose is converted to glucose and also used to form complex polysaccharides.

No rules apply for these conversion and all reaction can occur irrespective of pH and temperature.

Page 34: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Microbial degradation of sugarsat high temperature

Microbes capable of growing at higher temperature also gain entry via cane, they remain dormant at normal temperature.

These thermophiles grow in clarifier and during further process.

Major end product of their metabolism (80%) is Lactic acid.

Thermal degradation of invert also produces acid

Page 35: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Evaluation of sucrose loss

Purity Drop from PJ to MJ. Analysis of Dextran. Analysis of alcohol. Microbial count. Rise in Reducing sugars from PJ to

MJ. Rise in RS as well as acidity from PJ

to MJ to Clear juice till Final Molasses

Page 36: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Purity Drop from PJ to MJ.

There are many optically polar compounds in cane juice like dextran, reducing sugars, amino acids and organic acid.

Amount of these compounds vary from cane to cane and also depend on microbial growth.

Due to this large variation and changes due to microbial growth from PJ to MJ, Purity Drop is never a reliable criteria for estimation of sugar loss.

Page 37: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Analysis of Dextran

Haze method analyzes dextran from sugar and is not reliable for juices.

Starch and other polysaccharides interferes in the estimation and cause errors.

Dextran is produced by Leuconostoc, which belongs to lactobacillus family, and thus lactic acid is better indicator & can account for other non dextran forming microbes.

Page 38: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Analysis of alcohol

Yeasts are one of the major contaminant in harvested cane.

Thus alcohol estimation is used to determine cut – to – mill delay.

However, difference in temperature and dynamic flow of juices, it can’t be used reliably for losses from PJ to MJ.

Page 39: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Microbial Count

Samples can’t be preserved, and spot analysis is never representative.

Microbes grow in geometric phase. They are in very large number more than 107

per ml. Thus delay in plating by just 1 minute can

influence results dramatically. Thus this criteria can never give true picture.

Page 40: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Rise in Reducing sugars from PJ to MJ.

• This is considered to be better criteria.• Reduction in rise in reducing sugars

form PJ to MJ can be due to two reasons :

i) Prevention of inversion of sucrose and ii) Destruction of reducing sugar,

which is very harmful to the process.• Thus this criteria alone is insufficient to

know sugar losses.

Page 41: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Rise in RS and acidity from PJ till Molasses Since degradation product of reducing sugar

is acid, its estimation by titration along with the analysis of reducing sugar can reliably evaluate sugar losses.

When biocide capable of killing microbes is used, it must show downstream effects.

Molasses being stable and can truly represent large amount of cane, thus is most reliable sample and results are reproducible and accurate.

Page 42: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Proper analysis only can throw better light on process.

Page 43: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Control of microbial sugar loss

• Sugarcane juice is most nutritive and contains organic matter, suspended and dissolved solids in large quantities, which acts as protective agents and do not allow many chemicals to kill microbes.

• However, chemicals used at mills are called as mill sanitizers and they are :

Page 44: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Control of microbial sugar loss

• Halogen based biocides.

• Other oxidizing biocides.

• Quaternary ammonium compounds.

• Dithiocarbamate based biocides.

Page 45: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Halogen biocides : Limitations.

They react with reducing and organic matter which is in plenty in cane juice, thus are ineffective in sugarcane juice condition.

Further, they form many carcinogenic compounds by reacting with amino acids and can remain in sugar. Hence are not recommended for mill sanitation.

Page 46: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Other oxidizing biocides

Include formalin, H2O2, ClO2, peroxyacetic acid, and Ozone.Reducing matter in cane juice and organic matter is very high, which consumes these compounds and protects microbes.Although, these are safe to use, will require at very high dose to make them uneconomical.They are difficult to handle and are very corrosive.

Page 47: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Quaternary ammonium compounds : mode of action. Bacterial cell walls contains n-

peptidoglycan, this gives negative charge to the bacterial surface.

Quats is attracted to these negatively charged sites of the bacteria. Then biocide penetrates the cell wall (structure) to reach protein material on the cytoplasmic membrane, interacts with suitably charged sites in proteins like carboxyl groups.

This disorganizes membrane, thus resulting in denaturizing & precipitation of proteins thus disturbs normal functioning of cell nutrition causing death.

Page 48: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Quaternary ammonium compounds

• Comparative bactericidal activity (BS: 6471) of Home Quats• -------------------------------------------------------------------------------------------

• cetrimide 266.6 PPM

• Alkyl benzyl dimethyl amm chloride 200 PPM

• Alkyl benzyl trimethyl amm chloride 200 PPM

• Dodecyl dimethyl amm chloride 200 PPM

• Dodecyl ethyl methyl anthosulfate 333.3 PPM• ------------------------------------------------------------------------------------------

Page 49: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Quaternary ammonium compounds

Quats, especially benzalkonium,are preferred in food industries for sanitation.

Biocide activity is reduced drastically in presence of 250 ppm salts of calcium and magnesium, which are more than 800 ppm in cane juice.

At low dose (less than 20 ppm) they are not biocidal and can induce resistance in microbes and some bacteria can use quats as food for their growth.

Page 50: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Performance of QUATS in Hard Water*

____________________________________________________________________ microorganisms

BCK Diluted Pseudomonas E. coli Bacterium proteus Salmonella typhi

in aeroginosa 6749 B- 196 4635 3390____________________________________________________________________D

istilled Water 100 ppm 50 ppm 50 ppm 50 ppm

Hard Water 1500 ppm 250 ppm 250 ppm 250 ppm

* ( 300 ppm )___________________________________________________________________

Page 51: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Quats : Limitations

• Sugarcane juice has more than 800 ppm calcium, high amount of organic matter and bagasse particles; all inhibit biocidal activity of quats. Bagasse adsorb quats radially.

• Thus quats are biocidal above 0.5 gm per liter concentration and biostatic above 20 ppm, thus use of quats at low dose can’t kill microbes and thermophiles grow and consume sugar.

Page 52: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Dithiocarbamate based biocides : Mode of action.

► They show two modes of action . First, they dissociate in water to form methyl -1- thiocyanate which react with SH- groups of enzyme invertase, coenzymes , chelates iron , copper and other metal ions essential for metabolic pathways to effect cell death .

► Secondly , they inactivate the enzymes involved in respiration , especially cytochrome system. This inactivation is irreversible and alternate respiration system not involving cytochrome enzyme system being non existent , hence danger of microorganisms becoming immune to such chemical is not possible.

Page 53: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Dithiocarbamate based biocides

►Simple dithiocarbamates are degraded above 800 C to non toxic products and hence are recommended as safe biocides for sugar mill sanitation.

►Their performance is not affected by compounds of cane juice.

►Di-methyl dithiocarbamate kills 90% microbes in 45 minutes, where as combination with ethyl DTC kills in 35 minutes at 10 ppm dose.

Page 54: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Important factor : Immunity / Resistance

► Low dose of biocides promotes resistance development and immunity against it.

► This resistance can be against entire class, and some bacteria can utilize them as food (Quats)

► However, this is not true for all biocides especially those acting on fundamental / basic requirements with no alternative mechanism like dithiocarbamate acting on cytochrome system.

► Scientifically developed program do not have this fear, thus no need to change biocide frequently.

Page 55: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Dithiocarbamate based biocides Simple dithiocarbamates are

degraded above 800 C to non toxic products and hence are considered as safe biocides and are preferred for sugar mill sanitation.

Their performance is not affected by compounds of cane juice.

Di-methyl dithiocarbamate kills 90% microbes in 45 minutes, where as combination with ethyl DTC kills in 35 minutes at 10 ppm dose.

Page 56: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Important factor : Time ! About 20 minutes are required for juice to

reach juice heater, where ends mesophilic temperature zone and starts action of thermophilic microbes.

This 20 minutes is the only time for biocides to kill microbes including thermophilic that can grow later.

Thus to be effective in saving sucrose loss during entire process biocide must have capacity to kill 90% microbes within 10 minutes at low dose.

Page 57: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

http://www.vmbiotech.com

Important factor : Time ! For mills

In any mill sanitation program, fiberizor, cane carrier and 1st mill is never treated

Fiberizor / Shredder hammer can be the source of contamination as it is never treated

Once microbes colonies on hammer surface and cane carrier, they can infect good quality cane instantly

Cane reaches to 2nd mill within couple of minutes; thus treatment requires biocide acting within minutes!

Let us have look at killing efficiency of common biocides

Page 58: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

http://www.vmbiotech.com

00.20.4

0.60.8

11.21.4

1.61.8

2

0 min 5 min 10 min 15 min 20 min 25 min

Control 2 ppm BKC 10ppm BKC 20ppm BKC

Microbial count during use of quat based biocides for mill sanitation

Page 59: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

http://www.vmbiotech.com

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 min 1 min 2 min 5 min 10 min 15 min 20 min 25 min 30 min 35 min

Control Polmax ESR Carbamate Polmax Supreme

Microbial count during use of carbamate based biocides for mill sanitation

Page 60: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

http://www.vmbiotech.com

Polmax ESR and Polmax Supreme

Polmax ESR is formulation of various DTC acting synergistically with permitted activators to achieve 90% kill in 10 minutes at 10 ppm dose in sugarcane juice. Thus is ideal biocide for mill sanitation.

Polmax Supreme has powerful activators and enhancers to kill 90% microbes at 10 ppm dose in juice in just ONE minute. Thus is ideal for sanitation of fiberizor, cane carrier and 1st mill.

Page 61: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

Impact of using appropriate biocides Polmax ESR and Polmax Supreme do

have ability to kill most of the mesophilic and thermophilic microbes within available time they minimize Both types of enzymatic losses totally Losses due to growth of microbes during

milling and also during further process No microbial growth – no metabolites –

no indirect losses: effect - Molasses % cane reduces.

http://www.vmbiotech.com

Page 62: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Steaming Chlorine ABF Quat ,2 ppm Quat,20ppm Local carb impotred C Polmax ESR PolmaxSupreme

Sugar Losses during use of various biocides for mill sanitation

Page 63: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

www.vmbiotech.com

Using appropriate biocide.

When biocide capable of killing 90% microbes is used for mill sanitation, – there should be minimal rise in RS during

every stage (no destruction) and – there should be minimal rise in acidity

from PJ to MJ and from clear juice to molasses.

There should be reduction in dextran content of sugar and molasses.

Page 64: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

http://www.vmbiotech.com

Evaluation of rapid action biocides: Experiment was conducted in 3500 TCD

co-operative sugar factory in Maharashtra State.

Banzalkonium chloride 10 ppm dose 1 week;

DTC mixture (40%) 10 ppm dose for 5 days;

Polmax ESR dose 10 ppm on mills for 10 days;

Polmax Supreme spray on prepared cane before fiberizor 5 ppm dose and 10 ppm Polmax ESR on mills for 5 days.

Page 65: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

http://www.vmbiotech.com

Evaluation of rapid action biocides: During entire period daily 4 two hourly composite

samples of primary juice, mixed juice, clear juice, unsulfured syrup and final molasses were analyzed for reducing sugars by Lane & Eynon method, acidity by titration with 0.1 N NaOH (pH 8.3 as end

point using digital pH meter) and brix by hydrometer / hand refractometer.

Molasses and sugar samples were also analyzed using calcium nitrate column, mobile phase water 0.5 ml per minute, column temperature 80 0 C, Lachrom L7110 pumps and Lachrom L 7490 RI detector (Merck – Hitachi).

Page 66: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

http://www.vmbiotech.com

Observations: Rise during PJ to MJ

Treatment Rise in RS Rise in acidity

BKC 42.3 % 27.50 %

DTC mixture 29.6 % 17.40 %

Polmax ESR 13.4 % 6.29 %

Polmax ESR and Polmax Supreme

13.0 % 5.30 %

Page 67: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

http://www.vmbiotech.com

Rise in Reducing Sugar per 100 Brix from PJ - MJ

0.00

0.50

1.00

1.50

2.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 103 106 109 112 115 118

BKC DTC MIXTURE

Biocide 10

Biocide 10&

Biocide 01

NO BIOCIDE

Page 68: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

http://www.vmbiotech.com

Rise in Acidity per 100 Brix from PJ - MJ

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10 10 10 10 112 115

BKC

DTC Mixture

Biocide 10Biocide 10

&Biocide 01

Page 69: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

http://www.vmbiotech.com

Polysaccharides in ppm present in Sugar observed during Use of various biocides.

Page 70: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

http://www.vmbiotech.com

% Reduction in Polysaccharides present in F. Molasses over Quat. BKC

Page 71: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

http://www.vmbiotech.com

  Rise from Primary Juice to Mixed Juice % Reduction due to POLMAX – ESR

Mill No. Reducing Sugar1 Acidity by titration2

  Other biocide POLMAXESR

Other biocide POLMAXESR

RS  Acidity

1 2.28 0.48 5.14 2.86 78.90 44.402 1.15 0.52 2.79 1.38 54.80 50.503 0.81 0.26 1.55 0.21 67.90 86.504 0.68 0.31 1.89 0.66 54.40 65.105 0.84 0.34 2.12 1.26 59.50 40.606 3.08 0.57 1.65 1.02 81.50 38.207 0.88 0.38 2.33 0.77 56.80 67.008 0.68 0.35 2.38 0.45 48.50 83.809 1.20 0.42 2.37 0.26 65.00 88.50

10 1.42 0.40 2.30 0.19 71.80 91.7011 2.16 0.49 2.38 1.87 77.30 21.4012 0.58 0.29 1.98 1.00 50.00 49.5013 1.19 0.36 2.15 0.90 69.70 58.1014 1.13 0.45 3.21 1.21 60.20 62.3015 0.65 0.45 2.33 0.85 30.80 63.5016 1.02 0.35 2.00 0.92 65.70 54.0

Effect at mills in some other factories

Page 72: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

W W W. V M B I O T E C H . C O M

  Rise in RS from PJ to Molasses1

Rise in Acidity from Cl.J to Molasses2

% Reduction due to POLMAX – ESR

Mill No.

  OTHER POLMAX OTHER POLMAX RS ACIDITY

1 11.40 10.46 29.13 21.65 8.25 25.682 14.46 9.63 50.90 39.48 33.40 22.443 15.49 11.78 24.58 18.26 23.95 25.714 12.92 7.63 19.93 16.33 40.94 18.065 19.92 17.12 22.27 16.38 14.06 26.456 16.27 10.77 14.73 10.86 33.80 26.277 10.97 9.80 20.98 15.75 10.67 24.938 10.01 8.77 16.98 11.33 12.39 33.279 14.01 10.06 14.93 5.08 28.19 65.97

10 23.64 19.05 21.34 17.00 19.42 20.3411 17.30 13.80 22.37 18.88 20.23 15.6012 19.91 13.12 24.42 15.38 34.10 37.0213 20.74 16.29 22.87 19.92 21.46 12.9014 18.51 12.70 13.15 11.40 31.39 13.3115 15.78 12.26 17.55 16.10 22.31 8.2616 16.06 11.81 28.17 22.70 26.46 19.42

And its impact in final molasses in those factories confirming killing of thermophiles

Page 73: Importance of controlling microbes  during sugar production from cane and its effect on sugar yield & losses of sugar

http://www.vmbiotech.com

Conclusion.Use of Polmax Supreme for cane

sanitation and Polmax ESR for mill sanitation – Improves sugar quality,– Improves molasses quality,– Improves keeping quality of both,– Reduces sugar losses significantly &

reduces color formation in juices– Thus Improves bottom line.


Recommended