+ All Categories
Home > Documents > Improved Methodology for TSF Capacity Prediction 2018...• SVOFFICETM5 –SVFLUX –SVSOLID,...

Improved Methodology for TSF Capacity Prediction 2018...• SVOFFICETM5 –SVFLUX –SVSOLID,...

Date post: 05-Feb-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
20
2018 Tailings and Mine Waste Conference Gordan Gjerapic, Golder Associates, Inc. Dobroslav Znidarcic, University of Colorado at Boulder October 1, 2018 Improved Methodology for TSF Capacity Prediction
Transcript
  • 2018 Tailings and Mine Waste Conference

    Gordan Gjerapic, Golder Associates, Inc.

    Dobroslav Znidarcic, University of Colorado at Boulder

    October 1, 2018

    Improved Methodology for TSF

    Capacity Prediction

  • ___Outline

    2

    ▪ Three-dimensional considerations of seepage and

    compression

    ▪ Large strain deformation during deposition and closure

    ▪ Variable production rate and complex geometries

    ▪ Robust numerical approach

    ▪ Mass balance and water balance errors

  • ___Numerical Models

    3

    H I S T O R I C A L P E R S P E C T I V E

    Gibson et al. (1967) – large strain consolidation theory

    One-dimensional models

    Schiffman et al. (1992) – ACCUMV

    Yao and Znidarcic (1997) – CONDES

    Fox and Berles (1997) – CS2

    GWP Software (1999) – FSConsol

  • ___Numerical Models – 2D and 3D

    4

    C O M M E R C I A L M O D E L S U S E D F O R T S F C O N S O L I D AT I O N

    Programs supporting large strain consolidation

    approach

    • FLAC® and FLAC3DTM- ITASCA Consulting Group

    • PLAXIS, PLAXIS3D – Plaxis BV => Bentley

    Systems, Inc.

    • SVOFFICETM5 – SVFLUX – SVSOLID, SoilVision

    => Bentley Systems, Inc.

  • ___Simplified Consolidation Approach – 3D

    5

    D O M I N A N T S E E PA G E A N D C O M P R E S S I O N M E C H A N I S M S

    TSF modelling using a series of one –dimensional columns

    (Gjerapic et al. 2008)

    • Consolidation dominated by seepage in vertical

    direction

    • Applicable to most TSF geometries and boundary

    conditions

    SoilVision => Pseudo 3D large-strain consolidation (under

    development as of May 2018)

  • ___Improved Methodology

    6

    P R A C T I C A L I M P L I C AT I O N S

    Develop solutions for rapid assessment of TSF capacity

    • Negligible vertical strains during the filling process

    • Fully consolidated tailings (apply analytical solutions)

    • TSF filling starting with the deepest column and

    continuing by filling horizontal layers at higher elevation

    (e.g. FSConsol approach)

    • TSF filling using a series of one-dimensional vertical

    columns (Gjerapic et al. 2008) => computationally

    efficient and relatively easy to implement

  • ___Upper and Lower Bound

    7

    N U M E R I C A L M O D E L S

    Horizontal Layers: Vtotal = i=1

    n

    Hi − Hi−1 Ai

  • ___Upper and Lower Bound

    8

    N U M E R I C A L M O D E L S

    Vertical Columns: Vtotal =i=1

    n

    ALBi HLBi

  • ___Does it Matter ?

    9

    TA I L I N G S V S . F O U N D AT I O N C O M P R E S S I B I L I T Y

  • ___How to Determine Calculation Errors ?

    10

    M A S S C O N S E R VAT I O N

    න0

    t

    Qs τ dτ = Gsρwi=1

    n

    ALBi Hi𝑠𝑜𝑙𝑖𝑑𝑠

    Total Mass of Solids =

    Mass Density of Solids x Volume of Solids in

    Individual Columns

    Total Mass of Solids = Avg. Dry Density of Tails x TSF Volume

    න0

    𝑡

    𝑄𝑠 τ 𝑑τ = ρ𝑑𝑟𝑦,𝑎𝑣𝑔 × 𝑉𝑇𝑆𝐹 𝑡

  • ___Example

    11

    F I L L I N G S C E N A R I O

    0

    20

    40

    60

    80

    100

    120

    0 5 10 15 20

    Mass (

    Mt)

    Time (year)

    Case 1

    Case 1 => 30,000 t/day for 10 years

    Case 2 => On-off filling (1yr + 1yr) – see paper

  • ___Case 1 Results – Time Settlement

    12

    M A S S C O N S E R VAT I O N

    0

    20

    40

    60

    80

    100

    0 5 10 15 20

    Heig

    ht

    (m)

    Time (year)

    FSConsol

    FILLCON - Tallest Column

    Incompressible Tailings (U=0%)

    Instantaneous Consolidation (U=100%)

  • ___Case 1 – Void Ratio Profiles at 10 years

    13

    0

    15

    30

    45

    60

    75

    90

    0 1 2 3 4

    Heig

    ht

    (m)

    Void Ratio (-)

    FSConsol

    Column 1

    Column 2

    Column 3

    Column 4

    Column 5

  • ___Case 1 – Avg. Void Ratio Profiles at 10 years

    14

    0

    15

    30

    45

    60

    75

    90

    0 1 2 3 4

    Heig

    ht

    (m)

    Void Ratio (-)

    FSConsol

    Column 1

    Layer FillingModel

    ColumnFilling Model

  • ___Case 1 – Void Ratio Profiles at 16 years

    15

    0

    15

    30

    45

    60

    75

    90

    0 1 2 3 4

    Heig

    ht

    (m)

    Void Ratio (-)

    FSConsol

    Column 1

    Column 2

    Column 3

    Column 4

    Column 5

  • ___Case 1 – Avg. Void Ratio Profiles at 16 years

    16

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 1 2 3 4

    Heig

    ht

    (m)

    Void Ratio (-)

    FSConsol

    Column 1

    Layer FillingModel

    ColumnFilling Model

  • ___Mass Balance Errors – Horizontal Layer Approach

    17

    -70%

    -60%

    -50%

    -40%

    -30%

    -20%

    -10%

    0%

    Year 10 Year 16 Year 20 Year 30

    Mass B

    ala

    nce E

    rror

    Error - Using Average Solids Content/ Density

    Error - Integrated Void Ratio Profile

  • ___Mass Balance Errors – Vertical Column Model

    18

    -0.70%

    -0.60%

    -0.50%

    -0.40%

    -0.30%

    -0.20%

    -0.10%

    0.00%

    Year 10 Year 16

    Mass B

    ala

    nce E

    rror

    Error - Using Average Solids Content/ DensityError - Integrated Void Ratio Profile

  • More things should not be

    used than are necessaryWilliam of Ockham

    19

    Everything should be made

    as simple as possible, but

    not simplerAlbert Einstein


Recommended