+ All Categories
Home > Documents > Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik...

Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik...

Date post: 16-Jan-2016
Category:
Upload: delilah-mosley
View: 218 times
Download: 0 times
Share this document with a friend
Popular Tags:
18
Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011
Transcript
Page 1: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

Improvements of the A2 beamline for the

linear polarised beam

Patrik OttInstitut für Kernphysik

Johannes-Gutenberg Universität Mainz

28.02.2011

Page 2: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

Content• Motivation

– Characteristics of linear polarised photon beam

– Why do we need these two devices

• Beam Stabilisation– Recent Status– Possible automation?

• Pair-Spectrometer

Page 3: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

Therefore collimation is a simple way to increase the relative amount of coherent linear polarised photons in the beam

Coherent peak

Ken Livingsten

Characteristics of linear polarised photon

beam

Roman Leukel, Diss. 2001

• Large incoherent background

• Coherent part is strongly collimated

Colli at 7.5 m pol. 70%

Colli at 5.0 m pol. 58%

Colli at 2.5 m pol. 44%

Page 4: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

Problems of the collimation

So far we have no possibility to measure the coherent peak without analysing the data

Cause of the small emission angle, a small deviation of the electron beam can cause the complete loss of the linear polarised photons

Page 5: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

Position control

Page 6: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

A2-Beamline

• TM110 Scanners

• The stabilisation converges best with the correction magnets SFA2WEDL06 and SFA2WEDL08.

Page 7: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

Measuring the position in both cavities as a function of the current in both correction magnets

2

1

2221

1211

2

1

I

I

cc

cc

x

x

2

1

1

2221

1211

2

1 9.0x

x

cc

cc

I

I

With these gradients one can calculate the necessary change of current.

The Hysteresis of the correction magnets cause an unpredictable error. Due to this only 90% of the aberration is compensated. After a few iterations the nominal position is reached without oscillation.

Page 8: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

Measuring the position in both cavities as a function of the current in both correction magnets

Cavity1

Cavity2

Magnet 1

Magnet 2

Necessity for convergence:

Different slopes for both magnets in at least one cavity

Page 9: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

Lock-in amplifier Cavity output

2.45 GHz

MAMI main oscillator

2.45 GHz – 100 kHz

2.45 GHz

∆φ

• Add a reference Signal of 2.45 GHz – 100 kHz to reduce the frequency

• Measure the output signal at a time defined by the MAMI main oscillator

• To adjust the phase ∆φ one needs to steer the beam highly. This produces a large output signal so that the Lock-in amplifier can find a reproducible reference phase.

100 kHz

Wavelength : 12.2 cm

A difference of the electron path through MAMI of 2 cm

reduces the signal output to one half.

Page 10: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

Measured horizontal beam position

Position is measured 25 times before switching to the other orientation. This is done to conserve the HF-Relay.

Page 11: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

Measured vertical beam position

Position is measured 25 times before switching to the other orientation. This is done to conserve the HF-Relay.

Page 12: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

MAMI-Optimisation

After a MAMI-optimisation the beam position often has a large offset, but the operator can bring back the beam with one button.

Page 13: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

• After the first 2 days of beam time, the accelerator is in thermal equilibrium and the position is quite stable.

• If an aberration is detected, it is not clear if the reference phase or the beam position is not right.

• Due to this, there is no automation so far. The operator gets an acoustic signal and adjusts the phase again. If an aberration is still detected he can correct the beam.

• During the phase adjustment we need the blank radiator.• After a MAMI-optimisation the operator can bring back

the beam with one button.

Position Control

Page 14: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

Pair-Spectrometer

Page 15: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

Experimental setup

Measure the tagger channels in coincident with the Pair-Spectrometer to get the coherent Peak.

Page 16: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

Hamamatsu APD

Dark current Signal

• No need of HV

• Is not disturbed by magnetic fields

• easy connection with scintillator

Page 17: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

First tests

• Does the setup work with the APD?

• Measure the influence of the current and thefoil-thickness

• Can we find the coincident of both scintillators?

• Find the timing between Pair-Spectrometer and Tagger (Moeller-FPGA)

Page 18: Improvements of the A2 beamline for the linear polarised beam Patrik Ott Institut für Kernphysik Johannes-Gutenberg Universität Mainz 28.02.2011.

• Provide an excellent grounding of the electronic to suppress noise.

• Find the correct timing in the FPGA

• Open the beam line to build in longer scintillators.

Pair-Spectrometer

To do list:


Recommended