+ All Categories
Home > Documents > IMPROVING THE REPRESENTATION OF SNOW IN A BULK SCHEME Christopher P. Woods,

IMPROVING THE REPRESENTATION OF SNOW IN A BULK SCHEME Christopher P. Woods,

Date post: 14-Jan-2016
Category:
Upload: jorryn
View: 16 times
Download: 0 times
Share this document with a friend
Description:
IMPROVING THE REPRESENTATION OF SNOW IN A BULK SCHEME Christopher P. Woods, Mark T. Stoelinga, John D. Locatelli , and Peter V. Hobbs University of Washington, Seattle, WA. Why work with a “classic” single-moment 5-class bulk scheme? [specifically, the Reisner et al. (1998) / - PowerPoint PPT Presentation
Popular Tags:
30
IMPROVING THE REPRESENTATION OF SNOW IN A BULK SCHEME Christopher P. Woods, Mark T. Stoelinga, John D. Locatelli, and Peter V. Hobbs University of Washington, Seattle, WA
Transcript
Page 1: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

IMPROVING THE REPRESENTATION OF SNOW IN A BULK SCHEME

Christopher P. Woods,Mark T. Stoelinga, John D. Locatelli, and Peter V. Hobbs

University of Washington, Seattle, WA

Page 2: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Why work with a “classic” single-moment 5-class bulk scheme?

[specifically, the Reisner et al. (1998) / Thompson et al. (2004), or “R-T” scheme]:

Intentionally simple

schemes(oper. NWP)

“Classic”SM 5-class

bulk schemes

More classes/More

moments/Gamma dist.

Spectrally explicit “bin”

schemes

Sophistication of Grid-resolved MicrophysicsLow High

As computer power increases, enhanced sophistication in cloud microphysics will always compete with the desire to:

• Increase resolution• Enhance other physics schemes (radiation, PBL, LSM)• Add ensemble members• Improved data assimilation

Page 3: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Why focus on snow?

•For many important classes of precipitation, most of the precipitation mass reaching the ground initiated as snow:

* cold-season extratropical cyclonic storms* cold-cloud orographic precipitation* stratiform precipitation associated with

MCSs

•Yet snow is the most complicated species to represent in terms of the variety of particle shapes, densities, and size distribution

from Reisner et al. (1998)

Page 4: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Three aspects of the representation of snow in bulk schemes:

1. Size distribution2. Shape and density assumptions (i.e., mass-

diameter relationship)3. Velocity-diameter relationship

A case will be made for:

1. Choosing a reasonable/relevant habit2. Enforcing “habit consistency” throughout the

scheme3. Diagnosing (as in Meyers et al. 1997) or predicting

habit variability

Page 5: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

1. Size distribution

0ˆ ( ) exp( )s s sN D N D

Integrating the third moment over all sizes yields

0 snowair 04

( , )ss s s

s

Nq f N

qs is predicted;specify N0s, and solve for λs;or alternatively, specify λs, and solve for N0s.

Page 6: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

All spectra 0.03 < M < 0.30

y = 0.0875e-0.1181x

R2 = 0.6483

0.01

0.1

1

10

-35 -30 -25 -20 -15 -10 -5 0

Temperature (°C)

No

(cm

-4) CT

CT/DEND

CT/DEN/NEED

CT/DEN/COL

CT/COL

CT/COL/NEED

CT/NEED

Expon. (CT)

All spectra 0.03 < M < 0.30

y = 0.002e-0.0405x

R2 = 0.5442

0.001

0.01

-35 -30 -25 -20 -15 -10 -5 0

Temperature (°C)

Lam

bd

a/10

000

(cm

-1)

CT

CT/DEND

CT/DEN/NEED

CT/DEN/COL

CT/COL

CT/COL/NEED

CT/NEED

Expon. (CT)

(a)

(b)

Best-fit CT only

Houze et al (1979)

N0

(m-4)

106

107

108

109

λ (m

m-1)

100

101

Houze et al (1979)

Intercept (N0s) vs. T

Slope (λs) vs. T

Intercept and slope parameters measured by aircraft particle imagers throughout IMPROVE-1 and IMPROVE-2, as a function of temperature

Page 7: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

1 mm

0.1 mm

Global ice particle spectra, Ryan (1996)

Intercept (N0s) vs. T Slope (λs) vs. T

IMPROVE

IMPROVE

R-T scheme

Page 8: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

2. Snow particle shape and density

Many bulk schemes (R-T, Tao and Simpson 1993, Ferrier 1994) assume snow particles are spheres of constant density, implying a mass-diameter relationship of:

However, observational and theoretical studies yield more general, habit-dependent power-law relationships of the form

which can also be implemented in bulk schemes (Cox 1988, Meyers et al. 1997).

3snow( ) ( / 6)m D D

( ) ,mbmm D a D

Page 9: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Constants in the m-D power law relationships for various crystal aggregate types (from Locatelli and Hobbs 1974),and for model snow spheres

Habit am (mg mm-bm) bm

Dendrites 0.0141 2.19

Cold-type 0.0370 1.90

Needles 0.0092 2.01

Model spheres 0.0520 3.00

General expression for relationship between qs, N0s, and λs:

0air 1

( 1)m

m s ms b

s

a N bq

Page 10: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Variation of spectral slope with particle habit(for fixed values of N0s and qs)

Particle diameter (mm)

N (m-4)

101

102

103

104

105

106

107

108

NeedlesDendritesCold-type

ColumnsGraupelModel spheres

Page 11: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

3. Snow fall speed

Observational and theoretical studies provide habit-dependent power-law relationship between the terminal fall speed of a particle and its diameter (a V-D relationship) of the form

Combining with the exponential size distribution and the appropriate m-D relationship (for the same particle habit) and integrating, one obtains the mass-weighted terminal fall speed for snow particles of that habit:

( ) ,vbvV D a D

v

v m v

m

1

1bs

a b bV

b

Page 12: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Particle Habit

Fal

l sp

eed

(m s

-1)

qs=0.2 g kg-1

qs=0.4 g kg-1

qs=0.6 g kg-1

Model spheres(with cold-typeV-D reln.)

Dendrites Cold-type Columnar Needle

Mass-weighted terminal fallspeed for various particle habits and snow mixing ratios

Page 13: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Example: Frontal rainband observed off the Washington coast during IMPROVE-1 (1-2 February

2001)

Page 14: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

E

B

1-hr accumulated precipitation (mm), 500 mb temperature (ºC)

How does using an empirical mass-diameter relationship for cold-type crystals (not spheres) affect the simulation?

Page 15: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

0

Cloud water mixing ratio (g kg-1)

0.05 0.10 0.15 0.20 0.25 0.30

Distance (km)

Precipitation band

Distance (km)

Precipitation band

111112

110104105

103

Control Cold-type crystals

Using M-D relationship from Locatelli and Hobbs (1974) results in:

- more reasonable levels of RHi for band with modest vert. vel.(e.g., Lin et. al 2002)

- reduced CLW above the melting level – eliminated graupel production

B E B E

Page 16: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Tem

perature (°C

)

12km Control

12km Cold-type crystals

0 0.2 0.4-0.2-0.4Precipitation rate

gradient (mm h-1 hPa-1)

Precipitation growth and microphysical processes

Page 17: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Tem

perature (°C

)

12km CTL

12km MD

0 0.2 0.4-0.2-0.4Precipitation rate

gradient (mm h-1 hPa-1)

Precipitation growth and microphysical processes

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

Profile at x,y= 94.50, 84.50 lat,lon= 46.36,-125.05

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Production (kg kg-1 s-1)

Deposition of snow

Collection of cloud water by snow

Collection of cloud water by rain

Evaporation of rain

Deposition of cloud ice

Primary growth processes

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

Profile at x,y= 94.50, 84.50 lat,lon= 46.36,-125.05

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Pre

ssur

e (h

Pa)

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

200

300

400

500

600

700

800

900

1000

1100

0

-210

-7

-410

-7

-610

-7

-810

-7

-10

10-7

210

-7

410

-7

610

-7

810

-7

1010

-7

1210

-7

1410

-7

Production (kg kg-1 s-1)

Deposition of snow

Collection of cloud water by snow

Collection of cloud water by rain

Evaporation of rain

Deposition of cloud ice

Primary growth processes

Collection of cloud water by snow

Page 18: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Control

14-h MM5 forecast of 1-h precip, 12-km grid, R-T microphysics

Cold-type crystals Dendrite

s

Page 19: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Contours: qsnow (g kg-1) qrain (g kg-1) T (ºC)

Control

Cold-type crystals Dendrite

s

0

0

0

0

0 0

Page 20: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Control

Cold-type crystals Dendrite

s

Contours: precip rate (mm h-1) T (ºC)

0

0

0

0

0

0

3

2

1

3

2

1

1

2

3

1

2

3

1

2

3

4

53

2

1

Page 21: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

OREGON WASHINGTON

PACIFIC

OCEAN

46.0 °

45.5 °

45.0 °

44.5 °

124 ° 123 ° 122 ° 121 °

Willamette Valley

Cascade Mountains

13-14 Dec 2001 IMPROVE-2

event Control

Cold-type crystals

Contours: qsnow (g kg-1) qrain (g kg-1) qrain (g kg-1)

Page 22: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Recommendations / Future Work:

1. Constant density spheres are not a good representation of most snow particle types.

2. Enforce “habit consistency” for the various habit-dependent aspects of the scheme (size distribution, m-D and V-D relationships, capacitance for depositional growth, etc.)

3. Examine ways to skew the distribution toward smaller particles when ice enhancement is active. Can this be done without going to a double-moment scheme?

4. Implement particle habit diagnosis (Meyers et al. 1997)

5. Develop habit prognosis, to test the effectiveness of the simpler habit diagnosis.

Snow particle images collected by the UW Convair-580 during IMPROVE-1

Page 23: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,
Page 24: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

0 200 400 600 800 1000 1200 1400 1600 1800 200010

-3

10-2

10-1

100

101

10-2

10-1

100

-10 °C spectrum-7 °C spectrum

Size (µm)

No

(cm

-4)

Temperature = -7 °C

Temperature = -10 °C

2D-C particle imagery Particle size distributions

• distribution intercept (Nos) and slope (λs) as temperature increased

• influx of needle-like particles important to distribution shape

Page 25: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

snow clw

graupel rain

Page 26: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Precipitation rate (mm h-1)

Page 27: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,
Page 28: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Summary of observations from Convair-580 flight stack:

In regions where model indicated high ice supersaturation:

• measured RH was generally near ice saturation• Negligible liquid water was detected• Ice crystal habits were generally found to be sub-water-

saturated types, or inconclusive (notably, no dendrites in the dendritic growth zone)

Page 29: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

One possible problem with the Rutledge and Hobbs (1983) formulation for growth of snow by deposition

(PSDEP):

Although the RH83 equation uses capacitance for a 2-D plate, it assumes the population is comprised of spherical particles.

For a given supersaturation, the mass of a growing particle as a function of time behaves as follows:

•3-D growth (e.g., spherical particle):

•2-D growth (e.g., plate, dendrite):

•1-D growth (e.g., needle):

(Young 1993)

2/1

2/3

)(s

ttm

s

ttm

2

)(

2/1const

exp)(

s

ttm

Page 30: IMPROVING THE REPRESENTATION  OF SNOW IN A BULK SCHEME Christopher P. Woods,

Neither formulation for N0S agrees with the “upside-down” behavior of N0S that was observed in Convair-580 flight tracks during the 13-14 Dec 2001 case.(model spectra from 1.3-km MM5 simulation)

N0S(T), N0S obs

6.0 km(-20 °C)

4.9 km(-16 °C)

N0S(qS)

N0S obs

N0S(qS)

N0S(T)


Recommended