+ All Categories
Home > Documents > In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Date post: 29-Dec-2015
Category:
Upload: ginger-thornton
View: 234 times
Download: 1 times
Share this document with a friend
26
In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen
Transcript
Page 1: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

In vivo dosimetry

Eirik MalinenEva Stabell Bergstrand

Dag Rune Olsen

Page 2: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

In vivo dosimetry

• In vivo: In the living• Dosimetry: Estimates of radiation dose by theory and

measurement• Verification of delivered

dose to individual patients• Radiotherapy requires

accurate dose delivery

error

Prescribed dose

Pro

bali

lity

Page 3: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Errors in patient dose

• Patient contour / planning basis (CT images)• Patient motion • Organ motion• Dose calculations (inhomogeneities, scatter)• Patient positioning• Transfer of treatment data from simulator to linac• Linac settings (energy, monitor units, field size) and

calibration• Beam modifiers (blocks, wedges)

Page 4: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Dose characteristics

Page 5: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Dose measurements

Patient curvature

beam

wedgeOutput, SSD

Wedge, curvature

Thickness, density

Entrance dose:

Exit dose:

Point detector

2D detector array

Page 6: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Desired in vivo dosimeter characteristics

• Accurate and precise

• Multiple readouts• Reusability

• No cables

• Non-destructive readout

High accuracyLow precision

Low accuracyHigh precision

Page 7: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

In vivo dosimetry principles

• Point detector:– Semiconductors (diodes)– Thermoluminescent crystals– EPR (electron paramagnetic resonance) sensitive

materials– ….

• 2D detector, (electronic) portal imaging device; EPID:– Film– Arrays (ion chambers, semiconductors)

Page 8: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Dosimeter reading → absorbed dose

• Absorbed dose, D:

R: dosimeter reading

ND: calibration factor

Ci: correction factor

ii

D CRND

Page 9: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Calibration

Rcal

Dcal

beam

dmax

water phantom

ion chamber

dosimeter

cal

calD R

DN

• Under reference conditions:

Page 10: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Example – diodes

spherical

droplet

Page 11: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Buildup cap

Page 12: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Correction factors

• Dosimeter reading may depend on:– Temperature– (Accumulated) Dose– Dose rate– Beam energy– Field size– ...

• Accuracy may be reduced if dependence is not corrected

Page 13: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Temperature and sensitivity, diodes

Detector temperature after placing on patient

Sensitivity dependence

Page 14: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

• Regular calibration must be performed

Accumulated dose and sensitivity, diodes

Page 15: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Field size and sensitivity, diodes

8 or 18 MV photonsEntrance (in) or exit (out)

Page 16: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Supralinearity, TLD

Page 17: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Energy dependence, TLD

Page 18: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Correction factor forEPR/

alanineTLD Diode

Dose rate 1 1 <1

Linearity 1 <1 1

Beam inclination 1 1> 1

Temperature ≈1 1 <1

Energy ≈1 ≈1 ≈1

Stability ≈1 ≈1 Immediate readout

Total uncertainty(following corrections)

3-4 %(~1 Gy)

2-3 % 2 %

Comparison

Page 19: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Action level

• Relative dose difference:

• At what dose difference level should the treatment be revised? 1% ? 2.5 % ? 5 %?

• Depends on:– dosimetric accuracy and precision– non-systematic errors– …

prescribed

measured

D

Dr 1

Page 20: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Clinical example

Page 21: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Methods

Portal image profile

Page 22: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Measured dose / prescribed dose

Action level: 2.5%

measured dose

dose after correction

%2.1

008.1r

Page 23: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Frequency distribution of relative dose

Page 24: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

2D dose maps

Treatment planning algorithm Portal image

Collapsed cone algorithm Location of normalization point

Page 25: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Novel methods – ”dose guided radiotherapy”

dose image

Backprojection of filtered dose image into patient image

→OK

→correction

target

prescribed isodose

Page 26: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Novel methods – ”dose guided radiotherapy”

Corrections

bladder

prosta

te

rectum


Recommended