+ All Categories
Home > Documents > Increasing Temperature of Injection Water to Improve Heavy ...

Increasing Temperature of Injection Water to Improve Heavy ...

Date post: 19-Feb-2022
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
29
University of Regina Petroleum Systems Engineering F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 1 Increasing Temperature of Injection Water to Improve Heavy Oil Recovery Farshid Torabi, Ph.D., P. Eng., University of Regina Alireza Qazvini Firouz, Graduate Student, University of Regina
Transcript

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 1

Increasing Temperature of Injection Water to

Improve Heavy Oil Recovery

Farshid Torabi, Ph.D., P. Eng., University of Regina

Alireza Qazvini Firouz, Graduate Student, University of Regina

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 2

Outline

Objective

Introduction

Reservoir Properties

Fluid Properties

Reservoir Simulation Model

Results and Discussions

Effect of Well Spacing and Injection Rate

Conclusion

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 3

To investigate the feasibility of hot waterflooding as an alternative to SAGD for oil recovery from thin heavy oil reservoirs

To compare the performance of hot waterflooding with the conventional waterflood

To find out the range of applicability of hot waterflooding from reservoir and fluid characteristic s, well spacing, and perhapsoperating conditions

Objectives

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 4

Source: http://alneft.com/wp-content/uploads/2010/07/trends_graph_distribution_oil.gif

Introduction

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 5

Source: http://www.petroleumequities.com/FigureIA.jpg

Introduction

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 6

Reservoir and Fluid Properties

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 7

Depth, m 600

Net pay, m 6

Porosity, % 33

Porosity reference pressure, kPa 1400

Permeability, mD 2000

Initial water saturation, % 19

Oil gravity, API 10.6

Tank oil viscosity (21 oC) 20550

Initial reservoir viscosity (22 oC, 3500 kPa) 13434

Initial reservoir temperature, oC 22

Initial reservoir pressure, kPa (psi) 3500 (500)

Bubble point pressure, kPa (psi) 3500 (500)

Formation compressibility, 1/kPa 5.00E-06

Initial formation volume factor,res m3/stock-tank m3 (res bbl/STB)

1.02 (1.02)

Relative Permeability end points Sw=0.18, Krow=0.86

Sw=0.67, Krw=0.25

Reservoir and Fluid Properties

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 8

T- Dependent coefficient, J/(m3×C×C) 2715

Thermal conductivity

Reservoir rock, J/(m×day×C) 43201

Oil phase , J/(m×day×C) 11319

Water phase, J/(m×day×C) 56161

Gas phase, J/(m×day×C) 1500

Overburden, J/(m×day×C) 224158

Underburden, J/(m×day×C) 224158

Volumetric heat capacity

Overburden, J/(m3×C) 2084322

Underburden, J/(m3×C) 2084322

Reservoir and Fluid Properties

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 9

Experimental data for Oil-A: API=10

Temperature C Viscosity, cp Density, Kg/m3

15 60970 999.2

21 30510 996.2

31 8870 989.2

Experimental data for Oil B: API=10.6

Temperature C Viscosity, cp Density, Kg/m3

15 37070 995.1

21 20550 992.5

31 6105 985.5

Experimental data for Oil C: API=11.4

Temperature C Viscosity, cp Density, Kg/m3

15 21400 989.3

21 11620 986.3

31 3760 979.4

Fluid Properties

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 10

Regression Results, API=10

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40

Temperature, C

Vis

cosi

ty, c

p

Viscosity Calculated

Viscosity Experimental

Regression Reults, API=10

988

990

992

994

996

998

1000

0 10 20 30 40

Temperature, C

Den

sity

, Kg/

m3

Density Calculated

Density Experimental

Fluid Properties Comparison between simulation (CMG-winprop) and

experimental results for oil viscosity and density

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 11

Phase Properties, API= 10

0

2,000

4,000

6,000

8,000

10,000

12,000

0 50 100 150 200 250

Temperature (deg C)

Liqu

id V

isco

sity

(cP)

Phase Properties, API=10.6

0

2000

4000

6000

8000

10000

0 50 100 150 200 250

Temperature (deg C)

Liqu

id V

isco

sity

(cP)

Fluid Properties Predicted values of oil viscosity as a function of

temperature for 3 oil samples.

Phase Properties, API=11.4

0

1000

2000

3000

4000

5000

0 50 100 150 200 250

Temperature (deg C)

Liq

uid

Vis

cosi

ty (

cP)

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 12

Five-Spot Pattern as a base case:

(3 base cases for 3 oil samples)

The size of area modeled is

500m x 500m x 6m.

grid block size was

16.7m x16.7m x 1m

Nine point fluid flow

Simulation Model

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 13

Five-Spot Pattern as a base

case:

Nine point fluid flow

Simulation Model

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 14

Simulation Model

Injection rate was set as the main constraint.

considering shallow reservoirs of unconsolidated sands

at a depth of about 600m, a low fracturing pressure is

often associated.

For this case, fracturing pressure was estimated to be

more than 7500kPa.

To avoid damaging the reservoir particularly at higher

temperature, bottom hole pressure was set to a

maximum of 7000kPa as the secondary constraint.

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 15

Simulation ModelFor all three base cases:

homogenous reservoir

identical reservoir characteristics

injection rate of 25 m3/day

injection temperature of 22oC

higher production rate and recovery for 11.4 API

oil sample as lighter oil

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 16

Results and DiscussionsConventional Waterflooding (22oC)

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 17

Well-1 Well-2

Well-3Well-4

Well-5

0 100 200 300 400 500

0 100 200 300 400 500

-400-300

-200-100

-500

-400

-300

-200

-100

0

0.00 255.00 510.00 feet

0.00 80.00 160.00 meters

21.91

22.03

22.15

22.28

22.40

22.52

22.65

22.77

22.89

23.02

23.14

Temperature (C) 2020-01-01 K layer: 1

Well-1 Well-2

Well-3Well-4

Well-5

0 100 200 300 400 500

0 100 200 300 400 500

-400-300

-200-100

-500

-400

-300

-200

-100

0

0.00 255.00 510.00 feet

0.00 80.00 160.00 meters

10,095

10,128

10,160

10,192

10,225

10,257

10,290

10,322

10,355

10,387

10,419

Oil Viscosity (cp) 2020-01-01 K layer: 1

Results and DiscussionsConventional Waterflooding (22oC)

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 18

Results and DiscussionsHot Waterflooding (up to 150oC)

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 19

Injection Rate,

m3/d

Injection

Temperature, oCRecovery factor, %

Cumulative Oil

Produced, m3

25

22

Less than 1% About 310080

150

Results and DiscussionsHot Waterflooding of base case models with injection

water temperature of up to 150oC

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 20

Well Configuration Injection

Rate, m3/d

Injection

Temperature, oC

Recovery

Factor, %

4 Vertical Injector & 1Horizontal

Producer25 150 5.0

4 Vertical Prod. & 1 Horizontal Inj. 25 150 0.46

9 Vertical Producer & 4 Vertical Injector 25 150 2.3

3 Horizontal Produce & 2 Horizontal

Injector25 150 7.8

3 Horizontal Producer & 2 Horizontal

Injector50 150 9.2

3 Horizontal Producer & 2 Horizontal

Injector100 150 13.0

3 Horizontal Prod. & 2 Horizontal Inj. 200 150 24.0

Results and DiscussionsHot Waterflooding of different well arrangements with

injection water temperature of 150oC-To find the best case

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 21

Well-1

Well-10 Well-11

Well-12Well-13

Well-2

Well-3Well-4

Well-5

Well-6

Well-7

Well-8 Well-9

0 100 200 300 400 500

0 100 200 300 400 500

-40

0-3

00

-20

0-1

00

-50

0-4

00

-30

0-2

00

-10

00

0.00 255.00 510.00 feet

0.00 80.00 160.00 meters

22

35

47

60

73

85

98

111

123

136

149

Temperature (C) 2020-01-01 K layer: 1

Well-1

Well-10 Well-11

Well-12Well-13

Well-2

Well-3Well-4

Well-5

Well-6

Well-7

Well-8 Well-9

0 100 200 300 400 500

0 100 200 300 400 500

-40

0-3

00

-20

0-1

00

-50

0-4

00

-30

0-2

00

-10

00

0.00 255.00 510.00 feet

0.00 80.00 160.00 meters

10

1,035

2,060

3,085

4,110

5,135

6,160

7,185

8,210

9,235

10,260

Oil Viscosity (cp) 2020-01-01 K layer: 1

Hot Waterflooding of different well arrangements with

injection water temperature of 150oC-To find the best case

Results and Discussions

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 22

Well-1 Well-2Well-3Well-4 Well-5

0 100 200 300 400 500

0 100 200 300 400 500

-40

0-3

00

-20

0-1

00

-50

0-4

00

-30

0-2

00

-10

00

0.00 255.00 510.00 feet

0.00 80.00 160.00 meters

22

35

47

60

73

86

98

111

124

137

149

Temperature (C) 2020-01-01 K layer: 3

Well-1 Well-2Well-3Well-4 Well-5

0 100 200 300 400 500

0 100 200 300 400 500

-40

0-3

00

-20

0-1

00

-50

0-4

00

-30

0-2

00

-10

00

0.00 255.00 510.00 feet

0.00 80.00 160.00 meters

11

1,550

3,089

4,627

6,166

7,705

9,244

10,783

12,322

13,861

15,400

Oil Viscosity (cp) 2020-01-01 K layer: 3

Results and Discussions2 Horiz. Prod. & 2 Horiz. Inj. (Injection rate of 200 m3/day

and temperature at 150°C)

3 Horiz. Prod. & 2 Horiz. Inj. (Injection rate of 200 m3/day

and temperature at 150°C)

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 23

Well ConfigurationWells

Spacing, m

Maximum

Injection pressure , kPa

Recovery

Factor, %

2 Horizontal Producers & 1

Horizontal Injectors250 7000 7.0

3 Horizontal Producers & 2

Horizontal Injectors117 7000 54.0

4 Horizontal Producers & 4

Horizontal Injectors67 7000 60.0

2 Horizontal Producers & 1

Horizontal Injectors250 7000 3.74

3 Horizontal Producers & 2

Horizontal Injectors117 7000 8.98

4 Horizontal Producers & 4

Horizontal Injectors67 7000 16.96

Hot Waterflooding

Conventional Waterflooding

Results and Discussions

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 24

Results and Discussions3 Horiz. Prod. & 2 Horiz. Inj. (Injection rate of 200 m3/day

and temperature at 150°C)

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 25

3 Horiz. Prod. & 2 Horiz. Inj. (Effect of Well Spacing)

Results and Discussions

117m Spacing Injecting 400m3/day

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Time

Rec

over

y Fa

ctor 22 C

40 C

60 C

80 C

100 C

100m Spacing Injecting 400m3/day

0%

5%

10%

15%

20%

25%

30%

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Time

Rec

ov

ery

Fac

tor

22 C

40 C

60 C

80 C

100 C

67m Spacing Injecting 400m3/day

0%

5%

10%

15%

20%

25%

30%

35%

40%

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Time

Rec

over

y F

acto

r

22 C

40 C

60 C

80 C

100 C

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 26

Results and Discussions3 Horiz. Prod. & 2 Horiz. Inj. (Effect of Injection Rate)

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 27

Simulation results showed that hot waterflooding can be

promissing if implemented correctly

Water injectivity was considerably higher for hot

waterflooding (without exceeding fracturing press.)

Higher rates swept the reservoir producible oil in a

shorter time

Through the application of horizontal wells, higher

recovery factor can be obtained

Well spacing, and injection rate are key parameters in the

success of hot waterflooding and must be optimized

Conclusion

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 28

The financial support provided for this research

was provided by the Petroleum Technology

Research Center (PTRC), Regina, and the

Faculty of Graduate Studies and Research at the

University of Regina.

Acknowledgement

University of Regina

Petroleum Systems Engineering

F. Torabi, A. Qazvini Firouz, University of Regina, Canada, IEA-EOR-2010 29

Thank You For Your Attention


Recommended