+ All Categories
Home > Documents > Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam...

Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam...

Date post: 26-Feb-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
12
Index 2,2' -azoh isisob utyro nitrilc, 2 17 3-heam lithography. 133 AAO , see anodic alu minum ox ide AF M. see atomic force microscopy agglomeration. 96 A IBN. see 2,2'-azohisisobutyronitri le alumina boa t, 23, 197 crucib le, 140. 143, 149, 153 tube, 23, 4R, 63, 140, 153 a lumi niu m nanotubes, 280, 282 aluminium-coa ted nanofib ers. 280- 1 alu minum oxi de. see anodic aluminum oxide a m ino -dex tra n, 2RI, 283 amphiphilic trib lock co po ly mer systems. 217 anatase (Ti0 2 ). 107-8, 114. 158 particles. 122. 125 phase, 103-4, 119, 129, 15R- 9. 166, 179 structure, III, 116 in trit ita nate preparation, 158 Anderson and Wadsley model. 163 anisotropic growth. 85, 148, 174, 187 ,2 11 annealing, 6-7 , 118 tempera ture. 119 in Sn0 2, 127-30 anodic aluminum oxide. 175, 212- 13. 280 AOT, see sodium bis(2-cthylhexyl)sultt)succinatc AOT - water- toluene, 176 arag onite, 240 nanoplutes, 25 1 -2 urc-dischurge synthesis. 25R-60 as pect ratio. 14, 65, I R7, 22R, 24R, 250 op tica l pro perties. 229 atomic coordinates, 162-3 models, 160 ratio. 177, 199 transport. 226 ato mic force microscopy, 14-1 5, 7R, RR images. 4, 15. 76--7. 79. 8R indenter probe, 73-5 modes of , 15 pushing experiment. 79 atomic force probe. 1 4- 15 2R9 Au thin film. 23. 27- 8 Au-Zn alloy. 23 BaNaAOT reverse mice lles. 175 barium (strontium) titanium isopropoxide compl ex, R5 barium titan ate, 83-9 1 scanned probe measure ments, 87- 9 1 synthesis or. R5--7 BaTiO] nano wires, 83-9 1 sol, 100 BB O, see beta-bari um borat e B-e-N co mposite nanotubes, 259- 60 bending. 75, 203- 5 and cutting, 75 instability. 276 -7 modulus. 11- 13 phen omenon, 203- 5 stiffn ess, n stre ng th . 205 beta-bariu m borate. 42 Bi 2 S] nanorods. 212 bias vol tage , 275 biaxial nanowircs, n. 195 bicrystallinc ZnO nunowires, 14 2-·6, 154 bim et all ic oxi de precursor. R4 -5 hinary/ternary oxides. 176 bis(2-cthylhexyl)sulfosuccinatc. 175. 217 blue-shifts. 169. 229 hlue 1ight emi ssion. 20 1 Bohr radius. 3 f brookite, ll4 Brownian motion, 96 -7 buckling, 75 hcnding, 75, 203 -5 Burgers vector, 123 by-layer structures. 250-1 C/S i0 2/SiC nanowire composite. 199- 200 CA, see citric acid calcite. 240 camphorsu lfoni c acid doped polyaniline , 278
Transcript
Page 1: Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam lithography. 133 AAO, see anodic aluminum oxide AFM. see atomic force microscopy

Index

2,2' -azoh isisob utyro nitri lc, 2 173-heam lithography. 133

AAO , see anodic alu minum ox ide

AFM. see atomic force microscopyagglome ration. 96

A IBN. see 2,2 ' -azohisisobutyro nitri lealumina

boa t, 23, 197

crucib le, 140. 143, 149, 153tube, 23 , 4R, 63, 140, 153

alumi niu m nanotubes, 280, 282

alu minium-coa ted nanofib ers. 280 - 1

alu minum oxi de. see anodic al uminum ox idea mino-dex tra n, 2RI , 283

amphiphilic trib lock co polymer syste ms. 217anatase (Ti02) . 107-8, 114. 158

particle s. 122. 125

phase , 103-4, 119, 129, 15R- 9. 166, 179structure, I I I , 116

in trit ita nate prepara tion, 158

Anderson and Wadsley model. 163

anisotropic grow th. 85, 148, 174 , 187,2 11annealing, 6-7, 118

temperature . 119

in Sn0 2, 127-30

anodic a lum inum oxide. 175, 212- 13. 280

AOT, see sodi um bis(2-cthylhexyl)sult t )succin atcAOT- water- toluene, 176arag onite, 240

nanoplutes, 25 1-2

urc-dischurge synthesis. 25R-60

as pect ratio. 14, 65, I R7, 22R, 24 R, 250

op tica l pro perties. 229atomic

coordinates, 162-3

mode ls, 160

ratio. 177, 199

tran sport . 226

ato mic force microscopy, 14-1 5, 7R, RR

images. 4, 15. 76--7. 79. 8Rinde nte r probe, 73-5modes of, 15

pus hing experiment. 79atomic force probe. 14-15

2R9

Au thin film . 23. 27- 8Au-Zn alloy. 23

BaNaAOT reverse mice lles. 175

bar ium (stronti um) titanium isop ro poxi decomplex, R5

barium titan ate, 83-9 1

scanned prob e measure ments, 87- 9 1synthesis or. R5--7

BaTiO]

nano wires, 83-9 1so l, 100

BB O, see beta-bari um borat e

B-e-N co mposite nanotubes, 259- 60bending. 75, 203- 5

and cutting, 75

instabil ity. 276 -7

modulu s. 11- 13phen omenon, 203- 5

stiffn ess, nstre ngth . 205

beta-bariu m borate. 42

Bi2S] nanorod s. 2 12bias voltage , 275

bia xial nanowircs, n . 195

bicrysta llinc ZnO nunowires, 14 2-·6, 154

bim etall ic oxi de precursor. R4-5hinary/ternary oxides. 176

bis(2- cthyl hexy l)sulfo succinatc . 175. 217blue-shifts. 169. 229

hlue 1ight emi ssion. 20 1

Bohr radius. 3 fbrookite, ll4

Brownian moti on, 96-7

buckling, 75

hcnding, 75, 203-5

Burgers vector, 123

by- layer structures. 250- 1

C/S i02/SiC nanowire compos ite. 199- 200CA, see c itric acid

calcite. 240

camphorsu lfoni c acid dop ed polyaniline ,278

Page 2: Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam lithography. 133 AAO, see anodic aluminum oxide AFM. see atomic force microscopy

290 Index

cantilevers, 15resonance frequency, X8-90

carbon nanotubes, 78,173,194,231,263,281-5aligned,2XO-5chemical grafting, 281electromechanical behavior of, 7X-9field emission, 231filling in, 261-3growth, 14,257-61mechanical resonance, 77multiwalled, 75, 260oriented, 239-40plasma-activated, 281, 283polypyrrole, 285prodding, 78role of sulfur, 263single-walled, 80, 160as templates, 194tensile strength, 78Young's modulus, 75-6, 78

carbon-silica-silicon carbide nanowires. 195carbothermal reduction method, 199carrier gas, 67carrot-shaped rods, 63CASTEP program, 163, 169catalysis-assisted VLS method, 49, 152catalysts, 49, 201-3

Au as, 49, 197,218choice and patterning, 174

Fc as, 191, 197forms of, 49functions in growth, 49Ga as, 62, 64, 174high-active, 202islands, 79

metal. 49, 60-2, 64, 70,154,174,191,193,197,21X

metal oxide, 113, 135, 148, 174,201-3,261silica, 201-3

Sn as, 60-2, 64, 174Ti02 as, 135

Ti(OHu))AIEt, as, 270Ziegler-Natta, 271

catalyst-free thermal evaporation, 56catalytic

activity of nanotuhcs, 201-·3filamentous carbons, 194

catalyzed-grown nanowires, 49CBED, see convergent beam electron diffractionCdO nanobelts, 14,52,54

CdSnanorods, 2 11- 12, 2 14, 2 16- 17, 233nanowires, 213-14, 216, 218, 228-9, 230, 233

CdSe nanocrystals, 140, 215, 233CdS-PAN, 216

CdS-PS,217CERILJS 2, 159cetyltrirnethyl ammonium bromide, 183, 185CFC, see catalytic lilamentous carbonschemical

grafting, 281template synthesis, 272vapor deposition, 174, 192vapor transport and condensation, 22-3

chiralcrystal growth, 250-1nematic liquid crystals, 270-1

citrate concentrations, 248-50citric acid, 195

C-NTs/CNTs, see carbon nanotubescoaxial nanocables, 257, 264-6

electron di Ifraction pattem, 264schematic diagram, 265

coaxial nanowires. 195-6, 280-2coercive electric field, 89complex nanobelt structures, 59-·65

aligned growth, 61-5complex oxides, nanowires/tubes, 173-XXcomposite nanowires, 199-200, 259-60, 265condensation, 22-3, 95,104,114,184condensed step, 159-60conducting polymer

nanotube, 177-9, 282, 284nanowires, 242, 245, 274

conductometric metal oxide semiconductorfilms, 9

confined exciton model, 169continuous nanowircs. 263convergent beam electron diffraction, X5-6copper transport, 226, 230Cowley and Moodie multislicc method, 163CPNT/CP-NT, see conducting polymer nanotube

crystalbulk, 84, 90, 205

CSzTi20S, 177CU20,226growth, 23, 25hexagonal, 35, 215, 24XKzTi60I\, 16X, 177perovskite, 83, 85, 105phase, 105platelets, 167, IX5, 249seed, 249structures, 9, 50, 56, 83, X5, 105, 114, 177, 185tetrapod, 150

TiO z,168vapor nucleation mechanism, 149ZnO, 244, 251

crystallinity, 84, I()I, 228crystallization, 96, 100-1, 175

Page 3: Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam lithography. 133 AAO, see anodic aluminum oxide AFM. see atomic force microscopy

Index 291

crystallographicaxis orientation. 213forms of MnOb 180image, 146pattern in K2Tib013, 167planes, 61polarity, 1)0

C-silica-{3-SiC nanowires, 196

CSRs, see carrot-shapcd rodsCrAB, see eetyltrimethyl ammonium bromideCu K a radiatiou, 160Cu L3MM Auger spectrum. 228CU20 nanowircs, 130-3CU2S nanowires, 219-35

gold coating, 233-4cubic zinc blend ZnS, )6, 58current-voltage

curve, 134,230,27),279

relationship, 110, 134CVD, see chemical vapor deposition

CVTC, see ehcmieal vapor transport andcondensation

cyelic voltammograms, 28)

Dai, Z.R., 78-80deep-level emission, 154degree of supersaturation, 241differential scanning calorimetry, 230

transport properties, 230diffraction peak, 221diffusion layer, 98Digital Instrument 3000, 14dimethyl sulfoxide, 213dislocation, 123displaeive fcrroelcctrics, 83

DMSO. see dimethyl sulfoxidedouble layer

stabilization. 99structure, 98

DSC, see differential scanning calorimetryIi-spacings. 280

e-beam, 14. 27edge-sharing TiO" octahedra, 159-60, 170EDS, see energy dispersive spectrometerEDX, see energy-dispersive X-rayEELS, see electron energy loss spectrometer

EFM, see electrostatic force microscopyeight pyramidal inversion-twin crystals, 150EHP, see electron-hole plasmaelectric field induced mechanical resonance. 76-7electrochemical

deposition, 242template synthesis, 272

electron energy loss spectrometer, 164-), 199-200

electron-holepairs. 8, 169plasma, 22

electro-oxidation current. 285electrophoresis, 98, 110electrophoretic deposition, 97clcctrospinning, 276-9

polymer fibers, 277

electrostaticforce microscopy, 88stabilization, 96-7

clectrosteric stabilization. 96-7en molecule. 21 1--12encapsulation, 262-3energy dispersive spectrometry, )2, 178, 199energydispersive X-ray spectroscopy, )2. 141,

257.261epitaxial growth, 25-7, 61, 225eutectic

alloy, 49liquid, 94temperature, 197

exci mer laser, 191exciton, 22, 30-1, 169

Bohr radi us, 31extended and oriented nanowircs, 239-53

FEG, see field-emission gunFeist and Davis model, 162Fermi level, 80, 169ferroelectric

materials, 83nanowires, 83-91

FE-SEM, see field-emission scanning electronmicroscopy

FET. see field-effect transistorsfield

emission. 231-2

enhancement. 232field-effect transistors, 3, 5, 16, 134-5

n-type enhancement mode, 134-)physical chaructcristics, )-6

field-emissiongun, 1)9

scanning electron microscopy, 140-2films/monoliths, 96-9, 100FITC, see fluorescein isothiocyanatet1exural rigidity, 78flow-through technique, 10t1uorescein isothiocyanate, 283F-N plot, 232forrnvar, 204lour-point probe method, 278Fowler-Nordheim plot, 232full width at half maximum, 30

Page 4: Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam lithography. 133 AAO, see anodic aluminum oxide AFM. see atomic force microscopy

292

functional oxide nanowires/bclts, 70, 113-35,47-208

fundamental resonance frequencies, 12, 15, 31,

75, 78

FWHM, see full width at half maximum

Ga203monoclinic structure, 50, 54, 65

nanowires/bclts, 48, 50. 54-5, 174nanosheets, 65

gallium droplet induced growth, 62-5

gas phase growth mechanism, 148

gas sensors, 9, 16, 134

oxygen, 8

Ga-Si alloy, 197-8

gas-solid, 218-27

gatan imaging filter system (GIF), 159

glucose oxidase, 285

gold

coating in CU2S nanowires, 233-4

electrodes, 4-5, 273

nanotubcs, 233, 235thin films, see Au thin film

GO x, see glucose oxidasegrafting nanotubes, 281

graphite, 23, 48, 259, 263, 273

graphitization, high-temperature, 273

greendensity, 99

emission, 153-4

green-blue diode laser structures, 22

growth mechanism

of nanostructurcs, 148-53

in gas phase, 148of sulfide nanowires, 211-27

growth of nanowires, 227

effect of temperature, 227

termination, 252

growth of sulfide nanowires, 211-27

gas-solid, 218-27

polymer-controlled, 216

solvothermal synthesis. 211-12

tcmplatcd fabrication, 212-16vapor-Iiquid-solid, 218

H2S, see hydrogen sulfide

HzS04 and nanotubes, 284-5

HzTi30 7, 159, 160, 162-3electric and optical properties, 169-70

HAP nanorods, see hydroxylapatite nanorods

Haliotis rufescens, 239-40hard/soft template-assisted synthesis, 176

HCSA-PANI, see camphorsulfonic acid doped

polyaniline

heat transport, 11-l2

Index

He-Cd laser. 29

helical nanostructures, 250-3, 271

hexagonalcrystal structure, 35. 215, 248

liquid crystalline phase, 176

high-resolution TEM images, 51, 53, 67, 86-7,

l20-1, 124, 131, 146, 152, 161, 164-5, 167,

178, 183, 196, 225, 259, 261-2, 264

high-temperature oven system, 193

hornocondensation, 95homojunctions,61-3

HREM images, see high-resolution TEM images

HRTEM images, see high-resolution TEM imagesl-liickel equation, 99

hydrogen peroxide, 285

hydrogen sulfide

and catalytic activity, 201-3

O 2 : HzS, 222-4, 227

oxidation, 201-3

reaction with CuzS, 219. 226

reaction with ZnO nanobelts, 57-8hydrolysis, 95, 195

hydrothermal synthesis of nanostructures, 157

hydroxylapatite nanorods, 188

Il-, see inorganic fullerenes

dichalcogcnides, 219in situ transmission electron microscopy, 203-5

InZ03 nanobelts, 50, 52-3

indentation size effect. 75see also nanoindentation

infraredanisotropy, 270

modes, 129

spectroscopy, 247

inorganic fullercnes, 218-19

interfacial energy, 241

isotropic

epitaxial growth, 61

dispersion, 114

ITO. 93

1-V curves. see current-voltagc curves

I-Vhias curves, 275

K2Ti6013, see potassium hexatitanate

K2Tir,o l3- rto, interface, 168

KMnOcMnS04 reaction system, 182

LAHC, see laurylamine hydrochloridelanthanide hydroxide nanowires, 187

lasers. see nanolaserslaser ablation method, 191. 258, 260

laser-assisted catalytic growth, 218

lasing, 31-5threshold, 22

Page 5: Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam lithography. 133 AAO, see anodic aluminum oxide AFM. see atomic force microscopy

Index 293

laurylamine hydrochloride, 194

layer structures (il-MnOzJ, 179metal oxides. 159-60

LCG, see laser-assisted catalytic growthlead zireonate titanate nanorods, 93, 104-6,

175lip-lip growth model. 260-1liquid crystal, 175-6,211,215,271

matrix, 272phase, 270polymers, 277

liquid-vapour surface free energy, 28lithographical techniques. II, 14, 27Ln(OHh nanowircs, 187LO modes, see longitudinal optical phonon

modeslongitudinal optical phonon modes. 230

phase transitions, 230lyotropic liquid crystals, 176,215

MA, see maleic anhydridemacromolecule. 269maleic anhydride, 216Matheson Tri-Gas. 40matrix

crystal. 272oxide, 213polymer, 211, 216-17, 228, 272

mechanical resonance. 12-13MEMS, see mieroeleetro-mechanical

systemsmesoporous silica. 195metal oxide based gas sensors, 9

see also gas sensorsmctaloxidc

catalysts. see catalystssemiconductor field effect transistor, 266nanowircs, 134

metal oxide-semiconductor field effect

transistor. 266microelectro-mechanical systems. 14. 93microemulsion system. 114-15, 117, 122. 129

compositions of. 117W/O microemulsion. see water/oily values, 122

rnicrotwins, 118mineral bridging mechanism, 252

n-Mn02 intermediate, 181Mn02 nunowires, 178-82mole/molar ratio, 85, 118. 120,216,222,224,

227.265and nanorods, 180

molecular wires. 273

molecule. 269molten salt synthesis, 113. 130

monoclinic structuresCU2S/CUO, 221, 223. 225, 228, 230. 233

GazO" 50, 54, 65K2Ti,,013,126Lu(OHh/YbOOH,187

monoliths, 96, 99-100MoO] nonohelts, 185-86MOSFET. see metal oxide semiconductor field

effect transistormother of pearl, 240, 251-2MSS, see molten salt synthesismulti-clcmcntal nanotubcs, 257multi wall carbon nanotubes, 75. 258,

261-3

MWNTs, see multiwall carbon nanotubes

nacreous layer, 240, 251-2

nanobelts. 1-17.73-5,185CdO. 14,52,54complex structures. 59-65electrical properties of, 6-7fractured. 15Ga20,,54heat transport through, 11-12

In203' 50, 52, 53isothermal response, 10-11manipulation of, 14mechanical behavior of, 73-80Mo03,185-6

as nanocantilevcrs. 13-17as nanoresonators. 11-13oxide. 49-56, 59, 67-8. 73oxygen deficiency in. 7oxygen sensor using, 8PbO z,55photoconductivity of. 8response to CO, 10semiconducting, 15-16single, 1-8single. 8, 73

Sn02.52synthesis via solution-based route, 185titanate. 186ZnO, 1-17,49-52

ZnS. 56nanocables. 264-6

struet ure 0 f. 266nanoeantilevers, 13-17, 90

resonance frequency, 89-90nanoclusters,96, 106, 114--16. 152, 157nanodetectors and nanotips. 135nanodeviees based on nanowires/belts,

3-46nanodiskettes, 65-7nanoeleetrode and nanowaveguides, 134

Page 6: Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam lithography. 133 AAO, see anodic aluminum oxide AFM. see atomic force microscopy

294

nanofibers, 133, 196, 270-1bundles/brush-like, 196, 198CdS, 216-17conducting polymers, 270-1, 278, 280electrospinning of, 276-9helical, 271polymer, 271-2, 276-86s.o, 196-8, 200, 246V 20 s, 133wreath-like, 196, 198

nanofibcrbascd field-effect transistor, 134-5nanoforks, 122-3nanoindentation, 73-5nanoindenter, II, 74nanolasers, 31-5

diode, 22He-Cd, 29laser ablation, 191, 258, 260Nd: YAG, 30short-wavelength, 22single, 34sub-picosecond width, 34ZnO nanowire as, 173

nanorncchanics, 73-80nanoporosity, 240nanoribbons, 144, 147

cross-section, 40GazO], 54as gas sensors, 42growth, 61junction arrays, 60Matheson Tri-Gas. 40photoresponse, 41Sn02,39ZnO, 4, 60-1,144-5,147

nanorods. 127, 149. 151, 175, 180,211--12Bi2S],212CdS, 211-12, 214

CulnSz,212-13MInS2,212mole ratio and, 180PZT. 175Sn02- 127-30T-ZnO, 149, 151

nanoscalc optoelectronic switches. 37-9nanoscnsors, 40-1nanoshects, 50, 65

CdO, 53, 65Gap], 54, 65TiOo,163v.o; 184

nanosized metal clusters, 152nanostructurcs, 196

electric and optical properties, 169-70growth mechanism, 148-53

Index

nanostructures om/d.optical properties, 153-4oxides, 9; see also oxide nanostructuressilica, 148, 153, 158, 169, 196-7tadpole-like, 59-61rio, 158-71

nanotubes, 157, 160-1, 173, 177, 184, 191,201,231,281

bending, 75-8carbon, 231co-substituted, 177-9of complex oxides, 173-88gold, 233, 235grafting. 281H2Ti]07, 160, 163, 169honey-comb lattice, 79MWNTs,75prodding, 78rolling mechanism, 184scroll type, 161semiconducting, 169Si02- 191-205SiOz-NiO,201-2synthesis of, 191SWNTs,80titanate, 177-9trititanate, 160-3, 166v.o, 183-4

vox' 182-3WS2,185ZnS, 57-9

nanowhiskcrs, 119, 121-3, 125-6, 144, 149K 2Tio0 13, 125-7T-ZnO.149T-ZnO whiskers. 144

nanowires. 21-42, 83-91,113,130,151, 173, 178,191,194,203-5,209,211-27,239,269

aluminium, 280, 282arrays, 220BaTiO] and SrTiO], 83-91bending, 204biaxial. 195bicrystalline, 142-6CdS, 216-19coaxial, 195-6composite, 199-200, 259-60, 265continuous, 263CU20. 130-3CU2S,219-35ferroelectric, 83-91flexibility, 205gallium droplet induced growth, 62-5growth. 211-27in medical and environmental health, 39lanthanide hydroxide, 187

Page 7: Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam lithography. 133 AAO, see anodic aluminum oxide AFM. see atomic force microscopy

Index 295

nanowircs contd.mechanical properties, 203~5MnO.178-82of complex oxides, 173-88of functional oxides. 113polyaniline, 24'ipolymer. 269-86pristine. 91Si3N4.203-5

single crystalline, 84. 87, 91single free-standing, 164single, 146sulfide, 209-36synthesis of large arrays, 239-53synthesis of. 191typical morphology, 194ZnO. 22-42, lSI

Nd : YAG laser, 30n-doping, 270near-field scanning optical microscope,

32-4nematic liquid crystal phase, 270-1

(NH4hS20X, 180~ 1(NH4hS20g-MnS04, 181NNLS, see non-negative linear squareN02 photochemical sensing, 39non-negative linear square method, 200nonstoichiometry, 7NSOM,32rHype

enhancement, 134- 'ioxide semiconductors. 130

nucleation and growth, 241

OrH2S, 222-4, 227octadecylaminc, 183octahedral multiple twin nucleus model.

149-50

octa-twin nucleus model, see octahedral multiple

twin nucleus modelOliver-Pharr method. 75one-dimensional oxide nanostructures. 47-9. 176.

182. 191from artificial lamellar structures. 182silica nanowires/tubes. 191-205solution-based synthesis, 176

one-dimensional sulfide materials, 209-10one-step alkali treatment, 166, 170

opticalgating phenomenon, 38~9lithography technique, II, 14. 133properties of nanostructures, 153-4

opto-electronic switches. 37-9organic/inorganic precursors. 96, 182-3.

211-12,217

organichydroxyl carboxylic acids, 19'imaterials and nucleation, 239-40

oriented nanowircs, 239-53orthorhombic structure, 50oxide nanobelts, 49~'i6, 59, 67-8, 73

CdO, 'i2complex structures, 59-65

GazCh 54grow th mechanism, 68-70

[n203' 50, 52, 53mechanical behavior of, 73--80Pb02,55

planar defects in. 67..8SnOb 1--17,52,127..30synthesis of, 21ZnO,49-52

ZnS,56oxide nanorods, 93-111, 175. 187

diameter of. 104sol-gel processing, 94-7surfactant-assisted solution-based method,

187synthesis of, 100template-assisted synthesis, 175-6

oxide nanostructurcs, 9, 169, 176binary/ternary, 176electric and optical properties, 169-70one-dimensional, 47-9, 176, 182. 191

oxide nanowires, 23, 25, 27, 29, 32, 34-5, 37--9,21-42,158-9,174-5,178

coupling, 34ethanol-nanowire mixture, 32in medical and environmental health. 39layered oxides, 159-60

linear optical property. 35manganese oxide, 178-82optoelectronic switches, 37 -9

orientation control. 25photoluminescence and lasing, 29-35photosensitivity, 38

position control, 27synthesis of, 23template-assisted synthesis, 175-6Ti02,158-71

vapor-transport method, 174-5oxide-assisted growth, 148

oxidenanostructurcs, 50semiconductors, 9, 38, 130, 134

synthesis conditions and morphology.50

oxidizing reagents. 180oxygen sensor, 8oxygen vacancy, 154

Page 8: Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam lithography. 133 AAO, see anodic aluminum oxide AFM. see atomic force microscopy

296

PAN, see polyacrylonitrile compositenanowires

parallel electron energy-loss spectroscopy,258

partial density, 170PbO z nanobclts, 55PbS nanostrips, 218PC, see polycarbonatep-doping, 270PEELS, see parallel electron energy-loss

spectroscopyPEG,130PEO, see polyethylene oxideperiodate oxidation, 281, 283pcrovskitc structure, 83-5, 105phase separation, 257-61phase transformation growth model, 149

phonon energy, 169photochemical sensing, 39photoconductive oxide nanowires, 37-9

as UY-light detectors, 39photoelectron spectrum, 132photoluminescence, 32-5, 140

spectra, 30, 153-4,201,229photopolymcrization. 272physical vapor deposition, 174, 192

PL, see photoluminescenceplanar defects, 67platelets, 167, ] 85, 249platinum interdigitated electrode structure, 9PMMA, see polymcthyl methacrylatepn junctions, 42p-octyl-polyethylcne glycol phenylether,

129polarization, 35-7

ratio, 35-6polarized infrared spectroscopy, see infrared

spectroscopypoly meta-phenylene isophthalamide,

280-2poly p-phenylene vinylene, 272

polyacctylcnc. 270-1polyacrylonitrile

nanofiber, 280composite nanowires, 216

polyaniline, 273-5, 278nanowire bridge, 274

nanowires. 245spectra, 247

polycarbonate membrane, 101-2polyethylene

glycol, ]30

oxide, 278polymer, 269

matrix, 211, 2]6-17, 228, 272

Index

polymer nanowires/ libel'S, 271-3, 276electrospinning, 276-9

synthesis at a scanning microscope tip, 273template synthesis, 27]-3with special architectures, 279-86

polymer-controlled growth, 2]6polymer-encapsulated nanowires, 217polymeric

sol, 105stabilization. 96

polymer-wrapped sulfide nanowires, 229polymethyl methacrylate, 4-5polypyrrole, 240, 272-3, 280, 282, 285polystyrene, 217polyvinyl

butyral films, 217-18format, 204

potassium hexatitanate, 158-60. 164-70crystal structure, 126, 168. 177crystallographic relationships, ] 68electric and optical properties. 169-70image, ]25-6, ]65, ]68nanowhisker, ] 25-7

nanowires. 159-60. 164-70partial density and, 170step 3 structure, 160

PPY, see poly p-phenylene vinylenePr(OHh nanowires, 187prodding, 78precursors

bimetallic alkoxide, 84-5calcining, 129

condensation. 95inorganic, 182-·3powder for nnowircs, I 18, 120

preparation of, 122, 127sol preparation, 100solubility control. 241

thermal decomposition, 140pristine nunowires, 91PS. see polystyrenep-Iype oxide semiconductors. !30Pt counter electrode/mesh, 10 I, 273PYB, see polyvinyl butyral filmsPYD, see chemical vapor depositionpyrolysis reaction, 185pyrrolc, 273, 284-5

polymer, see polypyrrolePZT

nanorods. see lead zirconate titanatesol, 10]

Quantachromc Autosorb-I, ] 59

quantumcable, 266

Page 9: Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam lithography. 133 AAO, see anodic aluminum oxide AFM. see atomic force microscopy

Index 297

quantum contd.conductance, 76confinement, 9, 216. 218dots. 209-10effect, II, 22wires. 21

quartz. 23, 32, 34. 48,191-2,197quasi-I D, xi, 36quasi-layered structures, 160, 170quenching, 272

radio-frequency glow-discharge plasmatreatment. 280

Ramanbands/lincs. 129scattering. 88spectra. 115-17. 129.230

redox reactions, 180resonance frequencies

fundamental, 12, 15.31. 75, 78cantilever. 88-90

reverse micelles method, 174. 187rod-based CdSe nanocrystals, 140room temperature photochemical sensors, 39rutile crystal structure, 52-3.114-15,118,179rutile nanorods. 119-22. 127

flowsbeet of synthesis. 119stannic oxide, 127-30y values to corresponding rod size, 122

SADPs. see selected area electron diffractionpatterns

SAED. see selected-area electron diffractionsapphire, 25-6, 28. 31scanning

electrochemical microscope. 273electron microscopy, see SEMforce microscopy, 133probe microscopy, 13-14,87-91transmission electron microscope, 258tunneling microscopy. 273. 278

seem, SCI' standard cuhic centimeter per minuteSchottky junctions, 231scroll-type nanotuhe, 161SDS. see sodium dodccyl sulfateSHAD pattern, 212SECM, see scanning electrochemical microscopesecond harmonic generation, 35seeded growth, 242seed crystal, 249selected-area electron diffraction. 128, 141,263

patterns, 118, 123SEM, 24. 51, 53, 57, 60, 64. 66,86,102. 144--5,

147,219-20.243,245.248.249,252,271-2.284

semiconductingnanohclt, 15-16nanowires. 213oxide nanobelts, 50, 175

sensory devices. 234-5SFM, see scanning force microscopySHG, see second harmonic generationshort-wavelength semiconductor lasers, 22Si1N4 nanowire, 203 5

f3-SiC-SiO" 196SiC-SiOz nanowirc, 265SiC-SiOz-(BN),Cy, nanocahles, 264-5SiC-SiO, nanowires, 78signal ratio, 41-2silica

aerogels. 201--3nanofibers, 196-8. 200, 246nanostructures, 196-·7

silica nanowires/tuhes. 191-205catalytic activity of nanotuhes, 201-3comet-like wires, 197-8Ga-Si alloy, 197·8structures and properties of, 197-205synthesis of, 191-7valences of Si and 0. 199

silica-silicon carhide nanowires. 195silicon chip, 15-16simple evaporation method, 175single

alkali treatment, 166. 170molecule probe, 234-5

single nanohclts. 8. 73nanomcchanical behavior of, 73-5oxygen sensor using, 8

single nanowircs, 91. 116SaTiO] and s-no, 84-7. 91rto, wires, 116-22

single-walled carhon nanotubes, 79-80sintering, 96-7. 100, 203-5SiOz nanowircs/tubes/tibers, see silicaSiOrNiO nanotuhcs. 201-2Si(OCzHj )4, see tetraethoxysilicaneslip plane, 98SLS, see solution-liquid-solidSm(OHh nanowires, 187SnO diskettes, 66-7Sn02 doped In203, see ITOseo,

nanobclts, 1-17.52, 127-30nanorods, 127--30

sodium bis(2-ethylhexyl)sulfosuccinate. 175, 217sodium cyanoborohydride, 281sodium dodccyl sulfate. 188SOFC, see solid oxide fuel cellssoft-template method. 175, 187

Page 10: Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam lithography. 133 AAO, see anodic aluminum oxide AFM. see atomic force microscopy

298

sol,96, 100-1, 105, 109, 133RaTi03,100

electrophoretic deposition, 97-100ionic resistivity, 109polymeric, 105

PZT 101

Sr2Nb207, 100rto, 100

Y20\,133solar cell materials, 135sol-gel, 193-5.266

in coaxial cables. 266sol-gel electrophoresis, 110, 175

current-voltage relationship, 110deposition, 100modified version, 110-11

sol-gel processing, 94-7, 100

solid oxide fuel cells. 93solid-liquid-solid, 174solution-based synthesis, 176-7solution-liquid-solid, 113,212solvothermal synthesis, 211-12source-drain current,S, 7-8

versus gate bias after various treatments, 7versus gatc bias in ambient, 5versus time, 8

SPM, see scanning probe microscopy

Sr2Nb207 sol, 100St, see styrenestabilization, 96-7, 99stacking faults, 149standard cubic centimeter per minute, 41, 192

stannic oxide, see Sn02 and InzO] films, 93STEM, see scanning transmission electron

microscopeSTEM-EELS elemental analysis, 263STEM-PEELS system, 258Stern layer, 98

STM, see scanning tunneling microscopystrain energy relaxation, 149strontium titanate. 84-5, 87,91

synthesis of. 85-7styrene. 216sulfide nanowires. 209-36

growth,211-27optical properties, 229-30phase transitions, 230polymer-wrapped, 229potential applications, 231-5properties of, 227-31structures and morphologies, 227, 228transport, 230

sulfide. polymer and composite nanowires,

209-86supersaturation, 153, 24J

Index

surfacearea-volume, 9, 29, 39. 84,96, 277oxygcn desorption, 7poisoning, 252

surfactant-assisted method, 187surfactants, 194switching ratio. 6, 16SWNTs, see single-walled carbon nanotubessynthesis method, 47synthesis of silica nanowires/tuhes, 191-3

CYD and PYD evaporation methods, 192high-temperature oven system, 193laser ablation method, 191,258,260sol-gel and other chemical methods, 193-5

TAA, see thioacetamidetadpole-like nanostructure, 59-61TCO,49TEM images, 3, 25, 51, 54-5, 58-9, 64-5, 67-8,

86-7,103,117,120,123,125-8,131,143 ,146,150-2,159,161,164,166,167. UW-7,192,212-15,217-18,220,222,225,234-5,244,260.263,271,281-2; see alsotransmission electron microscopy

temperature and nanowire, 227template-assisted synthesis, 194-5, 271-3

carbon nanotuhes, 194CFCs, 194surfactants (LAHC), 194

template-confined method. 175, 176templated fabrication, 212--16template-free polymerization, 273TEOS. 193TEOS-CA,195TEOS-LAHC, 194-5

tetraethoxysilicane (Si(OC2H\)4), 193-5tetrapod-like ZnO, see T-ZnO

thermal evaporation technique, 56as templates in synthesis of new materials, 56-9various applications, 3, 49. 52, 140, 148, 185,

197,218

thermal uunsport/conductancc. see heat transportTHG, see third harmonic generationthin/thick films, 9, 38

gas sensors, 9oxygen chemisorption and photosensitivity, 38

thioacetamide, 213thiophene, 273third harmonic generation, 35tin oxide doped indium oxide films, see stannic

oxideTi02

anatase. 107-8, 114, 158as catalyst, 135nanobelts, 186

Page 11: Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam lithography. 133 AAO, see anodic aluminum oxide AFM. see atomic force microscopy

Index 299

TiOicontd.nanofork, 123nanorods. J() I~5

nanotubes. 177~9

nanowires/clusters, 114~25

soL 100

no, nanostructures, 158. 165. 169

electric and optical properties. 169~70

growth mechanism. 165

synthesis. 158-9Ti06 octahedra. 159-60, 170

titanate. see TiO ztitania.114

crystal structures, 114

electrolyte solution. I J()

nanoclusters, 116

titanium oxide. see TiO ztransmission electron microscopy. 3-4. 11.25.75

images. see TEM images

in bending nonotubes, 75-8transparent conducting oxide, 49

transport

ballistic, 80, 158fluid. 226

heat, see heat transportproperties of sulfide, 230surface, 226

vapor, 23, 48, 148, 174

trap-state emission, 154

trititanate nanorubes, 160, 166

twin. 68boundary. 142-4

images, 124. 146

multiple. 149-51

whiskers, 123, 125

two probe method, 278

T-ZnO nanorods, 140-5. 149, 151, 153

photoluminescence. 153-4whiskers, 144

ultrahigh vacuum (UHY). 89

ultraviolet. see UV

uniform hexagonal prismatic growth. 152UY

emission. 153-54

light-induced desorption, 8, 16

light detector», 39light irradiation, 8

visible absorption spectra, 169

Y20S

nanofibres. 133nanosheets, 184

nanotubes, 133-4

sol. 133

vacuum pyrolysis. 185

van der Waul's forces, 176

vanadium oxide, see V205vanadium triisopropoxide, 183

vapor deposition, 79. 192, 239. 280

vapor transport and condensation, 22-3. 174-5

vapor phase evaporation method, see vaporevaporation

vapor-Iiquid-solid, 22, 49. 56, 60, 70, 94, 113,148. 192-3, 218, 225

crystal growth mechanism, 23epitaxy, 25-7

nanowire growth mechanism, 27vapor- solid, 70, 148,151-2.193

YLS, see vapor-Iiquid-solid

VLSE, vapor-Iiquid-solid epitaxyvolt -amperometric technique, 10

VOx nanotubcs, 183VOx-surfactant, 177

YS, see vapor-solid

Wang Z.L., 75-6, 78

Wannier exciton. 169

water/oil (W/O) microemulsions, 129

width-thickness ratio, 3, 21, 50--4, 73, 245wet-chemical method. 262

wide band-gap semiconductors, 22. 242W03.x nanorods, 177, 182, 185WO x nanowircs, 184

wreath-like, 196, 198writing. 88-90

wurtzite structure

CdS.219T-ZnO,149

ZnO/ZnS, 25, 49, 50, 56-8, 142-3. 148,

152,218

XPS

analysis, 199

spectrum. 228X-ray diffraction. see XRD

X-ray dilTractogram, 86XRD

patterns. 24, 128, 131, 141, 147. 179, 181, 183,199-200,219,221,223.244

profile, 126

spectra, 103, 105, 121

Young's modulus, 75-6. 78

zeolite, 272-3

zero-gate bias, 8zeta-potential, 98-9, 106

Ziegler-Narta polymerization, 270-1zinc blonde. 218

Page 12: Index [link.springer.com]978-0-387-28747-8/1.pdf · Index 2,2' -azohisisobutyro nitrilc, 217 3-heam lithography. 133 AAO, see anodic aluminum oxide AFM. see atomic force microscopy

300

zinc oxide, see ZnOzinc sclenide disk, 36zirconia, 93zirconium propoxide, lOO-1Zn-Au alloy, 23Zn-Cd,216ZnO

arrays, 145-8, 152-3homojunctions, 61--3nanobelts, 1-17, 49-52nanoribbons, 147reaction with nanobelts, 57-8

ZnO nanostruetures, 139-40, 148, 153,243-53controlled growth and optical properties,

139-54growth mechanism, 148optical properties, 153-4synthesis by evaporation, 140

ZnO nanowires, 25bicrystalline image, 146hicrystalline nanowircs, 142-6, 154

Index

ZnO nanowires contd.bicrystalline synthesis, 142-5controlled growth of, 25diameter control, 28direction of growth, 25morphological control, 29nonlinear optical mixing, 35photoluminescence, 153--4photoresponse of, 38reversible switching, 38SEM images of, 24, 27single crystalline, 146TEM image of, 22-42, 142, 146.151-3,243-53

ZnO thin films, 35ZnO-ZnO, homojunctions, 63ZnO-ZnS nanocable structure, 58ZnS

cuhic zinc blend, 56, 58nanobelts. 56nanotuhes, 57-9wurtzite structure. 50, 56-7


Recommended