+ All Categories
Home > Documents > Infections in the Immunocompromised Host Ranjbar M.

Infections in the Immunocompromised Host Ranjbar M.

Date post: 26-Mar-2015
Category:
Upload: isaiah-mahoney
View: 214 times
Download: 0 times
Share this document with a friend
Popular Tags:
107
Infections in the Infections in the Immunocompromised Host Immunocompromised Host Ranjbar M Ranjbar M
Transcript
Page 1: Infections in the Immunocompromised Host Ranjbar M.

Infections in the Infections in the Immunocompromised Host Immunocompromised Host

Ranjbar MRanjbar M

Page 2: Infections in the Immunocompromised Host Ranjbar M.

• Infection is a principal cause of morbidity and mortality in immunocompromised patients.

Page 3: Infections in the Immunocompromised Host Ranjbar M.

• A comprehensive understanding of the possible causes of infectious complications and the predisposing factors involved,as well as a anti-infective starting,is imperative when offering theses patients care.

Page 4: Infections in the Immunocompromised Host Ranjbar M.

• Most congenital immunodeficiency states are rare. Even in a consultative practice, most patients referred for evaluation have no demonstrable host defense defect responsible for recurrent infections.

Page 5: Infections in the Immunocompromised Host Ranjbar M.

• Most congenital immunodeficiencies are diagnosed in infancy or early childhood because of the dramatic resultant phenotypes. Typically, infants and children with significant immunodeficiency states require repeated hospitalizations for serious focal infections, and display growth retardation ("failure to thrive") as a result of these repeated illnesses.

Page 6: Infections in the Immunocompromised Host Ranjbar M.

• In adults, acquired conditions (which are relatively straightforward to diagnose) are a much more common cause of recurrent infections than the rare congenital immunodeficiency which manifests in adulthood because of a milder phenotype. Anatomic lesions, whether congenital or acquired, are often responsible for recurrent infections.

Page 7: Infections in the Immunocompromised Host Ranjbar M.

PATTERNS OF INFECTION PATTERNS OF INFECTION

• Patients with underlying defects in host defenses typically experience stereotypic patterns of recurrent infection. This generally reflects deficiencies in one or more limbs of the host immune response.

Page 8: Infections in the Immunocompromised Host Ranjbar M.

• Recurrent sinopulmonary infections, bacteremia, and/or meningitis due to encapsulated pathogens such as Streptococcus pneumoniae, Haemophilus influenzae type b, and Neisseria meningitidis are associated with defects in immunoglobulins and/or complement.

Page 9: Infections in the Immunocompromised Host Ranjbar M.

• Recurrent invasive skin infections, especially focal abscesses requiring incision and drainage, are associated with granulocyte defects.

Page 10: Infections in the Immunocompromised Host Ranjbar M.

• Progressive infections with ordinarily "benign" viruses, opportunistic intracellular pathogens, or fungi suggest defective cell-mediated immunity.

Page 11: Infections in the Immunocompromised Host Ranjbar M.

• Natural killer cell deficiency has been associated with recurrent suppurative otitis media as well as life-threatening herpesvirus infections.

Page 12: Infections in the Immunocompromised Host Ranjbar M.

• Deficiencies in C3, a key complement factor responsible for opsonization in both the classical and alternative complement pathways, is associated with a variety of infections involving the upper and lower respiratory tract (suppurative otitis media, sinusitis, mastoiditis, pneumonia), bacteremia caused by encapsulated pathogens, and suppurative lymphadenitis.

Page 13: Infections in the Immunocompromised Host Ranjbar M.

• Deficiency of mannose-binding lectin, a complement-like protein that confers innate immunity to a variety of pathogens, has been described in adults as well as in children, and is associated with skin abscesses, cryptosporidiosis, pneumonia, and meningococcal sepsis.

Page 14: Infections in the Immunocompromised Host Ranjbar M.

• Hyper-IgE (Job's) syndrome, a disorder of uncertain pathogenesis, should be suspected in the presence of eczema, mucocutaneous candidiasis, recurrent cutaneous and respiratory tract bacterial infections, and marked elevation of serum IgE.

Page 15: Infections in the Immunocompromised Host Ranjbar M.

Fever in the neutropenic adult Fever in the neutropenic adult patient with cancerpatient with cancer

• Fever in a neutropenic patient should be considered a medical emergency. Prior to the era of empiric antibiotic therapy, infections accounted for almost 75 percent of the mortality related to chemotherapy.

Page 16: Infections in the Immunocompromised Host Ranjbar M.

• Although initially designed for patients undergoing chemotherapy for leukemia or lymphoma, empiric antibiotics are now initiated in all febrile patients with chemotherapy or drug-induced neutropenia.

Page 17: Infections in the Immunocompromised Host Ranjbar M.

• Fever in a neutropenic patient is usually defined as a single temperature of >38.3ºC (101.3ºF), or a sustained temperature >38ºC (100.4ºF) for more than one hour.

Page 18: Infections in the Immunocompromised Host Ranjbar M.

• However, on occasion a neutropenic patient may not present with fever despite the presence of infection. This can occur more commonly in elderly patients or those receiving corticosteroids. The clinician should recognize that neutropenic patients may present with hypothermia, hypotension, or clinical deterioration as the initial signs of occult infection.

Page 19: Infections in the Immunocompromised Host Ranjbar M.

• Consequently there should be a low threshold for starting empiric antibiotics, especially if there are signs of clinical deterioration, even in the absence of fever.

Page 20: Infections in the Immunocompromised Host Ranjbar M.

• The definition of neutropenia varies from institution to institution but is usually defined as an absolute neutrophil count (ANC) <500 cells/µL or <1,000 cells/µL with a predicted nadir of <500 cells/µL.

Page 21: Infections in the Immunocompromised Host Ranjbar M.

PREDISPOSING FACTORS PREDISPOSING FACTORS

• The risk of infection in the neutropenic patient is related to the virulence of the pathogen, the immunologic impairment of the host, and the disruption of skin and mucosal barriers.

Page 22: Infections in the Immunocompromised Host Ranjbar M.

• The incidence of an occult infection in a febrile neutropenic patient increases with the severity of the neutropenia. While the risk of an occult infection increases with an ANC <1,000 cells/µL, it is substantially higher for those with an ANC <500 cells/µL and is highest for those with an ANC <100 cells/µL.

Page 23: Infections in the Immunocompromised Host Ranjbar M.

Other risk factors for occult Other risk factors for occult infection infection

- A rapid decline in ANC - Prolonged duration of neutropenia (>7 to 10

days) - Cancer not in remission - Comorbid illnesses requiring hospitalization- Use of peripheral lines and central venous

catheters - Use of monoclonal antibodies against various

cellular receptors

Page 24: Infections in the Immunocompromised Host Ranjbar M.

ASSOCIATED PATHOGENSASSOCIATED PATHOGENS

• An infectious source is identified in approximately 30 percent of febrile neutropenic episodes. Often the only evidence of infection is bacteremia, which can be documented in approximately 25 percent of patients. Approximately 80 percent of identified infections are believed to arise from patients' own endogenous flora.

Page 25: Infections in the Immunocompromised Host Ranjbar M.
Page 26: Infections in the Immunocompromised Host Ranjbar M.

Bacterial pathogensBacterial pathogens

• Gram-negative bacilli, particularly P. aeruginosa, were the most commonly identified pathogens until the 1980s. In a survey of 49 hospitals in the United Status in 1995 and 2000, gram-positive organisms accounted for 62 and 76 percent of all bloodstream infections, while gram-negative organisms accounted for only 22 and 14 percent of all bloodstream infections.

Page 27: Infections in the Immunocompromised Host Ranjbar M.

• Common gram-positive cocci include Staphylococcus aureus, Staphylococcus epidermidis, and streptococci; less common gram-positive organisms include Corynebacterium jeikeium, Bacillus, Leuconostoc, Lactobacillus, Propionibacterium acnes, and Rhodococcus species.

Page 28: Infections in the Immunocompromised Host Ranjbar M.

• A number of factors may account for the trend toward gram-positive infections, including the introduction of long-term indwelling lines (Hickman-Broviac, Portacaths, etc), the empiric antibiotic regimens that were designed to cover P. aeruginosa, the use of prophylactic antimicrobials that are primarily active against gram-negative pathogens (eg, fluoroquinolones), and newer chemotherapeutic regimens.

Page 29: Infections in the Immunocompromised Host Ranjbar M.

• However, it remains important to cover broadly for gram-negative pathogens because of their virulence and association with sepsis . Furthermore, gram-negative organisms continue to cause the majority of infections in sites outside of the bloodstream (eg, respiratory, biliary, urinary, and skin).

Page 30: Infections in the Immunocompromised Host Ranjbar M.

• A rising number of infections are polymicrobial . Clinicians also need to be aware of the microbiology surveillance data from their own institution, which can vary dramatically from center to center.

Page 31: Infections in the Immunocompromised Host Ranjbar M.

• Although anaerobic bacteria are present in abundance in the alimentary tract, it is usually not necessary to add specific anaerobic antibiotic coverage to the initial empiric regimen. Anaerobic bacteremia occurred in 3.4 percent of episodes in a large series of cancer patients from France.

Page 32: Infections in the Immunocompromised Host Ranjbar M.

• Specific anaerobic coverage should be added if there is evidence of necrotizing mucositis, sinusitis, periodontal abscess, perirectal abscess/cellulitis, intraabdominal or pelvic infection, typhlitis (necrotizing neutropenic colitis), or anaerobic bacteremia.

Page 33: Infections in the Immunocompromised Host Ranjbar M.

Fungal pathogensFungal pathogens

• Fungal pathogens are common. The risk for invasive fungal infections increases with the duration and severity of neutropenia, prolonged antibiotic use, and number of chemotherapy cycles. However, fungal infections can also present early or even prior to initial chemotherapy.

Page 34: Infections in the Immunocompromised Host Ranjbar M.

• In an autopsy study of patients who died after prolonged febrile neutropenia between 1966 and 1975, 69 percent of patients had evidence of systemic fungal disease.

Page 35: Infections in the Immunocompromised Host Ranjbar M.

• The following observations have been made about specific fungal pathogens:

Page 36: Infections in the Immunocompromised Host Ranjbar M.

• Candida albicans and other yeasts are common fungal causes of line infections and can cause disseminated candidiasis. Among patients who develop disseminated candidiasis following chemotherapy, hepatosplenic involvement is common; symptoms are often not present until the neutropenia resolve.

Page 37: Infections in the Immunocompromised Host Ranjbar M.

• Aspergillus is a common fungal pathogen in immunocompromised hosts; manifestations vary from localized skin ulcers, sinusitis and invasive pneumonia, to fulminant disseminated disease.

Page 38: Infections in the Immunocompromised Host Ranjbar M.

• Fusarium sp. have also been increasingly reported in the immunocompromised host. Reactivation of endemic fungi (histoplasmosis, blastomycosis, and coccidioidomycosis) or tuberculosis should also be considered in appropriate patients with prolonged steroid use or other immune suppression.

Page 39: Infections in the Immunocompromised Host Ranjbar M.

Viral pathogensViral pathogens

• Viral infections, especially human herpes viruses, are also common in this patient population.

• Herpes simplex viruses, HSV-1 and HSV-2, are common causes of skin eruptions.

Page 40: Infections in the Immunocompromised Host Ranjbar M.

• HSV can cause a wide variety of clinical syndromes, including encephalitis, meningitis, myelitis, esophagitis, pneumonia, hepatitis, erythema multiforme, and ocular disease.

Page 41: Infections in the Immunocompromised Host Ranjbar M.

• Herpes zoster often presents in an atypical disseminated pattern involving multiple dermatomes or widespread skin dissemination in immunocompromised hosts.

Page 42: Infections in the Immunocompromised Host Ranjbar M.

• Immunocompromised patients with disseminated varicella zoster virus (VZV) infection can have pulmonary involvement and should be placed on respiratory precautions to prevent aerosolized transmission to susceptible individuals.

Page 43: Infections in the Immunocompromised Host Ranjbar M.

• Primary seroconversion or reactivation of other human herpes viruses (cytomegalovirus, Epstein Barr virus, HHV-6) can also occur in this patient population as a result of immunosuppression and transfusions.

Page 44: Infections in the Immunocompromised Host Ranjbar M.

• Other common treatable viral infections that occur in the neutropenic host include respiratory syncytial and influenza viruses.

Page 45: Infections in the Immunocompromised Host Ranjbar M.

• Other — Reactivation of tuberculosis should be considered in appropriate patients with prolonged steroid use or other forms of immunosuppression. Babesia microti or B. divergens infection can also cause overwhelming sepsis in the patient with compromised splenic function.

Page 46: Infections in the Immunocompromised Host Ranjbar M.

PATIENT EVALUATIONPATIENT EVALUATION

• All febrile neutropenic patients should have a careful history and detailed physical examination.

Page 47: Infections in the Immunocompromised Host Ranjbar M.

Physical examinationPhysical examination

• A thorough general physical examination should be performed including the sinuses, fundi, and perirectal area. It is always important to remember that in the absence of neutrophils, signs of inflammation can be extremely subtle.

Page 48: Infections in the Immunocompromised Host Ranjbar M.

• The skin and mucous membranes should be examined for signs of erythema, rash, cellulitis, ulcers, furuncles, herpetic eruptions, paronychia, mucositis, dental or peritonsillar abscesses, or pilonidal disease.

Page 49: Infections in the Immunocompromised Host Ranjbar M.

• Skin lesions can often be a manifestation of a systemic infection including:

• Ulcers — fungi, atypical bacteria, mycobacteria, viruses Ecthyma gangrenosum

• - large lesion with a necrotic center that is classically seen with P. aeruginosa but also other bacteria such as S. aureus

Page 50: Infections in the Immunocompromised Host Ranjbar M.
Page 51: Infections in the Immunocompromised Host Ranjbar M.

• Sometimes skin lesions such as erythema multiforme can be related to viral infections; alternatively E. multiforme can be related to antibiotic therapy and may be associated with fever, causing diagnostic confusion.

Page 52: Infections in the Immunocompromised Host Ranjbar M.
Page 53: Infections in the Immunocompromised Host Ranjbar M.

• The examination should also include inspection of the perianal area. A digital rectal examination (and rectal temperatures) generally should be avoided. However, if a perirectal abscess or prostatitis is suspected, a gentle rectal examination can be performed after broad spectrum antibiotics have been administered.

Page 54: Infections in the Immunocompromised Host Ranjbar M.

• All indwelling or recent line sites should be carefully examined for subtle signs of infection; slight erythema, tenderness, fluctuance, or an exudate may be the only evidence of a serious "tunnel" infection.

Page 55: Infections in the Immunocompromised Host Ranjbar M.

• Lines should also be assessed for any malfunction; difficulty with infusion or blood drawing can also be a sign of an infected clot even in the absence of a problem with the exit site.

Page 56: Infections in the Immunocompromised Host Ranjbar M.

• Review of symptoms and a physical examination should be repeated daily. In one prospective assessment of 968 episodes of fever and neutropenia in patients who did not respond to initial treatment, 41 percent of patients still had unexplained fevers at 72 hours and new sites of infection (eg, lungs, skin, and urinary tract) became apparent in another 11 percent.

Page 57: Infections in the Immunocompromised Host Ranjbar M.

• As the ANC rebounds, symptoms and signs of an infection often become evident.

Page 58: Infections in the Immunocompromised Host Ranjbar M.

Laboratory studies Laboratory studies

• Laboratory evaluations should include a complete blood cell count with differential, transaminases, bilirubin, amylase, electrolytes, and cultures. Lumbar puncture is not necessary routinely but should be performed in patients who have a change in mental status.

Page 59: Infections in the Immunocompromised Host Ranjbar M.

• In interpreting laboratory results in neutropenic patients, it is important to recognize that the absence of neutrophils cannot be used to exclude the possibility of infection. Therefore, absence of a cerebrospinal fluid pleocytosis, pyuria, or PMNs on sputum Gram's stain does not rule out infection.

Page 60: Infections in the Immunocompromised Host Ranjbar M.

MicrobiologyMicrobiology

• Specimens for the microbiology laboratory should include two or more blood cultures (some prefer culturing each intravenous port and at least one peripheral blood culture), sputum Gram's stain and culture, and urine Gram's stain and culture.

Page 61: Infections in the Immunocompromised Host Ranjbar M.

• Blood cultures should be repeated for persistent fevers or rigors. we recommend one set of blood cultures a day for patients with a stable fever pattern. Another approach is to draw two or three sets initially and to wait 48 to 72 hours to repeat blood cultures unless the patient has hemodynamic instability, rigors, new localizing symptoms, or another clinical change.

Page 62: Infections in the Immunocompromised Host Ranjbar M.

• Neutropenic patients with pulmonary infiltrates frequently cannot produce sputum; a more invasive approach including bronchoscopy or open lung biopsy may need to be pursued in order to make a microbiologic diagnosis.

Page 63: Infections in the Immunocompromised Host Ranjbar M.

• This is may be particularly important for patients with infiltrates on chest radiographs or chest CT who continue to worsen despite 24 to 48 hours of empiric antibiotic therapy.

Page 64: Infections in the Immunocompromised Host Ranjbar M.

ImagingImaging

• An initial chest x-ray should be obtained on admission, even if the patient does not have pulmonary symptoms.

Page 65: Infections in the Immunocompromised Host Ranjbar M.

• Chest radiographs should be repeated for increasing or persistent pulmonary symptoms, cough, or shortness of breath. Chest x-ray findings are often minimal or absent even in patients with pneumonia.

Page 66: Infections in the Immunocompromised Host Ranjbar M.

• Radiographic findings may develop ("blossom") along with an increase in symptoms as the neutropenia begins to resolve.

Page 67: Infections in the Immunocompromised Host Ranjbar M.

• Chest computed tomographic (CT) scanning may demonstrate abnormalities such as pneumonia or pulmonary nodules even when the chest x-ray is normal.

Page 68: Infections in the Immunocompromised Host Ranjbar M.

• High-resolution CT demonstrated pneumonia in more than one-half of persistently febrile neutropenic patients who had normal findings on routine chest radiography.

Page 69: Infections in the Immunocompromised Host Ranjbar M.

• If localizing signs or symptoms are present, other tests should be considered for further investigation, such as imaging of the CNS, sinuses, chest, abdomen, or pelvis, skin biopsy for culture, direct fluorescent antibody (DFA) testing for HSV or VZV, stool for culture, Clostridium difficile toxin, or ova and parasites.

Page 70: Infections in the Immunocompromised Host Ranjbar M.

GENERAL TREATMENT GENERAL TREATMENT PRINCIPLESPRINCIPLES

• Fever in a neutropenic patient should be considered a medical emergency. Broad-spectrum antibiotics should be given as soon as possible and at full doses (adjusted for renal and/or hepatic function). Early studies documented up to a 70 percent mortality if initiation of antibiotics was delayed.

Page 71: Infections in the Immunocompromised Host Ranjbar M.

• Antibiotics are usually administered empirically, but should always include appropriate coverage for suspected or known infections. However, the antibiotic regimen should still provide broad empiric coverage for the possibility of other pathogens, unlike the treatment strategy in most immunocompetent hosts.

Page 72: Infections in the Immunocompromised Host Ranjbar M.

• Initial antibiotic selection should be guided by the patient's history, allergies, symptoms, signs, recent antibiotic use and culture data, and awareness of institutional nosocomial infection patterns.

Page 73: Infections in the Immunocompromised Host Ranjbar M.

• Ideally, antibiotics should be bactericidal and should be administered through alternate ports of any indwelling intravenous line.

• Clinical response and culture results should be closely monitored, and therapy should be adjusted in a timely fashion.

Page 74: Infections in the Immunocompromised Host Ranjbar M.

• If the patient continues to have fever after five days without an identifiable source, the following options are available.

Page 75: Infections in the Immunocompromised Host Ranjbar M.

• Continue treatment with the initial antibiotic(s) if the patient is clinically stable and the neutropenia is expected to resolve within the ensuing five days.

Page 76: Infections in the Immunocompromised Host Ranjbar M.

• Change or add antibiotic(s) if there is evidence of progressive disease or a new complication, such as the onset of abdominal pain due to enterocolitis (typhlitis), new or worsening mucous membrane lesions, pulmonary infiltrates, or drug toxicity.

Page 77: Infections in the Immunocompromised Host Ranjbar M.

• Add an antifungal drug to the regimen, with or without changing the antibiotics, if the neutropenia is expected to persist for more than five to seven days.

Page 78: Infections in the Immunocompromised Host Ranjbar M.

Antibiotic selectionAntibiotic selection

• The choice of antibiotics is driven by multiple factors, including whether an agent is bactericidal or not [19]. Some antibiotics, such as aminoglycosides and fluoroquinolones, exhibit concentration-dependent killing and are important in the treatment of gram-negative sepsis.

Page 79: Infections in the Immunocompromised Host Ranjbar M.
Page 80: Infections in the Immunocompromised Host Ranjbar M.

Infection in the solid organ Infection in the solid organ transplant recipienttransplant recipient

• Solid organ transplantation has increased worldwide since the first successful human kidney transplant was performed in 1954. As immunosuppressive agents and graft survival have improved, infection and malignancy have become the main barriers to disease.

Page 81: Infections in the Immunocompromised Host Ranjbar M.

• When invasive infection occurs, early and specific diagnosis, and rapid and aggressive treatment of infection are essential to good clinical outcomes.

Page 82: Infections in the Immunocompromised Host Ranjbar M.

• Potential etiologies of infection in these patients are diverse, including common, community-acquired bacterial and viral diseases and uncommon opportunistic infections of clinical significance only in immunocompromised hosts.

Page 83: Infections in the Immunocompromised Host Ranjbar M.

• Pulmonary processes can progress rapidly and may constitute medical emergencies. These include infections due to P. carinii/jiroveci, Nocardia asteroides, Aspergillus spp, Cryptococcus neoformans, CMV, VZV, influenza, respiratory syncytial virus (RSV), R. equi, and Legionella spp.

Page 84: Infections in the Immunocompromised Host Ranjbar M.

• Inflammatory responses associated with microbial invasion are impaired by immunosuppressive therapy, which results in diminished symptoms and muted clinical and radiologic findings. As a result, infections are often advanced (ie, disseminated) at the time of clinical presentation.

Page 85: Infections in the Immunocompromised Host Ranjbar M.

• Serologic testing is not generally useful for the diagnosis of acute infection in the immunocompromised host since seroconversion is often delayed. Such assays may be used to assess risk (eg, for latent infections, distant exposures). Antigen-based tests (eg, enzyme linked immunosorbent assays [ELISA]) or nucleic acid-based molecular assays (eg, polymerase chain reaction [PCR]) are needed in this population.

Page 86: Infections in the Immunocompromised Host Ranjbar M.

• Altered anatomy following transplant surgery may change the physical signs of infection. Diagnosis often requires anatomic data from imaging such as computed tomographic (CT) scans or magnetic resonance imaging (MRI).

Page 87: Infections in the Immunocompromised Host Ranjbar M.

• Tissue biopsies with histopathology and microbiology are often needed to make a specific microbiologic diagnosis in transplant recipients.

Page 88: Infections in the Immunocompromised Host Ranjbar M.

• Such clinical samples must be obtained early in the clinical course to enhance the chance for successful therapy, to minimize side effects of therapy, and before the patient's illness progresses to a point where such procedures can no longer be performed.

Page 89: Infections in the Immunocompromised Host Ranjbar M.

• The choice of antimicrobial regimens is often more complex than in other patients due to the urgency of therapy and the frequency of drug toxicities and drug interactions.

Page 90: Infections in the Immunocompromised Host Ranjbar M.

• Antimicrobial resistance is increased in immunocompromised hosts and should be considered in the choice of antimicrobial regimens.

• Surgical intervention is often necessary to cure localized infections (ie, debridement); antimicrobial agents alone are frequently inadequate.

Page 91: Infections in the Immunocompromised Host Ranjbar M.

RISK OF INFECTION FOLLOWING RISK OF INFECTION FOLLOWING

TRANSPLANTATIONTRANSPLANTATION

• The risk of infection in the organ transplant patient is determined by a semi-quantitative relationship between two factors: the epidemiologic exposures of the individual and the "net state of immunosuppression" which is a measure of all of the factors which contribute to the individual's susceptibility (or resistance) to infection.

Page 92: Infections in the Immunocompromised Host Ranjbar M.

Epidemiologic exposures Epidemiologic exposures

• To adequately assess epidemiologic exposures, the clinician must take a detailed history of potential encounters with a variety of pathogens, even if the exposure was relatively remote. Latent pathogens are often activated in the setting of immune suppression.

Page 93: Infections in the Immunocompromised Host Ranjbar M.

• The epidemiologic exposures of importance to an individual will vary based upon the nature of the immune deficits. Most transplant patients have multiple deficits. Thus, bacterial and fungal pathogens are more important in the setting of neutropenia while viral (eg, cytomegalovirus [CMV]) and intracellular (eg, tuberculosis [TB]) infections are more common with T cell immune deficits.

Page 94: Infections in the Immunocompromised Host Ranjbar M.

Community-acquired pathogens Community-acquired pathogens

• The transplant recipient can have contact with a number of potential pathogens within the community. These organisms include common respiratory viruses (influenza, parainfluenza, respiratory syncytial [RSV] virus, adenovirus, and human metapneumovirus).

Page 95: Infections in the Immunocompromised Host Ranjbar M.

• In addition, common bacterial pathogens may include: Streptococcus pneumoniae, Mycoplasma, Legionella, Listeria monocytogenes and Salmonella. Vaccinations for pneumococcus and influenza virus are useful but may have reduced efficacy in immunocompromised individuals.

Page 96: Infections in the Immunocompromised Host Ranjbar M.

• In the appropriate geographic regions, endemic fungi (Histoplasma capsulatum or Coccidioides immitis) and common environmental pathogens (eg, Cryptococcus neoformans, Aspergillus spp., Cryptosporidia spp.) will be observed.

Page 97: Infections in the Immunocompromised Host Ranjbar M.

• Thus, while specific infectious exposures within the community will vary based upon such factors as geography and socioeconomic status, the general dictum that "common things occur commonly" applies to transplant recipients.

Page 98: Infections in the Immunocompromised Host Ranjbar M.

Reactivation of infectionsReactivation of infections

• Reactivated infection may be derived from the organ donor or the recipient. Common viral infections that frequently reactivate following transplantation include herpes simplex virus (HSV), CMV, varicella zoster virus (VZV, shingles), hepatitis B (HBV), and hepatitis C (HCV), papillomavirus, and BK polyomavirus.

Page 99: Infections in the Immunocompromised Host Ranjbar M.

• Some exposures may have occurred many years before transplantation including geographically restricted systemic mycoses (eg, histoplasmosis, coccidioidomycosis, blastomycosis), Mycobacterium tuberculosis, Strongyloides stercoralis, Leishmania donovani or Trypanosoma cruzi.

Page 100: Infections in the Immunocompromised Host Ranjbar M.

Nosocomial infectionsNosocomial infections

Transplant recipients are vulnerable to nosocomial infections, especially in the early posttransplant (ie, post-surgical) period in patients with prolonged hospitalizations or who require mechanical ventilation.

Page 101: Infections in the Immunocompromised Host Ranjbar M.

Pathogens include: Pathogens include:

• Legionella sp. and other Gram negative bacilli such as Pseudomonas aeruginosa

• Gram positive organisms, particularly antimicrobial resistant species such as vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA)

• Fungi such as Aspergillus sp. and nonalbicans or azole-resistant Candida species

• Clostridium difficile colitis

Page 102: Infections in the Immunocompromised Host Ranjbar M.

• When the air, food, equipment, or potable water supply either in the hospital or the home are contaminated with pathogens such as Aspergillus sp., Legionella sp., or Gram negative bacilli, clusters of infection can be observed in time and/or space.

Page 103: Infections in the Immunocompromised Host Ranjbar M.

Transmission from donor organTransmission from donor organ

• Infections that are derived from donor organ tissues and activated in the recipient are among the most important exposures in transplantation. Some of these infections are latent, while others are the result of bad timing (unappreciated active infection in the donor at the time of transplantation).

Page 104: Infections in the Immunocompromised Host Ranjbar M.

• Organ donors are screened to avoid transmission of certain infections to transplant recipients (show table 1). Nonetheless, transmission of infection from donor to recipient may occur, although infrequently (show table 2).

Page 105: Infections in the Immunocompromised Host Ranjbar M.
Page 106: Infections in the Immunocompromised Host Ranjbar M.
Page 107: Infections in the Immunocompromised Host Ranjbar M.

Recommended