+ All Categories
Home > Documents > InfiniteSurds’ IB#Mathematics#SL#Portfolio,#TypeI# · & & Griffith2& & & 00000073013& 2& 1+1+1&...

InfiniteSurds’ IB#Mathematics#SL#Portfolio,#TypeI# · & & Griffith2& & & 00000073013& 2& 1+1+1&...

Date post: 16-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
9
Megan Griffith ID#: 0000007013 December 16, 2011 Ms. Griffith IB Mathematics SL, 2 nd period Infinite Surds IB Mathematics SL Portfolio, Type I I. Introduction The following is an example of an infinite surd: 1 + 1 + 1 + 1 + 1... Infinite surds are radicals within radicals within radicals that go on forever. We can express some infinite surds as real numbers, and even some as integers. In this portfolio, I will show the steps I took to find which values of k (the number inside this type of infinite surd) will yield an integer value for the infinite surd. Here are the steps I took: 1. Tested two values of k (k = 1 and k = 2) to find the values of the infinite surd. 2. Developed an expression for the general case (k) based on the pattern I recognized in the previous two cases. 3. Developed a general statement for the possible values of k that would give an integer value for the entire surd. 4. Tested my general statement. 5. Found the scope and limitations of my general statement. II. Data Collection A. Infinite Surd, k=1 We can also consider the above infinite surd as a sequence of terms a n , where: a 1 = 1 + 1 a 2 = 1 + 1 + 1 a 3 = 1 + 1 + 1 + 1 etc. I found that I was able to substitute part of each term with the previous term. For example: a 2 = 1 + a 1 a 3 = 1 + a 2 etc. This led me to a formula to describe a n+ 1 in terms of a n : a n+ 1 = 1 + a n After finding the formula for a n+ 1 , I calculated the decimal values of the first ten terms of the sequence. I have included them in the table below. The decimal values have been included to five decimal places in order to show best how the terms change in value. n a n a n simplified a n decimal 1 1 + 1 1 + 1 1.41421
Transcript
Page 1: InfiniteSurds’ IB#Mathematics#SL#Portfolio,#TypeI# · & & Griffith2& & & 00000073013& 2& 1+1+1& 1+a 1 & 1.55377& 3& 1+1+1+1& 1+a 2 & 1.59805& 4& 1+1+1+1+1& 1+a 3 & 1.61185& 5& 1+1+1+1+1+1&

Megan  Griffith  ID#:  0000007-­‐013  December  16,  2011  Ms.  Griffith  IB  Mathematics  SL,  2nd  period    

Infinite  Surds  IB  Mathematics  SL  Portfolio,  Type  I  

I. Introduction  The  following  is  an  example  of  an  infinite  surd:  

1+ 1+ 1+ 1+ 1...  Infinite  surds  are  radicals  within  radicals  within  radicals  that  go  on  forever.    We  can  express  some  infinite  surds  as  real  numbers,  and  even  some  as  integers.    In  this  portfolio,  I  will  show  the  steps  I  took  to  find  which  values  of  k  (the  number  inside  this  type  of  infinite  surd)  will  yield  an  integer  value  for  the  infinite  surd.        Here  are  the  steps  I  took:  

1. Tested  two  values  of  k  (k  =  1  and  k  =  2)  to  find  the  values  of  the  infinite  surd.  2. Developed  an  expression  for  the  general  case  (k)  based  on  the  pattern  I  recognized  in  

the  previous  two  cases.  3. Developed  a  general  statement  for  the  possible  values  of  k  that  would  give  an  integer  

value  for  the  entire  surd.  4. Tested  my  general  statement.  5. Found  the  scope  and  limitations  of  my  general  statement.  

II. Data  Collection  

A. Infinite  Surd,  k=1  We  can  also  consider  the  above  infinite  surd  as  a  sequence  of  terms   an ,  where:  

a1 = 1+ 1  

a2 = 1+ 1+ 1  

a3 = 1+ 1+ 1+ 1  etc.  I  found  that  I  was  able  to  substitute  part  of  each  term  with  the  previous  term.    For  example:  

a2 = 1+ a1  a3 = 1+ a2 etc.  

This  led  me  to  a  formula  to  describe  an+1  in  terms  of   an :  an+1 = 1+ an  

 After  finding  the  formula  for  an+1 ,  I  calculated  the  decimal  values  of  the  first  ten  terms  of  the  sequence.    I  have  included  them  in  the  table  below.    The  decimal  values  have  been  included  to  five  decimal  places  in  order  to  show  best  how  the  terms  change  in  value.    n   an   an  simplified   an  decimal  1   1+ 1   1+ 1   1.41421  

Page 2: InfiniteSurds’ IB#Mathematics#SL#Portfolio,#TypeI# · & & Griffith2& & & 00000073013& 2& 1+1+1& 1+a 1 & 1.55377& 3& 1+1+1+1& 1+a 2 & 1.59805& 4& 1+1+1+1+1& 1+a 3 & 1.61185& 5& 1+1+1+1+1+1&

    Griffith  2       0000007-­‐013  

2   1+ 1+ 1   1+ a1   1.55377  

3  1+ 1+ 1+ 1  

1+ a2   1.59805  

4  1+ 1+ 1+ 1+ 1  

1+ a3   1.61185  

5  1+ 1+ 1+ 1+ 1+ 1  

1+ a4   1.61612  

6  1+ 1+ 1+ 1+ 1+ 1+ 1  

1+ a5   1.61744  

7  

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1  1+ a6   1.61785  

8  

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1  

1+ a7   1.61798  

9  

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1  

1+ a8   1.61801  

10  

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1  

1+ a9   1.61802  

 As  n  is  getting  the  larger,  the  value  of   an  is  increasing  more  and  more  slowly.    This  can  also  be  seen  in  a  plot  of  the  relation  between  n  and   an  below.    The  plot  was  developed  using  a  TI-­‐84  calculator/MathCracker.com’s  online  scatterplot  tool,  etc.    

   When  graphed,  the  relation  looks  similar  to  the  square  root  parent  function   y = x ,  which  makes  sense  considering  we  are  dealing  with  surds.    The  graph  also  appears  to  increase  more  quickly  for  smaller  values  of  n,  and  it  appears  to  be  leveling  off  or  approaching  a  limit  as  n  gets  

Page 3: InfiniteSurds’ IB#Mathematics#SL#Portfolio,#TypeI# · & & Griffith2& & & 00000073013& 2& 1+1+1& 1+a 1 & 1.55377& 3& 1+1+1+1& 1+a 2 & 1.59805& 4& 1+1+1+1+1& 1+a 3 & 1.61185& 5& 1+1+1+1+1+1&

    Griffith  3       0000007-­‐013  

larger.    That  means  the  difference  between  consecutive  terms  is  getting  smaller.    We  can  confirm  that  in  the  following  table,  by  calculating  the  values  of   an ! an!1  for  each  value  of  n  we  have  found  so  far:    n   an   an ! an+1  1   1.41421   -­‐  0.13956  2   1.55377   -­‐  0.04428  3   1.59805   -­‐  0.01380  4   1.61185   -­‐  0.00427  5   1.61612   -­‐  0.00132  6   1.61744   -­‐  0.00041  7   1.61785   -­‐  0.00013  8   1.61798   -­‐  0.00003  9   1.61801   -­‐  0.00001  10   1.61802   -­‐-­‐    Clearly,  as  n  is  getting  larger,  the  difference  between   an  and   an ! an+1  is  getting  smaller.    In  fact,  we  should  expect  that  as  n  approaches  infinity,  the  difference  between   an  and   an ! an+1  approaches  zero.    We  can  use  that  knowledge  to  set  up  the  following  equation  to  find  an  expression  for   an  as  n  approaches  infinity:  

an ! an+1 = 0  By  substituting  an+1 = 1+ an ,  we  can  rearrange  to  see  an :  

an ! an+1 = 0

an ! 1+ an = 0

an = 1+ anan2 =1+ an

an2 ! an !1= 0

 

This  is  a  quadratic,  which  can  be  solved  using  the  quadratic  formula:  a =1,!b = !1,!c = !1

an =!b± b2 ! 4ac

2a

an =!(!1)± (!1)2 ! 4(1)(!1)

2(!1)

an =1± 52

 

The  quadratic  formula  yields  two  answers,  1.618…  and  -­‐0.618….    Only  the  first  (positive)  answer  is  valid  for  our  investigation,  since  a  radical  with  no  sign  in  front  is  implied  to  be  

positive.    Therefore,  we  can  express  the  infinite  surd,   an ,  as  1+ 52

.    This  is  the  Golden  Ratio.  

 

Page 4: InfiniteSurds’ IB#Mathematics#SL#Portfolio,#TypeI# · & & Griffith2& & & 00000073013& 2& 1+1+1& 1+a 1 & 1.55377& 3& 1+1+1+1& 1+a 2 & 1.59805& 4& 1+1+1+1+1& 1+a 3 & 1.61185& 5& 1+1+1+1+1+1&

    Griffith  4       0000007-­‐013  

However,  so  far  we  only  know  this  is  the  case  for  an  infinite  surd  using  1  (as  in,  

1+ 1+ 1+ 1+ 1... ).    We  will  follow  a  similar  investigation  for  the  infinite  surd  using  2  (

2+ 2+ 2+ 2+ 2... )  below.  

B. Infinite  Surd,  k=2  Similar  to  how  we  wrote  out  the  initial  infinite  surd  as  a  sequence  of  terms,  we  can  do  the  same  with  our  new  infinite  surd.    To  distinguish  the  two,  we  will  write  out  our  new  sequence  as  bn :    

b1 = 2+ 2  

b2 = 2+ 2+ 2  

b3 = 2+ 2+ 2+ 2  etc.  We  can  also  use  the  same  method  as  with  the  first  infinite  surd  to  express  each  term  using  the  previous  term:  b2 = 2+ b1  b3 = 2+ b2 etc.  This  led  me  to  a  formula  to  describe  bn+1  in  terms  of  bn :  bn+1 = 2+ bn    After  finding  the  formula  for  bn+1 ,  I  calculated  the  decimal  values  of  the  first  ten  terms  of  the  sequence.    I  have  included  them  in  the  table  below.    The  decimal  values  have  been  included  to  six  decimal  places  in  order  to  show  best  how  the  terms  change  in  value.    n   bn   bn  simplified   bn  decimal  1   2+ 2   2+ 2   1.847759  

2   2+ 2+ 2   2+ b1   1.961571  

3  2+ 2+ 2+ 2   2+ b2   1.990369  

4  2+ 2+ 2+ 2+ 2  

2+ b3   1.997591  

5  2+ 2+ 2+ 2+ 2+ 2  

2+ b4   1.999398  

6  2+ 2+ 2+ 2+ 2+ 2+ 2  

2+ b5   1.999849  

7  

2+ 2+ 2+ 2+ 2+ 2+ 2+ 2  2+ b6   1.999962  

8  

2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2  

2+ b7   1.999991  

Page 5: InfiniteSurds’ IB#Mathematics#SL#Portfolio,#TypeI# · & & Griffith2& & & 00000073013& 2& 1+1+1& 1+a 1 & 1.55377& 3& 1+1+1+1& 1+a 2 & 1.59805& 4& 1+1+1+1+1& 1+a 3 & 1.61185& 5& 1+1+1+1+1+1&

    Griffith  5       0000007-­‐013  

9  

2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2  

2+ b8   1.999997  

10  

2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2

 

2+ b9   1.999999  

 As  n  is  getting  the  larger,  the  value  of   bn  is  increasing  more  and  more  slowly    (It  seems  to  be  approaching  2.).    This  can  also  be  seen  in  a  plot  of  the  relation  between  n  and  bn  below.    The  plot  was  developed  using  a  MathCracker.com’s  online  scatterplot  tool.    

   When  graphed,  the  relation  still  looks  similar  to  the  square  root  parent  function   y = x .    The  graph  also  appears  to  increase  more  quickly  for  smaller  values  of  n,  and  it  appears  to  be  leveling  off  or  approaching  a  limit  as  n  gets  larger.    That  means  the  difference  between  consecutive  terms  is  getting  smaller.    We  can  confirm  that  in  the  following  table,  by  calculating  the  values  of  bn ! bn!1  for  each  value  of  n  we  have  found  so  far,  just  as  we  did  with  the  first  infinite  surd.    n   bn   bn ! bn+1  1   1.847759   -­‐  0.113812  2   1.961571   -­‐  0.028798  3   1.990369   -­‐  0.007222  4   1.997591   -­‐  0.001807  5   1.999398   -­‐  0.000451  6   1.999849   -­‐  0.000113  7   1.999962   -­‐  0.000029  8   1.999991   -­‐  0.000006  9   1.999997   -­‐  0.000002  10   1.999999   -­‐-­‐  

Page 6: InfiniteSurds’ IB#Mathematics#SL#Portfolio,#TypeI# · & & Griffith2& & & 00000073013& 2& 1+1+1& 1+a 1 & 1.55377& 3& 1+1+1+1& 1+a 2 & 1.59805& 4& 1+1+1+1+1& 1+a 3 & 1.61185& 5& 1+1+1+1+1+1&

    Griffith  6       0000007-­‐013  

Clearly,  as  n  is  getting  larger,  the  difference  between  bn  and  bn ! bn+1  is  getting  smaller.    We  would  expect  that  as  n  approaches  infinity,  the  difference  between  bn  and   bn ! bn+1  approaches  zero.    In  fact,  we  had  to  show  more  decimal  places  for  bn  and  bn ! bn+1  than  with   an  and  an ! an+1 ,  as  it  starts  to  level  off  more  quickly.        Just  as  we  did  with  the  initial  infinite  surd,  we  can  use  the  knowledge  that  the  difference  between  consecutive  terms  is  approaching  zero  to  set  up  the  following  equation  to  find  an  expression  for  bn  as  n  approaches  infinity:  

bn ! bn+1 = 0  By  substituting  bn+1 = 2+ bn ,  we  can  rearrange  to  see  bn :  

bn ! bn+1 = 0

bn ! 2+ bn = 0

bn = 2+ bnbn2 = 2+ bn

bn2 ! bn ! 2 = 0

 

This  still  yields  a  quadratic,  which  can  be  solved  using  the  quadratic  formula:  a =1,!b = !1,!c = !2

bn =!b± b2 ! 4ac

2a

bn =!(!1)± (!1)2 ! 4(1)(!2)

2(!1)

bn =1± 92

=1±32

 

The  quadratic  formula  yields  two  answers,  2  and  -­‐1.    Only  the  first  (positive)  answer  is  valid  for  our  investigation,  since  a  radical  with  no  sign  in  front  is  implied  to  be  positive.    Therefore,  we  can  express  the  infinite  surd,   an ,  as  2 .    This  is  not  the  Golden  Ratio.    Instead,  it  is  the  number  repeated  inside  the  infinite  surd.  

III. General  Statement  

A. Infinite  Surd,  k=  any  number  It  would  be  worth  our  while  to  find  a  way  to  express  all  infinite  surds  in  the  form  

k + k + k + k + k...  to  avoid  going  through  the  same  long  process  for  each  value  k.    From  our  previous  investigations,  we  know  that   an ! an+1 = 0  and   bn ! bn+1 = 0 .    It  follows  that  the  same  would  be  the  case  for  this  infinite  surd,  which  we  will  express  as   cn .    Therefore:  

an ! 1+ an = 0

bn ! 2+ bn = 0

cn ! k + cn = 0

 

We  can  use  this  to  solve  for   cn using  the  quadratic  formula,  just  as  we  did  for  the  other  two  infinite  surds:  

Page 7: InfiniteSurds’ IB#Mathematics#SL#Portfolio,#TypeI# · & & Griffith2& & & 00000073013& 2& 1+1+1& 1+a 1 & 1.55377& 3& 1+1+1+1& 1+a 2 & 1.59805& 4& 1+1+1+1+1& 1+a 3 & 1.61185& 5& 1+1+1+1+1+1&

    Griffith  7       0000007-­‐013  

cn ! k + cn = 0

cn = k + cncn2 = k + cn

cn2 ! cn ! k = 0

 

 a =1,!b = !1,!c = !k

cn =!b± b2 ! 4ac

2a

cn =!(!1)± (!1)2 ! 4(1)(!k)

2(1)

cn =1± 1+ 4k

2

 

We  saw  with  the  first  two  surds  that  only  the  positive  solution  is  valid  (1+ 1+ 4k2

).    

Before  we  move  any  further  with  the  general  statement  we  have  found,  we  need  to  test  it  again  with  the  data  we  used  previously.        

For  k  =  1  (the  first  infinite  surd),  we  get  the  following:  1+ 1+ 4(1)2

=1+ 52

 

For  k  =  2  (the  second  infinite  surd),  we  get:  1+ 1+ 4(2)2

=1+ 92

=1+32

= 2  

 This  matches  what  we  found  during  our  data  collection,  so  we  can  now  move  on  to  judging  the  scope  and  limitations  of  our  expression  for  the  infinite  surd  with  k.  

B. Numbers  of  k  that  give  an  integer  answer  Even  though  this  formula  yielded  an  integer  value  (2)  for  the  second  infinite  surd,  it  yielded  an  irrational  number  (granted,  the  Golden  Ratio)  for  the  first  infinite  surd.    We  can  find  all  the  values  for  which   cn  is  an  integer  by  first  setting  up  an  equation  where   cn  equals  an  integer,  Z.    1+ 1+ 4k

2= Z  

By  solving  for  k,  we  can  see  the  possible  values  of  k  that  will  yield  integer  values  for  the  infinite  surd.  1+ 1+ 4k

2= Z

1+ 1+ 4k = 2Z

1+ 4k = 2Z !11+ 4k = (2Z !1)2

4k = (2Z !1)2 !1

k = (2Z !1)2 !1

4

 

 

Page 8: InfiniteSurds’ IB#Mathematics#SL#Portfolio,#TypeI# · & & Griffith2& & & 00000073013& 2& 1+1+1& 1+a 1 & 1.55377& 3& 1+1+1+1& 1+a 2 & 1.59805& 4& 1+1+1+1+1& 1+a 3 & 1.61185& 5& 1+1+1+1+1+1&

    Griffith  8       0000007-­‐013  

This  means  that  for  the  infinite  surd  to  equal  an  integer,  k  must  equal   (2Z !1)2 !1

4  where  Z  is  

an  integer.    To  test  this,  we  will  use  a  variety  of  real  numbers.  

IV. Testing  General  Statement  

A. Test  Values  Z=-­‐4,  6,  0,  0.67,   3  Although  we  cannot  yet  prove  our  general  statement,  we  can  test  it  with  various  values  to  see  whether  it  works  for  all  of  those.    In  each  case,  we  need  to  test  a  value  of  Z  (some  of  which  are  integers  and  some  of  which  are  not),  find  the  corresponding  value  of  k,  and  find  the  value  of  the  infinite  surd  to  see  whether  it  will  yield  an  integer  value:  Z   k   Infinite  Surd   Infinite  Surd  -­‐4  

k = (2(!4)!1)2 !1

4= 20   1+ 1+ 4(20)

2  

5  

0  k = (2(0)!1)

2 !14

= 0   1+ 1+ 4(0)2

 1  

0.67  k = (2(0.67)!1)

2 !14

= !0.2211   1+ 1+ 4(!0.2211)2

 0.67  

3   k = (2 3 !1)2 !14

"1.27   1+ 1+ 4(1.27)2

  1.73…  ( 3 )  

6  k = (2(6)!1)

2 !14

= 30   1+ 1+ 4(30)2

 6  

B. Judging  the  validity  of  the  general  statement  My  general  statement  held  true  for  all  of  my  test  values,  which  means  that  it  is  still  valid.    Although  I  have  not  conclusively  proven  it,  I  am  satisfied  that  it  is  a  good  working  general  statement  because  it  worked  for  a  variety  of  test  values.  

V. Scope  and  Limitations  

A. Domain  of  the  infinite  surd  

We  know  that  to  obtain  an  integer  for  the  infinite  surd,  k  must  equal   (2Z !1)2 !1

4  where  Z  is  an  

integer.    However,  there  is  a  broader  restriction  on  the  value  of  k,  since  the  value  of  the  

infinite  surd  in  general  is  1+ 1+ 4k2

.    Since  we  want  to  find  real  values  for  the  infinite  surd,  

the  value  inside  the  radical  (1  +  4k)  must  be  greater  than  or  equal  to  zero:  1+ 4k ! 04k ! "1

k ! " 14

 

Thus,  k  must  always  be  at  least  -­‐0.25  for  the  infinite  surd  to  be  a  real  number.  

Page 9: InfiniteSurds’ IB#Mathematics#SL#Portfolio,#TypeI# · & & Griffith2& & & 00000073013& 2& 1+1+1& 1+a 1 & 1.55377& 3& 1+1+1+1& 1+a 2 & 1.59805& 4& 1+1+1+1+1& 1+a 3 & 1.61185& 5& 1+1+1+1+1+1&

    Griffith  9       0000007-­‐013  

B. Range  of  the  infinite  surd  As  long  as  k  ≥  -­‐0.25,  the  infinite  surd  will  give  us  a  positive  real  number  because  the  radical  in  1+ 1+ 4k

2  will  always  give  zero  or  a  positive,  the  1  in  the  numerator  is  positive,  and  the  2  in  

the  denominator  is  also  positive.    This  means  the  smallest  real  value  for  the  infinite  surd  is  ½,  but  there  is  no  limit  on  how  large  it  can  be.  

VI. Conclusion  Infinite  surds  can  sometimes  be  expressed  as  integers.    I  was  able  to  find  which  infinite  surds  can  be  simplified  to  integers  by  breaking  up  the  infinite  surd  into  a  sequence  of  terms.    I  could  have  improved  my  investigation  by  testing  more  even  and  odd  values  of  k  to  see  if  there  was  a  pattern  connected  with  those,  or  if  prime  numbers  k  gave  a  different  pattern  than  composite  values  for  k.    


Recommended