+ All Categories
Home > Documents > Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus...

Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus...

Date post: 21-Jan-2016
Category:
Upload: jared-wright
View: 218 times
Download: 0 times
Share this document with a friend
54
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium on Molecular Spectroscopy June 20 th
Transcript
Page 1: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Infrared Spectra of Chloride-Fluorobenzene Complexes in the Gas

Phase:

Electrostatics versus Hydrogen Bonding

Holger Schneider

OSU

International Symposium on Molecular Spectroscopy

June 20th

Page 2: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Motivation: Anion Recognition

Page 3: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Hydrogen bonds

ElectrostaticsLewis acids

Hydrophobic effects Beer et al, Angew. Chem. Int. Ed., 40, 486, 2001

Motivation: Anion Recognition

Page 4: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Hydrogen bonds

ElectrostaticsLewis acids

Hydrophobic effects Beer et al, Angew. Chem. Int. Ed., 40, 486, 2001

Motivation: Anion Recognition

Page 5: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Questions: • binding motifs?

• competition between different binding sites?

Beer et al, Angew. Chem. Int. Ed., 40, 486, 2001

Motivation: Anion Recognition

Hydrogen bonds

ElectrostaticsLewis acids

Hydrophobic effects

Page 6: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Questions: • binding motifs?

• competition between different binding sites?

Needed: structural information

Beer et al, Angew. Chem. Int. Ed., 40, 486, 2001

Motivation: Anion Recognition

Hydrogen bonds

ElectrostaticsLewis acids

Hydrophobic effects

Page 7: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Questions: • binding motifs?

• competition between different binding sites?

Needed: structural information

Possible Tool: infrared spectroscopy

Beer et al, Angew. Chem. Int. Ed., 40, 486, 2001

Motivation: Anion Recognition

Hydrogen bonds

ElectrostaticsLewis acids

Hydrophobic effects

Page 8: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Questions: • binding motifs?

• competition between different binding sites?

Needed: structural information

Possible Tool: infrared spectroscopy

Model system in this study: Cl-·C6F

nH

6-n (n = 1-5)

Beer et al, Angew. Chem. Int. Ed., 40, 486, 2001

Motivation: Anion Recognition

Hydrogen bonds

ElectrostaticsLewis acids

Hydrophobic effects

Page 9: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Experimental Realization: Infrared Predissociation Spectroscopy

Step 1: Ion formation and mass selection

[A-·Bn]

Page 10: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Step 1: Ion formation and mass selection

Step 2: Exposure to infrared light

h[A-·Bn]

*

Experimental Realization: Infrared Predissociation Spectroscopy

[A-·Bn]

Page 11: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Step 1: Ion formation and mass selection

Step 2: Exposure to infrared light

[A-·Bn-m] + Bm

Step 3: Registration of fragment ions

Experimental Realization: Infrared Predissociation Spectroscopy

[A-·Bn]

h[A-·Bn]

*

Page 12: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Mechanism:

one-photon-dissociation only if EB[A-·Bn] < h

[A-·Bn] h

[A-·Bn]* [A-·Bn-m] + m·B

Page 13: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Mechanism:

[A-·Bn] h

[A-·Bn]* [A-·Bn-m] + m·B

[A-·Bn·Arm] h

[A-·Bn·Arm]* [A-·Bn] + m·Ar

one-photon-dissociation only if EB[A-·Bn] < h

Attachment of a weakly bound “messenger” atom (e.g. Ar)Alternative:

Advantages:

- one-photon-dissociation

- production of cold clusters

Disadvantage:

- difficult to produce

Page 14: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Power M eter

Reflectron

Entra inm entSource

Ion B eamIon D etector

M ass G ateIon O ptics

E lectron G un

IR -O P O

N d:YA G2200 - 3800 cm -1

Experimental Setup

Entrainment Source:

• W.H. Robertson, M.A. Kelley, M.A. Johnson, Rev. Sci. Inst., 71, 4431, 2000

• Weber J.M., Schneider H., J. Chem. Phys., 120, 10056, 2004

Page 15: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

General Considerations: Cl-·C6F

nH

6-n

Page 16: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

1. EACl: 3.61 eV(1) >> EAC6F6: 0.53 eV(2)

negative charge will be predominantly localized on chloride

fluorobenzenes will serve as ligands with planar ring structures

General Considerations: Cl-·C6F

nH

6-n

(1): Berzinsh, U. et al, Phys. Rev. A, 1995, 51, 231(2): Miller, T.M et al, Int. J. Mass Spectrom., 2004, 233, 67-73

Page 17: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

2. Consider interaction of aromatic charge distribution with anion:

• Quinonero et al., Angew. Chem. Int. Ed., 41, 2001

• Hiraoka, K. et al, J. Phys. Chem., 91, 529,1987

• Loh et al, J. Chem. Phys., 119, 9559, 2003

General Considerations: Cl-·C6F

nH

6-n

1. EACl: 3.61 eV(1) >> EAC6F6: 0.53 eV(2)

negative charge will be predominantly localized on chloride

fluorobenzenes will serve as ligands with planar ring structures

Page 18: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

- anion binds to hydrogen

atoms at the periphery of the ring

(Loh et al, J. Chem. Phys., 119, 9559,

2003)

- red shift of hydrogen bonding

CH oscillators

- anion binds to positive partial

charge in the ring

(Quinonero et al., Angew. Chem. Int. Ed., 41,

2001;

Hiraoka, K. et al, J. Phys. Chem., 91, 529,

1987)

- minor influence on bonds of

the aromatic ring

General Considerations: Cl-·C6F

nH

6-n

Page 19: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

• at what degree of fluorination does the binding motif switch?

• how will different distributions of the fluorine atoms around

the ring influence the binding motif?

Questions:

General Considerations: Cl-·C6F

nH

6-n

Page 20: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Consider Simplest Case: Cl-·C6H6…

Two possible binding motifs:

Linear Bifurcated

Loh et al, J. Chem. Phys., 119, 9559, 2003

Page 21: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Two possible binding motifs:

Linear Bifurcated

Loh et al, J. Chem. Phys., 119, 9559, 2003

Consider Simplest Case: Cl-·C6H6…

Page 22: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

2400 2600 2800 3000 3200

Fra

gm

ent I

on S

ignal [

Arb

. Units

]

Photon Energy [cm-1]

Consider Simplest Case: Cl-·C6H6…

Page 23: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

2400 2600 2800 3000 3200

Fra

gm

ent I

on S

ignal [

Arb

. Units

]

Photon Energy [cm-1]

1

2

3

1: overlap of 20 and 7 (Wilson numbering of benzene)

2: 2mode

3: combination band (Fermi interaction)

Consider Simplest Case: Cl-·C6H6…

Page 24: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Consider Simplest Case: Cl-·C6H6…

2400 2600 2800 3000 3200

Fra

gmen

t Ion

Sig

nal [

Arb

. Uni

ts]

Photon Energy [cm-1]

• spectra complicated due to interaction of

several CH stretch modes (Fermi resonances)

• large intensity only due to H bonding of CH

groups to the chloride anion

Page 25: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

2400 2600 2800 3000 3200

Fra

gmen

t Ion

Sig

nal [

Arb

. Uni

ts]

Photon Energy [cm-1]

... the consequences for Cl-·C6FnH6-n:

• spectra complicated (e.g. by combination bands / Fermi resonances)

• intense features centered around H bonded groups: allows structural interpretation!

Consider Simplest Case: Cl-·C6H6…

• spectra complicated due to interaction of

several CH stretch modes (Fermi resonances)

• large intensity only due to H bonding of CH

groups to the chloride anion

Page 26: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

… and increase the level of fluorination!

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

PhotonEnergy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

Photon Energy[cm ]

Frag

men

tIo

nS

igna

l

Photon Energy[cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

PhotonEnergy[cm ]

Frag

men

tIon

Sign

al[A

rb.U

nits

]

Photon Energy [cm ]

n = 0

Cl-·C6F

nH

6-n

Page 27: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

PhotonEnergy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

Photon Energy[cm ]

Frag

men

tIo

nS

igna

l

Photon Energy[cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

PhotonEnergy[cm ]

Frag

men

tIon

Sign

al[A

rb.U

nits

]

Photon Energy [cm ]

n = 0

Cl-·C6F

nH

6-n

… and increase the level of fluorination!

n = 1

Page 28: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

PhotonEnergy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

Photon Energy[cm ]

Frag

men

tIo

nS

igna

l

Photon Energy[cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

PhotonEnergy[cm ]

Frag

men

tIon

Sign

al[A

rb.U

nits

]

Photon Energy [cm ]

n = 0

n = 1

n = 2

Cl-·C6F

nH

6-n

… and increase the level of fluorination!

Page 29: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

PhotonEnergy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

Photon Energy[cm ]

Frag

men

tIo

nS

igna

l

Photon Energy[cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

PhotonEnergy[cm ]

Frag

men

tIon

Sign

al[A

rb.U

nits

]

Photon Energy [cm ]

n = 0

n = 1

n = 2

n = 3

Cl-·C6F

nH

6-n

… and increase the level of fluorination!

Page 30: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

PhotonEnergy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

Photon Energy[cm ]

Frag

men

tIo

nS

igna

l

Photon Energy[cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

PhotonEnergy[cm ]

Frag

men

tIon

Sign

al[A

rb.U

nits

]

Photon Energy [cm ]

n = 0

n = 1

n = 2

n = 3

Dramatic change

in red shift!

Cl-·C6F

nH

6-n

… and increase the level of fluorination!

Page 31: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

PhotonEnergy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

Photon Energy[cm ]

Frag

men

tIo

nS

igna

l

Photon Energy[cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

PhotonEnergy[cm ]

Frag

men

tIon

Sign

al[A

rb.U

nits

]

Photon Energy [cm ]

n = 0

n = 1

n = 2

n = 3

n = 4

Cl-·C6F

nH

6-n

… and increase the level of fluorination!

Dramatic change

in red shift!

Page 32: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

PhotonEnergy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

Photon Energy[cm ]

Frag

men

tIo

nS

igna

l

Photon Energy[cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

PhotonEnergy[cm ]

Frag

men

tIon

Sign

al[A

rb.U

nits

]

Photon Energy [cm ]

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5 Red shifted CH stretch vibration

Still hydrogen bonding!

Cl-·C6F

nH

6-n

… and increase the level of fluorination!

Dramatic change

in red shift!

Page 33: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

IR Spectra of Cl-·C6FnH6-n

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

PhotonEnergy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

Photon Energy[cm ]

Frag

men

tIo

nS

igna

l

Photon Energy[cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

PhotonEnergy[cm ]

Frag

men

tIon

Sign

al[A

rb.U

nits

]

Photon Energy [cm ]

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

Cl-·C6F

nH

6-n

Page 34: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

PhotonEnergy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy[cm ]

Fra

gme

ntIo

nS

igna

l[A

rb.U

nits

]

Photon Energy [cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy[cm ]

Frag

men

tIon

Sig

nal[

Arb

.Uni

ts]

Photon Energy [cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

Photon Energy[cm ]

Frag

men

tIo

nS

igna

l

Photon Energy[cm ]

Fra

gme

ntIo

nS

ign

al[A

rb.U

nits

]

PhotonEnergy[cm ]

Frag

men

tIon

Sign

al[A

rb.U

nits

]

Photon Energy [cm ]

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

Absorption ~ 3000 cm-1

Absorption ~ 2600 cm-1

Cl-·C6F

nH

6-n

IR Spectra of Cl-·C6FnH6-n

Page 35: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

only linear binding motif possible

linear and bifurcated binding motif possible

Page 36: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

2400 2600 2800 3000 3200 3400

Ph

oto

fra

gm

en

t Sig

na

l [a

rb. u

nits

]

Photon Energy [cm-1]

Cl-·C6H

6·Ar

Cl-·C6F

5H·Ar

IR Spectra of Cl-·C6H

6 (top trace) vs. Cl-·C

6F

5H (bottom trace)

Page 37: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

2 3 4

0

1

2

3

4

5

C6F

5

-HCl

E

[eV

]

dist C-H [a.u.]

C6F

5HCl-

Calculated potential energy surface along the CH stretching

coordinate in [C6F

5···H···Cl]- (MP2/TZVP)

Page 38: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Calculations (DFT, B3-LYP, TZVP, scaled harmonic frequencies):

CH = 2544 cm-1

CH, bound = 2586 cm-1

CH, free = 3091 cm-1

CH, asymm = 2999 cm-1

CH, symm = 3006 cm-1

Page 39: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

ν [cm-1] Erel [meV]

2982 0

3036

3088

ν [cm-1] Erel [meV]

2656 ~170

3066

3079

Calculations (DFT, B3-LYP, TZVP, scaled harmonic frequencies):

Page 40: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

ν [cm-1] Erel [meV]

2982 0

3036

3088

ν [cm-1] Erel [meV]

2656 ~170

3066

3079

intense

Calculations (DFT, B3-LYP, TZVP, scaled harmonic frequencies):

Page 41: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

ν [cm-1] Erel [meV]

2982 0

3036

3088

ν [cm-1] Erel [meV]

2656 ~170

3066

3079

intense

Calculations (DFT, B3-LYP, TZVP, scaled harmonic frequencies):

Page 42: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Comparison to Experimental Spectrum

2400 2600 2800 3000 3200 3400

0,000

Fra

gmen

t Ion

Sig

nal [

Arb

. Uni

ts]

Photon Energy [cm-1]

ν [cm-1] Erel [meV]

2982 0

3036

3088

ν [cm-1] Erel [meV]

2656 ~170

3066

3079

Page 43: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

2400 2600 2800 3000 3200 3400

0,000

Fra

gmen

t Ion

Sig

nal [

Arb

. Uni

ts]

Photon Energy [cm-1]

Comparison to Experimental Spectrum

ν [cm-1] Erel [meV]

2982 0

3036

3088

ν [cm-1] Erel [meV]

2656 ~170

3066

3079

Page 44: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

2400 2600 2800 3000 3200 3400

0,000

Fra

gmen

t Ion

Sig

nal [

Arb

. Uni

ts]

Photon Energy [cm-1]

Comparison to Experimental Spectrum

ν [cm-1] Erel [meV]

2982 0

3036

3088

ν [cm-1] Erel [meV]

2656 ~170

3066

3079

Page 45: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

So How About The Ring Bound Isomer After All?

• doesn’t show up in any of the recorded infrared spectra

• but is a stable structure according to our calculations, for Cl-·C6F5H it

lies ~ 300 meV above the ground state (DFT, B3-LYP, TZVP)

Page 46: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Summary / Interpretation

• no change in binding motif until perfluorobenzene (Even for highest fluorination degree under study hydrogen bonding is preferred to binding to the top of the ring!)

• hydrogen atoms become more and more acidic with increasing fluorination

(red shift of CH bands increases)

• calculations support these assignments

Page 47: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Thanks to...

• Prof. J.M. Weber

• Kristen Vogelhuber

• Financial support by

- NSF (JILA Physics Frontier Center)

- Petroleum Research Fund

• ... all of you for your attention!!!

Page 48: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

CH Stretch region of benzene

Benzene Fermi tetrad

Page et al., J. Chem. Phys., 88, 4621 (1988)

Page et al., J. Chem. Phys., 88, 5362 (1988)

Page 49: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Normal modes of benzene (Wilson‘s numbering)

Page et al., J. Chem. Phys., 88, 5362 (1988)

Page 50: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Quinonero et al., Angew. Chem. Int. Ed., 41, 3389 (2002)

Page 51: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Bryantsev et al., Org. Lett., 7, 5031 (2006)

Page 52: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

16

543

2

7

12

10

9 11

8

16

543

2

7

12

10

9 11

8

1: -0.10 7: 0.18

2: 0.19 8: -0.17

3: 0.09 9: -0.19

4: 0.11 10: -0.19

5: 0.09 11: -0.19

6: 0.19 12: -0.17

Cl-: -0.83

1: -0.21 7: 0.18

2: 0.23 8: -0.17

3: 0.11 9: -0.16

4: 0.15 10: -0.15

5: 0.11 11: -0.16

6: 0.23 12: -0.17

Mulliken population analysis of Cl-·C6F5H and neutral C6F5H

Page 53: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

ν [cm-1]

3103

3159

3213

ν [cm-1]

2764

3190

3204

Page 54: Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.

Illustration of electrostatic potential around C6H6 (left) and C6F6 (right)

(calculated with Gaussian03W, HF/3-21G* level)

The color coding from blue to red represents positive to negative electrostatic potentials.


Recommended